Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Speech at high ambient air-pressure Fant, G. and Sonesson, B. journal: volume: number: year: pages: STL-QPSR 5 2 1964 009-021 http://www.speech.kth.se/qpsr 1. Summary The p r e s e n t s t u d y was i n i t i a t e d a s an attempt t o g a i n i n s i g h t i n t h e p h y s i o l o g i c a l and a c o u s t i c a l n a t u r e of t h e t y p i c a l d i s t o r t i o n of d i v e r ' s speech a t deep underwater l e v e l s . A t a depth of more t h a n 30 m , i.e. p r e s s u r e s i n a c c e s s of 4 a t a , t h e v o i c e a t t a i n s a t y p i c a l " n a s a l " q u a l i t y and s p e c t r o g r a p h i c a n a l y s i s shows an i n c r e a s e of formant f r e q u e n c i e s and of v o i c e fundamental frequency, Harvey Wathen-DuEn and Cope1 ( 6 ) , Holywell and ( 5 ) , and o t h e r s have d e s c r i b e d t h e s e e f f e c t s but t h e y have been more concerned with problems of i n t e l l i g i b i l i t y and t h e toxi c e f f e c t s of absorbed g a s e s t h a n w i t h t h e a c o u s t i c problems. As f a r a s we know t h e mechanism u n d e r l y i n g t h e " n a s a l q u a l i t y " of over-pressure speech has not been s a t i s f a c t o r i l y e x p l a i n e d b e f o r e . Our s t u d y s t a r t e d with speech r e c o r d i n g s i n t h e decompression chamber of t h e Swedish Marine i n Karlskrona i n 1960 and 1962. S p e c t r o g r a p h i c a n a l y s i s showed t h a t t h e frequency s h i f t was p r o p o r t i o n a l l y g r e a t e r i n F, t h a n i n h i g h e r formants. A simple model of a l i n e a r frequency s h i f t , such a s a s s o c i a t e d w i t h a change of t h e v e l o c i t y of sound, d i d not f i t t h e s e e x p e r i ments. Furthermore i t i s known t h a t t h e v e l o c i t y of sound i n a i r i s almost independent of t h e p r e s s u r e . The most r e c e n t and c o n c l u s i v e s t u d y was undertaken i n April 1964 i n t h e decompression chamber on board HMS Belos i n Stockholm. The l a t t e r f a c i l i t i e s i n c l u d e an X-ray o u t f i t which made i t p o s s i b l e f o r u s t o s t u d y t h e v e l a r f u n c t i o n of a s u b j e c t d u r i n g phonation. *'The F r o n t a l and s a g i t t a l X-ray p i c t u r e s showed a experimental p a r t of t h i s s t u d y was supported by t h e Swedish Medical Research Council Grant T 312 and W 267 and by a g r a n t f o r speech communication r e s e a r c h from t h e Swedish Technical Research Council. A summary w i l l be p r e s e n t e d a t t h e 68th Meeting of t h e B c o u s t i c a l S o c i e t y , 1964, of America i n ~ u s t i n / ~ e x a sOctober normal s t a t u s of t h e velum a t 6 a t a p r e s s u r e . dlthough these n e g a t i v e r e s u l t s excluded velo-pharyngeal opening a s t h e main c a u s s of t h e observed spectrum d i s t o r t i o n , t h e v e r y n a t u r e of t h i s d i s t o r t i o n s t r o n g l y i n d i c z t e s t h e presence of some kind of s h u n t i n g mechanism i n v o c a l t r a n s m i s s i o n . A t h e o r e t i c a l a n a l y s i s h a s now s u p p l i e d c o n c l u s i v e evidence t h a t t h e s h u n t i n g mechanism i s a s s o c i a t e d w i t h t h e v i b r a t i o n of t h e w a l l s of t h e v o c a l c a v i t i e s , e s p e c i a l l y t h e s o f t p a r t s of t h e t h r o a t . A s a by-product of t h i s s t u d y t h e r o l e of t h e cav- i t y w a l l s i n normal speech has been emphasized. These r e s u l t s t i e i n w e l l w i t h r e c e n t experiments and a n a l y s i s of v o c a l t r a n s m i s s i o n performed by D r . 0. Fujimura a t t h e Speech Transmission Laboratory. 2. Spectrographic s t u d y The r e c o r d i n g of speech i n t h e p r e s s u r e t a n k of HMS Belos w a s c a r r i e d out w i t h a b a t t e r y operated t a p e - r e c o r d e r and a dynamic microphone. A speaking d i s t a n c e of 2 i n c h e s t o t h e microphone was maintained. Recordings were made -tt I a t z, i,z. normal atmosphere p r e s s u r e , and a t 6 a t a , t h e l a t t e r correspondi n g t o 50 meter d i v i n g depth. A frequency s t a n d a r d t o n e of 1000 c / s was recorded a t each p r e s s u r e l e v e l a s a means of e n s u r i n g r e l i a b l e frequency c a l i b r a t i o n . Four s u b j e c t s spoke l i s t o f CV nonsensz s y l l a - b l e s comprising a l l p o s s i b l e combinations of C [ m l , [ n l , [ l ] , [ v 1 9 and V = [o:], [E:]? = [b], [dl, [g], [e:19 [ i : ] , [b:] t o g e t h e r with a s e n t e n c e "I d s g v i l l j a g v i l a p& min 5 " . R e p r e s e n t a t i v e spectrograms a t 1 and 6 a t a a r e shown i n Figs. 11-6 t o 11-9, From t h e s e i t i s apparent t h a t a t 6 a t a F1 i s confined t o a frequency range above a lower l i m i t of 400-500 c / s and t h a t t h e dynamic range of v a r i a t i o n of F, i s much restricted. Voiced consonants and t h e vowels [ i ] and [ e l t h u s o b t a i n almost t h e same F 1 a t very high air-pressures. Formant f r e q u e n c i e s f o r t h r e e of t h e s u b j e c t s a r e t a b u l a t e d below. lata (sub]. N) sec. 6ata Fig. 11-6. Spectrograms of s y l l a b l e s [ v a ] , [ v e l , [ v i ] u t t e r e d i n a decompressi,on t a n k a t normal atmospheric , p r e s s u r e , 1 a t a ( a b o v e ) and 6 a t a (below). 1 a t a (Subi. N.) 6 ato 90 gE Fig. 11-8, Spectrograms o f s y l l a b l e s [ g o : ] , [ge a t 1 and 6 a t a p r e s s u r e . g fl :I, [gi:] "- A ' . l ' A. ' I ' .3 . I I ' .k ' .I6 ' .7I ' -8 J ' l ' l ' l ' ~ ' l ' ~ ' l ' l ' l " ' " " la 11 1.2 1. 1L 1 1.6 1.7 1.8 1.9 2.0 2.1 set. . 1 a t a (Subi.N.) 6 ata 90 gE Fig. 11-8, Spectrograms of s y l l a b l e s [go:], a t 1 and 6 a t a p r e s s u r e . GI Pi [ge:] , [gi:] sec Fig. 11-9. S p e c t r o g r a m o f a s a m p l e o f c o n n e c t e d speech " I d a g v i l l j a g v i l a " a t 1 and 6 a t a . TABLX 11-1 Formant frequencies a t 1 and 6 a t a Vowel Subject 1---1 ata [o: I [E: I 16 ata/ -4-r1 a t a ' 6 ata A [+: I [a:I [e: I [i: 1 Ru = Rundblom Ni = Nilsson Ga = Garner Samples were t a k e n at t h e middle o r t e r m i n a l p a r t of t h e vowel whichever seemed more s t a t i o n a r y i n formant frequency pattern. Data f o r a l l consonantal environments have been averaged i n Table 11-1. The d a t a on F 3 have been excluded i n i n s t a n c e s where t h e y were judged t o be l e s s r e l i a b l e . The s e r i e s N i I and N i I1 p e r t a i n t o t h e s u b j e c t N i a t two d i f f e r e n t occasions. There a r e t y p i c a l t r e n d s t o be observed. The F l - s h i f t i s w i t h few e x c e p t i o n s g r e a t e r i n magnitude t h a n t h e s h i f t s i n F2 and F 3' I n vowels [ d l and [ i ] t h e observed F 2 - s h i f t s a r e of t h e same o r d e r of magnitude a s t h e s t a n d a r d d e v i a t i o n , 50 c / s , o r l e s s . It i s i n t e r e s t i n g t o n o t e t h a t t h e d i s t i n c t i o n between t h e F1 of [i] and [ e l tended t o be e l i m i n a t e d a t t h e h i g h p r e s s u r e f o r subj e c t s N i and Ru and t h a t a c c o r d i n g l y t h e a u d i t i v e d i s t i n c t i o n between t h e s e phonemes was almost l o s t . The t y p i c a l d i s t o r t i o n of back vowels [ o ] and [ Q ] at h i g h p r e s s u r e s i s t h a t of a r a i s e i n both FA and F2 but g e n e r a l l y more i n F1 so t h a t F, comes r a t h e r c l o s e t o F2. These a t t r i b u t e s account f o r t h e e s p e c i a l l y apparent n a s a l q u a l i t y of t h e vowel [ Q 1. Two of t h e f o u r speakers showed a moderate i n c r e a s e i n v o i c e fundamental frequency Fo. Subject Average F 0 1 ata 6 ata Ru 124 124 Ni 114 132 Ga 127 163 An 187 182 Other g e n e r a l o b s e r v a t i o n s of speech a t h i g h p r e s s u r e s a r e an i n c r e a s e i n o v e r a l l sound p r e s s u r e l e v e l of v o i c e d sounds and a r e l a t i v e l o s s of spectrum i n t e n s i t y l e v e l a t h i g h frequencies. There i s a pronounced weakening of t h e energy of a l l un- v o i c e d consonants e s p e c i a l l y of t h e b u r s t i n t e r v a l of s t o p sounds. Mo a c t u a l measurements of formant bandwidths were undertaken but t h e g e n e r a l o b s e r v a t i o n from t h e broad-band spectrograms was t h a t bandwidths d i d not i n c r e a s e except i n t h e low F1-range. s p e a k i n g tempo was s u b s t a n t i a l l y reduced. The Some but not a l l of t h e s p e a k e r s showed t y p i c a l s i g n s of d i s t u r b e d v o i c e s o u r c e mechanism i n terms of a randomization of subsequent p i t c h p u l s e p o s i t i o n s and a g e n e r a l " n o i s i n e s s " superimposed on t h e spectrogram. 3. Theory It i s of i n t e r e s t t o n o t e t h a t o b s e r v a t i o n s of q u i t e o p p o s i t e s i g n s have been made on speech at h i g h a l t i t u d e s . K.C. C l a r k e t a 1 ( 2 ) r e p o r t e d a r e d u c t i o n of t h e f r e e f i e l d sound p r e s s u r e l e v e l of v o i c e d sounds of t h e o r d e r of 10 dB a t 35000 f e e t a l t i t u d e , w h i l s t t h e sound p r e s s u r e l e v e l of unvoiced consonants increased 5 dB and t h u s gained 15 dB r e l a t i v e t o voiced-sounds. h l a c k of n a s a l i t y was pronounced. Thus t h e r e i s a c o n s i s t e n t s e t of v a r i a t i o n s of observed a c o u s t i c c h a r a c t e r i s t i c s a s a f u n c t i o n of t h e a i r - p r e s s u r e , i.e. t h e d e n s i t y from deep underwater t o h i g h a l t i t u d e c o n d i t i o n s . -a. - -F r-e ~ e n c g-s h-i f-t s Since d e n s i t y p i s p r o p o r t i o n a l t o p r e s s u r e P the v e l o c i t y of sound i s dependent on y , t h e r a t i o of s p e c i f i c h e a t s a t c o n s t a n t p r e s s u r e and volume, only. w i t h e0.7 A change of P from 1 a t a t o 6 a t a i s a s s o c i a t e d '$ change i n y (1.407 t o 1.417), and t h u s merely 0.35 % i n c. S i n c e a l l e q u a t i o n s f o r c a l c u l a t i n g resonance frequenc i e s of an a r b i t r a r i l y complex v o c a l c a v i t y system c o n t a i n t h e f a c t o r c and i n a d d i t i o n f u n c t i o n s of c a v i t y dimensions only, it i s obvious t h a t t h e d e t u n i n g of c a v i t y resonances a s a r e s u l t of a change i n a i r p r e s s u r e e n t e r s through c a l o n e and i s i n s i g n i f i c a n t l y small. Thus t h e e x p r e s s i o n f o r t h e resonance frequency of a Helmholtz resonance i s where V i s t h e volume, A t h e c r o s s - s e c t i o n a l a r e a of t h e neck and le i t s e f f e c t i v e l e n g t h . The f r e q u e n c i e s of s t a n d i n g wave resonances i n a t u b e t e r m i n a t e d d i f f e r e n t l y at t h e two ends (open c i r c u i t a t one end and s h o r t c i r c u i t a t t h e o t h e r ) a r e F n = (2n-I ) 41, C (3) and when t e r m i n a t e d e q u a l l y at both ends, F = - C* n n 21 Now t o t h e e f f e c t of a f i n i t e c a v i t y w a l l impedance. It was o r i g i n a l l y p o s t u l a t e d by van den Berg ('I that the soft p a r t s of t h e v o c a l c a v i t y w a l l s behave l i k e a mass element t o t h e f i r s t approximation w i t h a r e s i s t i v e element t o account f o r d i s s i I n Fig. 11-1 0 t h e e q u i v a l e n t network elements of t h e pation. c a v i t y w a l l s a r e denoted L W and Rw. The r a d i a t i o n impedance i s denoted Roe Assuming t h a t t h e v i b r a t i n g w a l l s occupy an a r e a of Aw 3 50 cm of 80 cm 2 2 a l o n g a pharynx l e n g t h of 8 cm and an i n t e r n a l volume r e p r e s e n t a t i v e of a p a l a t a l tongue p o s i t i o n , t h e pharynx w a l l inductance i s where p w 9 1 g/cm3 i s t h e d e n s i t y and 1 = 1 cm i s t h e average W t h i c k n e s s of t h e w a l l s . A t complete c l o s u r e of t h e v o c a l t r a c t t h e mass element LW r e s o n a t e s with t h e c a p a c i t a n c e C of t h e e n t i r e a i r volume. The l i m i t i n g resonance frequency i s t h u s a s assumed above, and -where Lw A W A t a p r e s s u r e of 1 a t a and normal s p e a k i n g c o n d i t i o n s 3 c = 35000 cm/sec and p = pl = 1.2 A t a pressure of g/cm . P a t a t h e d e n s i t y i s p = P e p I and the l i m i t i n g v a l u e of F, is which amounts t o Thus at P = 6 a t a t h e fundamental resonance F1 must exceed 370 c / s , which conforms with our o b s e r v a t i o n s . It i s a l s o known t h a t t h e "voice b a r t t F, of v o i c e d consonants never goes below 150 c / s i n normal speech. The f i r s t formant of a voiced consonant o r of a c l o s e o r half-open vowel i s a p p a r e n t l y tuned by LW i n p a r a l l e l w i t h L1. I f , f o r example, L1 = Lw, F~ would e q u a l Si- F~~ = 2 1 0 c / s . In g e n e r a l d e n o t i n g t h e resonance of t h e system with Lw excluded a s F l a y and F1 with due r e s p e c t t o both L1 and Lw, and Flw w i t h L, excluded t h e r e h o l d s t h e r e l a t i o n A t a p r e s s u r e of P t h i s may be w r i t t e n By combining e q u a t i o n s of t h i s t y p e f o r P = 1 dnd P = 6 a t a we obtain which r e l a t e s t h e fundamental resonance of t h e c l o s e d v o c a l t r a c t at Flw(~.l ) t o t h e observed f r e q u e n c i e s of t h e f i r s t formant F I 6 a t P = 6 a t a , and F l l a t P = 1 a t a . I f t h e t h e o r y h o l d s i t should be p o s s i b l e t o c a l c u l a t e r e a s o n a b l e v a l u e s of Flw a t 1 a t a from t h e observed frequency shifts. C a l c u l a t i o n s on o u r m a t e r i a l gave t h e f o l l o w i n g d a t a : F i g . 11-10. A. T r a n s m i s s i o n l i n e a n a l o g of t h e v o c a l t r a c t w i t h d i s t r i b u t e d i n d u c t a n c e ~ ( x ) c, a p a c i t a n c e ~ ( x ) and , w a l l i n d u c t a n c e L ~ ( Xp)e r u n i t l e n g t h of t h e r e s o n a t o r a t a c o o r d i n a t e x. B. Helmholtz r e s o n a t o r w i t h t c t a l i n d u c t a n c e Lw and r e s i s t a n c e R,, of t h e c a v i t y w a l l s i n c l u d e d . Ro i s the radiation resistance. C. E q u i v a l e n t c i r c u i t of B f o r c a l c u l a t i o n of F, of v o i c e d c o n s o n a n t s and c l o s e f r o n t vowels. where w W i s t h e c u t o f f frequency With n o t a t i o n s A f o r c r o s s - s e c t i o n a l a r e a of t h e r e s o n a t o r and As f o r t h e a r e a p e r u n i t l e n g t h of t h e v i b r a t i n g w a l l of t h i c k n e s s ds and d e n s i t y p f thus The c u t o f f frequency sir p , or W i s p r o p o r t i o n a l t o t h e d e n s i t y of t h e t o the pressure P i n ata. Under t h e s p e c i a l circum- s t a n c e s of a uniform d i s t r i b u t i o n of t h e wall impedance a l o n g a s i n g l e t u b e model i t i s found t h a t ww = 2wFl A s a s p e c i f i c example assume a pharynx l e n g t h of 8 cm and a high p r e p a l a t a l a r t i c v . l s t i o n i n which c a s e F p of [ i ] could be approximately c a l c u l a t e d a s The c s v i t y w a l l c o r r e c t i o n f a c t o r a t 1 a t a i s 0.26 $ which i s negl i g i b l e and 1.6 37 - 6 % o r 37 c / s a t P = 6 ata., The c a l c u l a t e d d i f f e r e n c e 31 compares well with t h e measured d a t a . = A s a n o t h e r example t h e v o c a l t r a c t w i l l be considered a s a s i n g l e homogeneous tube loaded w i t h d i s t r i b u t e d w a l l inductance and u = W 21-rolGO f0rmar.t F 1 = before. Assuming a frequency of t h e Sirst c/41e = 500 c / s t h e a d d i t i o n of Ls c a u s e s a s h i f t of AF1 = 1 3 5 c / s a t 6 a t d which l l s o r e f l e c t s t h e c o r r e c t o r d e r of magnitude a c c o r d i n g t o measurements, I n s h o r t t h e e f f e c t s d e s c r i b e d above a r e a t t r i b u t a b l e t o t h e h i g h d e n s i t y p i n c r e a s i n g t h e c h a r a c t e r i s t i c impedance l e v e l p c / ~of t h e v o c a l c a v i t y s y s t e ~a t h i g h a i r - p r e s s u r e s t h u s making t h i s system more s u s c e p t i b l e t o t h e s h u n t i n g e f f e c t s of t h e c a v i t y w a l l s , t h e l a t t e r b e i n g independent of t h e a i r - p r e s s u r e . The in- c r e a s e of t h e a i r column l o a d i n s e r i e s with t h e mechanical i m pedance of t h e v o c a l f o l d s could account f o r t h e phonatory source d i s t u r b a n c e s observed. There remains t o map t h e r e l a t i v e c o n d u c t i v i t y of t h e c a v i t y walls. Thin f l e s h obviously h a s a more s e v e r e s h u n t i n g ef- f e c t t h a n bony and t h i c k s t r u c t u r e s , One would t h u s p r i m a r i l y conceive of t h e s i d e s of t h e t h r o a t and t h e cheeks of t h e mouth t o permit v i b r a t i o n s but a l s o t h e s o f t velum i t s e l f . The r e l a t i v e i n f l u e n c e of a shunt on t h e frequency of v o c a l resonance i s a l s o dependent on t h e s p a t i a l d i s t r i b u t i o n of sound p r e s s u r e i n t h e vocal t r a c t . I n t h e frequency range of t h e f i r s t formant a c a v i t y wall shunt i s t h u s t h e more e f f e c t i v e t h e c l o s e r i t comes t o t h e I n g e n e r a l t h e e f f e c t of a shunt i s g l o t t a l end of t h e system. l a r g e wherever t h e sound p r e s s u r e i s high. bandwidths -b. - -Formclnt ------A t h e o r e t i c a l s t u d y of t h e e x t e n t t o which t h e d e n s i t y of a i r e n t e r s e x p r e s s i o n s of formant bandwidth can be made from , r e f . ( 3 1 pp. 300-310. The c o n c l u s i o n i s t h a t bandwidths a r e a l - ways r e l a t e d t o e x p r e s s i o n s of t h e form R / ~ Lo r I / ~ ~ R c . Acoustic inductance a s well a s r e s i s t a n c e , even t h e r a d i a t i o n r e s i s t a n c e , a r e p r o p o r t i o n a l t o d e n s i t y and a c o u s t i c c a p a c i t a n c e i s i n v e r s e l y proportional t o density. Thus d e n s i t y i s c a n c e l l e d out i n a l l e x p r e s s i o n s above. Xnergy l o s s e s a s s o c i a t e d w i t h v o c a l c a v i t y v i b r a t i o n s z r e of a g r e a t e r i n t e r e s t . Recently Fujimura has determined t h o c l o s e d c o n d i t i o n resonance F of t h e vocal t r a c t e x p e r i m e n t a l l y Iw and found f r e q u e n c i e s of t h e o r d e r of 150-200 c / s and bandwidths of t h e o r d e r of 100 c/s. ance element R W The bandwidth i s a t t r i b u t e d t o a r e s i s t - i n s e r i e s with t h e w a l l inductance L as in W Fig. 11-10 and we t h u s conclude t h a t A t formant f r e q u e n c i e s of i n t e r e s t fvLw > R, and w e compute a parallel resistance With a f i n i t e mouth opening of inductance L, p a r a l l e l t o LW we have approximately But The c o n t r i b u t i o n of c a v i t y wzll d i s s i p a t i o n t o f i r s t formant bandwidth B 1 i s t h u s i n v e r s e l y p r o p o r t i o n a l t o t h e square of frequency, 1 which i s of t h e ordez I f f o r example L1 = LW and F1 = ,/ 2 FI0 of 225 c / s , t h e bandwidth c o n t r i b u t i o n i s o r d e r of 50 c/s. B, = Bw/2 o r of t h e The formant d a t a of Fujimura, r e f . t h i s frequency dependency of B1. F, = 500 c / s of about B1 (4 confirms Normally B,, ( f ) has a minimum a t = 30 c / s . A t t h e h i g h e r atmospharic p r e s s u r e s t h e o n l y s i g n i f i - c a n t change of t h e e q u i v a l e n t c i r c u i t i s t h e d e c r e a s e of t h e capaci t a n c e of t h e a i r and t h u s t h e i n c r e a s e i n resonance f r e q u e n c y , w h i l s t t h e bandwidth i s t h a t of t h e corresponding resonance a t t h e lower p r e s s u r e , i.2. assuming F Iw lower frequency. = 160 we t h u c have F16 At L, = =KO f? LW and P 160 = = 555 6 ata and = Bw/2 = 50 c / s . I n a d d i t i o n t h e r e i s t h e r a d i a t i o n 2nd i r i c B1 6 t i o n a l damping adCing sone 10-20 c / s more t o B,. Spectrograms confirm t h e t h e o r y . A t 6 a t a t h e v o i c e bar F1 of v o i c e d consonants i s a frequency t r a n s p o s e d r e p l i c a of t h o 160 c / s v o i c a b a r a t 1 a t a with t h o weak and t h i n v o i c i n g s t r i a t i o n s t y p i c a l of a l a r g e bandwidth formant. e ss ur e -l e vels -c . - -Sound - - prA p o s i t i v e s h i f t of a formant of c o n s t z n t bandwidth i s a s s o c i a t e d with an i n c r e a s e of i t s Q and of t h e spectrum l e v e l a t . f r e q u e n c i e s above F., This i s one f a c t o r c o n t r i b u t i n g t o an in- c r e a s e of sound p r e s s u r e l e v e l s st h i g h e r ambient p r e s s u r e s . It a f f e c t s p r i m a r i l y voiced sounds of a narrow a r t i c u l a t i o n . There 3 r e a l s o r e a s o n s f o r e x p e c t i n g an o v e r a l l inc r e a s e of t h e i n t e n s i t y of v o i c e d sounds because of more e f f i c i e n t radiation. The b a s i s f o r t h i s c o n s i d e r s t i o n i s a phonation a t constant s u b g l o t t a l overprzssure Ap, According t o r e f . ( 3 ) 9 P* 268, t h e volume v e l o c i t y of t h e source i s \iG- U (t)= ~ ( t ) a uo .( To t h i s we add t h e v o c i l t r a c t t r a n s f e r f u n c t i o n ~ ( w )= and t h e r a d i a t i o n t r a n s f e r q7-a ( u ) / u ~r e l a t i n g sound p r e s s u r e a t 1 cm i n f r o n t of t h e speaker t o t h e volume v e l o c i t y st t h e l i p s , ,/ - 1 . Thus t h e sound p r e s s u r e p ( w ) i s p r o p o r t i o n a l t o p or t o 4 P 1 A f a c t o r of = , F f r o m P = 1 t o 6 a t 3 ) would t h u s cause an in- ,E c r e a s e of t h e sound p r e s s u r e l e v e l of ~ 6 ' o r8 dB1 Our e x p e r i - mental d a t ~from HMS Belas showed an i n c r e a s e of on t h e average 5 dB, but t h i s i s not c o n c l u s i v e s i n c e t h e microphone d i s t a n c e was not s u f f i c i e n t l y w e l l c o n t r o l l e d . Sounds of low F, gained much more t h a n sounds of h i g h PI a s c o u l d bs conceived from theory. -d. - -Unvoiced - - - -sounds --What i s t h e r s a s o n f o r t h e decreased r e l a t i v e l e v e l of s t o p b u r s t s and f r i c d t i v e s a t high ambient p r e s s u r e s ? Here t h e t h e o r y i s not s o w e l l developed but i t may be of i n t e r e s t t o r e f e r t o p. 273 of r e f . ( 3 ) . The sound p r e s s u r e of f r i c a t i v e s i s propor- t i o n a l t o t h e square of t h a v e l o c i t y of t h e g e n e r a t i n g a i r strean i n a v o c a l t r a c t c o n s t r i c t i o n o The r e l a t i o n of t h i s a i r v e l o c i t y u = U 0 /A t o t h e p r e s s u r e drop where k i s a c o n s t a n t . 4 p is . Again assuming a c o n s t a n t Ap t h e U 2 1s 0 inversely proportional t o T h i s c f f e c t i s probably counter- p. a c t e d by t h e p p r o p o r t i o n a l i t y of t h e r a d i a t i o n t r a n s f e r , eq. ( 2 4 ) . A t h i g h ambient a i r - p r e s s u r e s t h e r e remains a d e c r e a s e of t h e sound p r e s s u r e l e v e l of f r i c a t i v e s dnd s t o p s r e l a t i v e t o t h e average l e v e l of v o i c e d sounds. G o Fant and B. SonessorPC References: (1 ) van den Berg, Jw. : Physica van dc stemvorming met t o e a s s i n p e n , t h e s i s Univ. of Groningen eg- 1953). (2) C l a r k , K.C., Rudmose, H.W., E i s c n s t e i n , J . C . , C a r l s o n , F.D., and Walker, R,A.: "The e f f e c t s of high a l t i t u d e 20 (1 9 4 8 ) , pp. 776-786. on speech", J.Acoust .Soc.Am. - (3) Fctnt , G. I Acoustic Theory of Speech P r o d u c t i o n , ( ' s - ~ r ~ v e n h a g e1960), , J, s "The sinewave response of t h e v o c a l t r a c t " , STL-QPSH 1/1964, pp. 5-1 0. ( 4 ) Fujimura, 0. and Lindqvist ( 5 ) Holywell, K. and ilarvey, Soc.Am, (6) 36 G.: "Helium speech", J . k c o u s t . ( 1 9 6 4 ) ~p* 2100 Wathen-hnn, W. 2nd Copel, M.: "Comparison of v o i c i n g p e r i o d i c i t i e s and formant f r e q u e n c i e s f o r one speaker i n a i r and i n 3 helium-oxygen mixture a t v a r i o u s p r e s s u r e s " , J .Acous-t ,Sot ,Amo 2 ( 1 963), p. 804 (A). * Department of Annt omy, TJniversity of Lund, Sweden, and t h e O f f i c e of t h e Surgeon General, Naval S t a f f , R.S.N., Stockholm, Sweden.
© Copyright 2025 Paperzz