I nsect Molecular Biology (1992) 1(1), 25-36 Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences J. A. J. Breeuwer,' R. Stouthamer,' S. M. Barns,' D. A. Pelletier, 3 W. G. Weisburg3 and J. H. Werren' ' Department of Biology, University of Rochester, Rochester, NY 14627, USA 2 Department of Biology, Indiana University, Bloomington, IN 47405, USA 3 GENE- TRAK Systems, Framingham, MA 01701, USA Abstract Cytoplasmic incompatibility results in embryo mortality in diploids, or all male offspring in haplodiploids, when individuals carrying different cytoplasmic factors are crossed. Cytoplasmic factors have been identified as intracellular micro-organisms. Microbei nduced cytoplasmic incompatibility is found in many i nsect taxa and may play a role in reproductive isolation between populations. Such micro-organisms cause bidirectional incompatibility between species of the parasitoid wasp genus Nasonia. The phylogenetic relationship of cytoplasmic incompatibility microorganisms (CIM) of different Nasonia species was analysed using their 16S ribosomal DNA (rDNA) sequence. Two 16S rDNA operons were detected in the CIM of each Nasonia species. Sequence analysis indicates that the Nasonia CIM are closely related and belong to the alpha group of the Proteobacteria. Keywords: incompatibility, micro-organisms, Nasonia, phylogeny. Introduction Cytoplasmic incompatibility (CI) results in embryo mortality (Laven, 1957; Kellen etaL, 1981; Trpis etaL, 1981; Hsiao & Hsiao, 1985; Wade & Stevens, 1985; Hoffmann et al., 1986; Hoffman, 1988) or production of all male offspring (Saul, 1961; Richardson et al., 1987; Breeuwer & Werren, 1990) i n crosses between individuals carrying different cytoplasmic factors. Cytological observations in several species revealed that eggs produced in incompatible Received 10 December 1991; Accepted 18 March 1992. Correspondence: J.A.J. Breeuwer. crosses are normally fertilized, but syngamy of maternal and paternal pronuclei is aborted, resulting in haploid embryos (Jost, 1970; Ryan & Saul, 1968; Breeuwer & Werren, 1990). I n diploid species these embryos are inviable. However, in haplodiploid organisms such as Nasonia, haploid embryos develop into males. I n most cases cytoplasmic factors have been identified as maternally inherited micro-organisms. Evidence comes from cytological observations of micro-organisms in reproductive tissues (Yen & Barr, 1973; Kellen et al., 1981; Trpis et al., 1981; Hsiao & Hsiao, 1985; Binnington & Hoffmann, 1989; O'Neill, 1989; Breeuwer & Werren, 1990), or mani pulation of compatibility through antibiotic treatment of i nfected individuals (Yen & Barr, 1973; Kellen et al., 1981; Trpis et al., 1981; Wade & Stevens, 1985; Hoffmann et al., 1986; Hoffmann, 1988; Richardson et al., 1987; Breeuwer & Werren, 1990; Montchamp-Moreau et al., 1991). Micro-organisms that cause incompatibility in crosses were first described in the Culex pipiens complex and named Wolbachia pipientis (Hertig & Wolbach, 1936; Yen & Barr, 1971). I n other systems of cytoplasmic incompatibility, the micro-organisms have also been classified as Wolbachia sp. (Wright & Barr, 1980; Kellen et al., 1981; Hsiao & Hsiao, 1985), although there was li ttle data to support a monophyletic origin of these bacteria. Krieg & Holt (1984) described Wolbachia as a miscellaneous group of small, Gram-negative rods which are associated with i nvertebrates. Because they cannot be cultured easily outside the host tissue, further classification of these microorganisms, using traditional biochemical classification methods, is difficult. Moreover, these biochemical characters do not necessarily correlate with phylogenetic relatedness. With recent advances in molecular biology, such as the polymerase chain reaction (PCR: Saiki etaL,1988), it is now possible to identify fastidious micro-organisms using DNA sequence information. In particular the 16S rDNA is useful because of its relatively small size and conserved function (Fox et al., 1980; Woese, 1987). Ribosomal DNA sequence data from several members of the order Rickettsiales have already demonstrated extensive phylogenetic divergence between genera of this taxon (Weisburg et al., 1989;1991). Cytoplasmic incompatibility i s widespread among 25 26 J. A. J. Breeuwer et al. i nsects, e.g. Lepidoptera (Kellen et al., 1981), Diptera (Wright & Barr, 1980; Yen & Barr, 1973; Hoffmann, 1988; Hoffmann et al., 1986), Hymenoptera (Richardson et aL, 1984), and E. risticii is the causative agent of equine monocyte ehrlichiosis (Holland et al., 1985). Both are i ntracellular, in contrast to Rickettsia which reside i n 1987; Breeuwer & Werren, 1990), Coleoptera (Wade & Stevens, 1985; Hsiao & Hsiao, 1985). This may indicate that cytoplasmic incompatibility micro-organisms (CIM) have been present i n insects for a long time, and have diverged i n association with their host species. A second possibility is that CIM have been laterally transferred between insect taxa. The third possibility is that CIM have evolved many ti mes i ndependently from parasitic or symbiotic bacteria associated with insect hosts. To distinguish between these possibilities, we need to clarify the phylogenetic relationships between CIM from different host species. The parasitoid wasp genus Nasonia contains three closely related species in North America (Darling & Werren, 1989). Natural populations of each Nasonia species are infected with micro-organisms that cause bidirectional i ncompatibility between their host species, resulting in the production of all male offspring (Breeuwer & Werren, 1991). I nfected individuals from the same wasp species are compatible, whereas those from different wasp species are i ncompatible. The elimination of micro-organisms restores compatibility, and hybrid offspring are produced. These observations suggest that each wasp species harbours its own strain of micro-organism. Here we present the sequences of the 16S rRNA gene of CIM from each Nasonia species. These sequences are used to clarify their phylogenetic relationships and identify their closest known relatives. vacuoles (Krieg & Holt, 1984). Traditionally, CIM, such as those found i n the mosquito C. pipiens (Yen & Barr, 1971), the almond moth Ephestia cautella (Kellen et al., 1981), and alfalfa weevil, Hypera postica, (Hsiao & Hsiao, 1985), were placed in the genus Wolbachia together with W. persica. However, according to Weisburg et al. (1991), based on 16S sequences, W. persica does not belong to the alpha group but rather to the gamma group of Proteobacteria. I n contrast, we have found that the Nasonia CIM do fall in the alpha group. Similarly, O'Neill etaL (1992) has also found that the 16S sequences of the CIM of several other insects (C. pipiens, E. cautella, D. simulans, Aedes albopictus, Tribolium confusum and H. postica) place them i n the alpha group between Ehrlichia and Anaplasma. Sequence similarity between complete 16S rDNA sequences of CIM from Nasonia species is high, about 95%. For finer scale analysis of their relationships, we considered those positions which showed variation between Nasonia CIM clones. Based upon these sites, the sequences can be roughly divided into two groups, which are 50-90% homologous within and 30% homologous between groups (Table 2). Surprisingly, different CIM 16S rDNA sequences from the same wasp species can be more different from one another than from homologous sequences of the other species (Fig. 3). Additional sequencing of clones confirms the presence of two ribosomal types (U. Bergthorsson, J.A.J. Breeuwer and J.H. Werren, unpublished results). There are at least three explanations for the pattern of sequence variation within PCR amplification from single Nasonia strains, (i) variation is a PCR or sequencing artifact, (ii) there are two strains of CIM, each with one ribosomal operon, or (iii) there i s one CIM with at least two ribosomal operons. If the observed clonal sequence variation is a result of polymerase errors during PCR amplification or sequencing, variable nucleotide positions are expected to be distributed randomly among sequences. This is not the case. The evidence i s strong that the two sequence subgroups Results and discussion DNA fragments of 1.5 kb were recovered from ovaries of CIM-infected wasp strains after polymerase chain reaction (PCR) amplification with prokaryote rDNA-specific primers. In contrast, no PCR product was recovered from asymbiont wasp strains. Two clones were sequenced entirely from each wasp species (Fig. 1). Each CIM 16S rDNA sequence showed a 25 nucleotide deletion between E. coli basepair positions 455 and 480 (Brosius et al., 1978; Woese et al., 1983). Two additional deleted helices between basepair positions 180 and 220 were also present, and place CIM in the alpha subdivision of Proteobacteria (Woese, 1987; Woese et al., 1983; Stackebrandt et al., 1988). Comparison of the N. vitripennis CIM 16S rDNA sequence with other bacterial sequences shows that they are related to the Rickettsiales i n the alpha subdivision (Weisburg et al., 1991). Their closest known relatives, based upon similarity data (Table 1), are Anaplasma marginale and Ehrlichia risticii (Weisburg et al., 1991). Anaplasma marginale is an obligate intracellular parasite of erythrocytes in ruminants, transmitted by arthropods (Krieg & Holt, represent real (functional) ribosomal genes rather than artifacts. First, 22 sites were found to be diagnostic for the two subgroups, i.e. each subgroup was characterized by one of the two nucleotide variants (see Table 3) present. Ten of these sites occurred in unpaired regions of the ribosomal gene (e.g. stemloops), where sequence variations are more easily tolerated. Of the 12 sites occurring in paired regions (stems), four were actually compensatory changes affecting mutually paired sites. Six involved GU pairing, which is commonly found in the secondary structure of 16S rRNA (Woese et al., 1983), and these noncanonical pairs do not necessarily impair ribosomal func- Phylogeny of Nasonia incompatibility microbes 27 1 50 I I I I I CONS=90t; GAACGCTGGCGG - GC T A ACATGCAAGTCG CG ATTGAACGCTGGCGGCA-GGCCTAACACATGCAAGTCGAACGGTAACAGGAAGAAGCTTG E. coli A. margina AACGAACGCTGGCGGCA-AGCTTAACACATGCAAGTCGAACGGACCGTATACGCAGCTTG El V12 G6 L36 AATGAACGCTGGCNGCA-GGCCTAACACATGCAAGTCGAACGGAGTTATATTGTAGCTTG . ............ G.............................................. . . ........................ G..C......... . ............ G.............................................. V27 G17 L44 . . . .......... G.............................................. . ........ C...G..................... C........................ 1 100 1 1 1 1 1 T A T CC G GGC ACGGGTG GTAA G CONS=90$ CTTCTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGG E. coli A. margina CTGCGTGTATGGTTAGTGGCAGACGGGTGAGTAATGCATAGGAATCTACCTAGTAGTATG El V12 G6 L36 CTATGGTATAACTTAGTGGCAGACGGGTGAGTAATGTATAGGAATCTACCTAGTAGTACG ............................................................ . . ............ G............................................. . ........................................................... V27 G17 L44 1 150 1 200 1 1 1 1 GAAA TAATACC AT AAAG CONS=90% G A A C GGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGAC E. coli A. margina GGATAGCCACTAGAAATGGTGGGTAATACTGTATAATCCTGC-GGGGGAAAGA------El V12 G6 L36 GAATAATTGTTGGAAACGGCAACTAATACCGTATACGCCCTACGGGGGAAAAA------. .........................................NN................ ................................... GT..... NN................ ..........................................TN................ V27 G17 L44 . . ........................................NN................ ..........................................NN................ 1 GA 1 1 AT AG TGTTGG GGTAA GG 250CONS=9% CTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGG E. coli A. margina -TTTA------ TCGCTATTAGATGAGCCTATGTCAGATTAGCTAG'1'TGG'EG000TAATGG 1 El V12 G6 L36 1 -TTTA------ TTGCTATTAGATGAGCCTATATTAGATTAGCTAGTTGGTGGAGTAATAG . . .......................................................... . . .......................................................... . ........................................................... V27 G17 L44 1 300 1 I 1 1 I TA C G CTGAGAGG GA C G CACA TGG ACTGAG CONS=90$ C ACCAAG C A GA CTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAG E. coli A. margina CCTACCAAGGCGGTGATCTGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAG El V12 G6 L36 CCTACCAAGGCAATGATCTATAGCTGATCTGAGAGGATGATCAGCCACACTGGAACTGAG . ........................................................... . ........................................................... . ........................................................... V27 G17 L44 Figure 1. 16S rRNA sequence alignment of E. coli, A. marginale, and, CIM from Nasonia vitripennis (El, V12, V27), N. girauld (G6, G17), and N. longicornis (1-36, 1-44). The eubacterial consensus sequence shows regions that are more than 90% conserved in approximately 85 bacterial sequences (from Weisburg et al., 1991). Position numbering is based upon E coli (Brosius et al., 1978). El is used as a concensus. In other CIM sequences sites identical to El are replaced by a dot and only variable sites are listed. The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the following accession numbers: E1 = M84686, V12 = M84687, V27 = M84688, G6 = M84689, G17 = M84690, L36 = M84691, L44 = M84692. (N = G or A or T or C; - = deletion.) (Continued). 28 J. A. J. Breeuwer et al. 350 CONS=90% ACACGG CCA ACTCCTACGGGAGGCAGCAGT I GGAAT TT I CAATGG G AA C E. coli ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCC A. margina ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCC El V12 G6 L36 ATACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCC .........................................................NNN .........................................................NNN .........................................................NNN V27 G17 L44 . ........................................................NNN . ........................................................NNN . ........................................................NNN 400 I CONS=90% TGA I AGC A GCCGCGTG GA GA G T GG GTAAA CT T I c. coli TGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGG A. margina TGATCCAGCTATGCCGCGTGAGTGAGGAAGGCCT'V'AGGG'TT'GTAAAACTCTTTCAGTAGG El V12 G6 L36 TGATCCAGCCATGCCGCATGAGTGAAGAAGGCCTTTGGGTTGTAAAGCTCTTTTAGTGAG . ........................................................... . ................................. A.............. G.......... . ........................................................... V27 G17 L44 1 450 1 500 1 1 1 CONS=90% GA G TGAC TA A AAGC CGG E. coli GAGGAAGGGAGTAAAGTTAATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGG A. margina GAAG-------------- ATAA----------- TGACGGTACCTACAGAAGAAGTCCCGG El V12 G6 L36 GAAG-------------- ATAA----------- TGACGGTACTCACAGAAGAAGTCCTGG . . . . . ....................................................... .................. ...G...................................... ............................................................ V27 G17 L44 ...T........................................................ 550 CONS=90% CTAACT GTGCCAGCAGCCGCGGTAATAC AGG GC AGCGTT CGGA T A TG E. coli CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTG A. margina CAAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGGGCAAGCGTTGTTCGGAATTATTG El V12 G6 L36 CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGAGGGCTAGCGTTATTCGGAATTATTG ............................................................ ............................................................ ............................................................ V27 G17 L44 1 600 CONS=90% GGCGTAAAG G G AGG GG AGT G GT AAA I GCT AAC E. coli GGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTG A. margina GGCGTAAAGGGCATGTAGGCGGTTTGGTAAG7"i'AAAGGTGAAATACCAGGGCTTAACCCT El V12 G6 L36 GGCGTAAAGGGCGCGTAGGCTGGTTAATAAGTTAAAAGTGAAATCCCGAGGCTTAACCTT . ................. NN-.A...G.................... A..... C...... . ................. NN..A...G.................... A..... C...... . ................. NN..A..................................... V27 G17 L44 .................. NN-.A...G.................... A..... C...... . ................. NN-.A...G.................... A..... C...... .................. NN-.A...G.................... A..... C...... Figure 1. Continued. Phylogeny of Nasonia incompatibility microbes 1 650 I I 1 I I CONS=90% A AC CT GA AG GG GAATT GTGT E. coli GGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGT A. margina GGGGCTGCTTTTAATACTGCAGGACTAGAGTCCGGAAGAGGATAGCGGAATTCCTAGTGT El V12 G6 L36 GGAATTGCTTTTAAAACTATTAATCTAGAGATTGAAAGAGGATAGAGGAATTCCTGATGT ..... A............ GC............... G................... AG... .................. G.................................... AG... ............................................................ V27 G17 L44 . ................. GC............... G................... AG... . . ................ G.................................... Ad... . ................. GC................................... AG ... 1 700 1 1 1 I 1 CONS=90% AG GGTGAAAT CGTAGA AT A GAA ACC T GCGAAGGC CTGG E. coli AGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGA A. margina AGAGGTGAAATTCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTGTCTGGTCCG El V12 G6 L36 AGAGGTAAAATTCGTAAATATTAGGAGGAACACCAGTGGCGAAGGCGTCTATCTGGTTCA ...... G..................................................... . ........................................................... . ........................................................... V27 G17 L44 . ..... G..................................................... . ..... G..................................................... . ..... G..................................................... 1 750 1 1 1 1 800 1 CONS=90% A TGAC CT A G CGAAAGCGTGGGGAGC AACAGGATTAGATACCCTGGTAGTCC E_ -Ii AGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC A. margina GTACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTACTCC El V12 G6 L36 AATCTGACGCTGAAGCGCGAAGGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC . . . .......... G.............................................. . . .......................................................... . ..................... N..................................... V27 G17 L44 . ............ G.............................................. . . ........... G.............................................. . ............ G.............................................. 1 850 1 I I 1 1 CONS=90% ACGC TAAACGATG GT G G T AG AAC E. coli ACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAAC A. margina ACGCTGTAAACGATGAGTGCTGAATGTGGGGGC-TTTT--GCCTCTGTGTTGTAGCTAAC El V12 G6 L36 ACGCTGTAAACGATGAATGTTAAATATGGGAAG-TTT--ACTTTCTGTATTACAGCTAAC ..................................... T...................... . . . ......................................................... V27 G17 L44 . . ................................... T...................... . .................................... T...................... . .................................... T...................... 1 900 1 1 I 1 1 CONS=90% GC TAA CCGCCTGGG AGTACG CGCAAG T AAACTCAAA GAATTGACGG E. coli GCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGG A. margina GCGTTAAGCACTCCGCCTGGGGACTACGGTCGCAAGACTAAAACTCAAAGGAATTGACGG El V12 G6 L36 GCGTTAAACATTCCGCCTGGGGACTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGG ........................................ G................... ............................................................ ............................................................ V27 G17 L44 Figure 1. Continued. 29 30 J. A. J. Breeuwer et al. 1 950 I I I I 1 CONS=90% GG -000CACAAGCGG GGAG ATGTGGTTTAATTCGA G ACGCG GAACCTTACC F, coli GGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAACA.4CCTTACCT A. margina GGACNCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAAAACCTTACCA El V12 G6 L36 GGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAAAACCTTACCA . ........................................................... . ........................................................... ............................................................ V27 G17 L44 I I CONS=90$ I TTGACAT 1000 -GA AI E. coli GGTCTTGACATCCACGGAA-GTTTTCA-GAGATGAGAAT-GTGCCTTCG-GGAACCGTGA A. margina CTTCTTGACATGGAGGCTAGATCCTTCTTAACAGAAGGGCG-CAGTTCGGCTGGGCCTCG El V12 G6 L36 CTTCTTGACATGGAAATCATACCTATTCGAAGGGATAGG-GTCGGTTCGGCCGGATTTTA . . C......................................................... . . C....................................................... C. . . C....................................................... C. V27 G17 L44 . . C................................................... G...C. . . C................................................... G...C. . . C.................................................... G...C. 1 1050 1 I ll 1 1 1 CONS=90% ACAGGTG TGCATGG TGTCGTCAGCTCGTG C.-A. TGTTGGGTTAAGTCCCGCAA E. coli GACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAA A. margina CACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA El V12 G6 L36 CACAAGTGTTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA ............................................................. ............................................................ ............................................................ V27 G17 L44 .... G....................................................... .... G....................................................... . ... G....................................................... 00 1 1150 1 CONS=90% CGAGCGCAACCC GTT C A C G G- ACTC ACTG °_. ^_oli CGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTC-CGGCCGGG-AACTCAAAGGAGACTG A. margina CGAGCGCAACCCTCATCCTTAGTTACCAGCGGGI'AAT'VCCGGG-CACTTTAAGGAAACTG El V12 G6 L36 CGAGCGCAACCCTCATCCTTAGTTGCTATCAGGTAATGCTGAGT-ACTTTAAGGAAACTG . ........................................................... . ........................................................... . ........................................... G............... V27 G17 L44 . ....................... A.C.............. G.-G............... . ....................... A.C.............. G.-G............... . ....................... A.C.............. G.-G............... 1 1200 I I CONS=90% CC G AA GGAGGAAGG G GGA GACGTCAA TC TCATG CCCTTA G G E. coli CCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAG A. margina CCAGTGATAAACTGGAGGAAGGTGGGGATGATGTCAAGTCAGCACGGCCCTTATGGGGTG El V12 G6 L36 CCAGTGATAAGCTGGAGGAAGGTGGGGATGATGTCAAGTCATCATGGCCTTTATGGAGTG . ..................................................... A..... . ........................................................... V27 G17 L44 . ......... A...................................... C.......... .......... A...................................... C.......... .......... A...................................... C.......... Figure 1. Continued. Phylogeny of Nasonia incompatibility microbes 1 1250 I 1 1 I CONS=90% GGCTACACACGT CTACAATGG ACA G G GC A G GA AGC A E coli GGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCT-CGCGAGAGCAAGCGG A. . margin. GGCTACACACGTGCTACAATGGCGACTACAATAGGTTGCAACGT-CGCAAGGCTGAGCTA El V12 GGCTACACACGTGCTACAATGGTGTCTACAATGGGCTGCAAGGTGCGCAAGCCTAAGCTA . ........................................................... ................................... T...................... C. ................................... T........................ G6 L36 ........................ G................ A...... G..G...... C. ........................ G................ A...... G..G........ ........................ G................ A...... G..G........ V27 G17 L44 1 1300 I 1 1 A C CTGCAACTCG C TGAAG GGA AAA TC AGT CGGAT G ACCTCATAAAGTGCGTCG1'AGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGA margina ATCCG-TAAAAGTCGTCTCAGTTCGGATTGTCC'1'C'1'G'1'AACTCGA000CATGAAGTCGGA CONS=90°s E, cnli A. El V12 G6 L36 ATCCC-TAAAAGACATCTCAGTTCGGATTGTACTCTGCAACTCGAGTACATGAAGTTGGA . . . . . . . . . . . . . . . . . . . . . . ...................................... . . . . ........................................................ . . . . . . . . . . . . . . . . . . .......................................... V27 G17 L44 . . ... T...... C.................................. G............ . .... T...... C.................................. G............ . .... T...... C.................................. G............ 1 1350 1 1 1 CGGTGAATACGTTC CGGG CTTGTACACAC ATCAG A E. coli ATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACAC A. margina ATCGCTAGTAATCGTGGATCAGCATGCCACGGTGAATACGTTCTCGGGTCTTGTACACAC 1 CONS=90% T GCTAGTAATCG El V12 G6 L36 ATCGCTAGTAATCGTGGATCAGCATGCCACGGTGAATACGTTCTCGGGTCTTGTACACAC . . . . . ....................................................... ............................................................ . . .......................................................... V27 G17 L44 . ....................... C................................... ........................ C................................... ........................ C................................... 1 1400 1 1 1450 1 1 1 CGCCCGTCA CA G AG AAG AACC GGA E. coli CGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGG A. margina TGCCCGTCACGCCATGGGAATTGGCTTAACTCGAAGCTGGTGCGCCAACCGTAAGGAGGC CONS=90$ El V12 G6 L36 TGCCCGTCACGCCATGGGAATTGGTTTCACTCGAAGCTAATGGCCTAACCGCAAGGAAGG . . . . ...................................................-.... . . .................. .C...................................... . ........................................................... V27 G17 L44 . ....................................... GCA.............. G.. . ....................................... GCA............ -.G.. . ....................................... GCA.............. G.. C A GT G A TGGG CGCTTACCACTTTGTGATTCATGACTGGGGTG A. margina AGCCATTTAAGGTTGGGTCGGTGACTGGGGTG CONS=90% R. coli El V12 G6 L36 AGTTATTTAAAGTGGGATCAGTGACTGGGGTG . . . ...................... C...... . . .............................. . ............................... V27 G17 L44 . . . . . . . . ........... G............ . . ................. G........ A... . .................. G............ Figure 1. Continued. 31 32 J. A. J. Breeuwer et al. Escherichia coli Serratia marcescens Gamma subdivision of Proteobacteria Proteus vulgaris Arsenophonus nasoniae (sonkiller) Wolbachia persica Rickettsia prowazeki Rickettsia rickettsi Alpha subdivision of Proteobacterio Evolutionary distance Figure 2. Phylogenetic tree with a Nasonia vitripennis CIM (El), based on evolutionary distance (Olsen, 1988). The Proteobacteria are divided into four groups. Members of two groups, alpha and gamma, are shown. E. coli (gamma) is used as an outgroup to root the tree. Table 1. Percentage sequence similarity, above diagonal, and evolutionary distance (x 100), below diagonal, for Nasonia CIM ( E1) and 16 other bacteria ( Weisburg et al., 1991) belonging to the alpha and gamma subdivision of the Proteobacteria Bacterium Ecol Escherichia coli Serratia marcescens Proteus vulgaris Arsenophonus nasoniae Wolbachia persica Rickettsia prowazekii Rickettsia rickettsii Ehrlichia risticu Nasonia CIM (El) Anaplasma marginale Rhodopseudomonas palustris Brucella abortus Rochalimaea quintana Agrobacterium tumefaciens Rhodospirillum molischiarum Rhodospirillum rubrum Rhodospirillum fulvum 2.5 4.8 6.6 14.4 19.9 20.1 23.1 20.5 19.7 19.7 17.9 18.3 18.5 17.4 16.1 17.4 S.mar Rvul A.nas caper R.pro R.ric 97.8 3.8 6.5 14.3 19.5 19.7 22.1 19.9 19.7 20.7 17.9 18.3 18.4 17.9 16.8 17.9 86.9 87.0 86.5 85.2 20.1 20.3 23.3 22.4 20.9 18.9 19.3 18.9 17.7 17.5 17.4 17.5 95.3 96.2 8.2 17.9 19.6 19.9 23.5 21.2 20.7 21.0 18.5 18.2 17.9 17.9 17.1 17.9 93.7 93.8 95.0 16.5 19.0 19.2 24.4 21.7 21.0 22.0 18.7 19.0 18.5 18.5 18.0 18.5 82.5 82.8 82.7 83.2 82.4 9.3 15.6 15.5 13.9 14.1 12.8 13.0 13.5 13.5 14.9 13.8 82.3 82.7 82.6 83.0 82.2 99.1 15.3 15.3 13.8 14.3 12.6 12.6 13.3 13.5 15.0 13.6 Eris CIM 80.1 80.9 79.8 79.2 80.0 85.9 86.1 14.2 14.1 17.6 16.0 17.3 15.8 17.7 17.8 18.0 82.0 82.5 81.6 81.2 80.6 86.0 86.1 87.1 11.2 18.1 16.6 16.4 16.0 17.5 16.7 17.9 A.mar R.pal B.abo R.qui A.tum R.mol R.rub RJul 82.7 82.7 81.9 81.7 81.7 87.3 87.4 87.2 89.6 16.7 14.8 14.3 14.2 14.5 15.6 14.8 Clone El V12 G6 L36 V27 G17 L44 El V12 G6 L36 V27 G17 L44 - 67 - 67 55 - 88 59 76 - 29 36 32 34 - 29 36 32 38 90 - 27 38 32 34 88 92 - 82.7 81.9 81.7 80.9 83.3 87.2 87.0 84.3 83.9 85.0 9.1 9.5 9.4 9.7 10.5 9.9 84.1 84.0 83.6 83.4 82.9 88.3 88.4 85.6 85.1 86.6 91.4 4.1 4.7 8.7 9.7 8.8 83.7 83.7 83.9 83.2 83.3 88.1 88.4 84.6 85.3 87.0 91.0 96.0 5.0 8.2 10.6 8.4 83.6 83.6 84.1 83.6 84.2 87.6 87.8 85.8 85.6 87.0 91.2 95.5 95.2 7.9 10.1 8.4 84.5 84.1 84.1 83.6 84.4 87.7 87.6 84.3 84.4 86.8 90.9 91.8 92.2 92.5 7.9 3.6 85.5 84.5 85.0 84.1 84.7 84.0 84.0 83.6 84.5 84.4 86.5 87.4 86.4 87.5 84.2 87.5 85.1 84.0 85.9 86.6 90.2 90.7 90.9 91.7 90.1 92.6 90.5 92.1 92.5 99.6 - 92.3 8.1 - Table 2. Percentage similarity (Olsen, 1988) solely based on variable nucleotide sites (59, gaps included) for the shortest common sequence, G17. Weight given to gaps is 1. (V and E = N. vitripennis, G = N. giraulti, L = N. longicomis.) Phylogeny of Nasonia incompatibility microbes 8 6 EI r2- V27 1 -3- G17 I - L44 Number of nucleotide substitutions Figure 3. Most parsimonious phylogenetic tree of Nasonia CIM using branch-and-bound method of PAUP (Swofford, 1990). Only variable sites for the shortest common sequence, G17 (52 sites) were included. A. marginale was used as an outgroup to root the tree. (V and E _ N. vitripennis, G = N. giraulti, L = N. longicomis.) tion. Only two changes disrupted correct pairing. Both of these occurred in a region (1440-1442) already experienci ng disruption of perfect base pairing (Woese et al., 1983). The finding that nucleotide differences at diagnostic sites are consistent with 16S rRNA secondary structure shows that variation at these sites is not an artifact but is indicative of the presence of more than one ribosomal operon. It is currently unknown whether CIM have more than one ribosomal operon. Thus, each operon may represent two different bacterial strains present in each wasp species. Alternatively, each Nasonia species may harbour a single CIM strain with two ribosomal operons. Because little is known about the amount of sequence variation between ribosomal operons within bacterial strains, it is not possible to distinguish between these two possibilities solely on the bases of sequence information. Prokaryotes typically have a few (e.g. 1-10) ribosomal operons (Pace et al., 1986) but almost all have more than one. Only a few studies have examined sequence variation in ribosomal operons within unicellular species. The mitochondrial genome of Tetrahymena contains two genes encoding the large subunit rRNA that differ at 5 of 2595 positions (Heinonin et al., 1990). Mylvaganam & Dennis (1992) observed 74 differences in 1472 positions of two 16S rRNA genes from the archaebacterium, Haloarcula marismortui, and both types are present in functional ribosomes. In contrast, Dryden & Kaplan (1990) did not find any difference between 16S rDNA of three ribosomal RNA operons of Rhodobacter sphaeroides. I n principle, one nucleotide difference is sufficient to distinguish between species or strains as long as it is a consistent difference. However, to determine this, multiple sequences are needed from different strains of each species. In addition, greater confidence is obtained when phylogenetic trees are based on more differentiating 33 characters. Therefore, sequence information on more rapidly evolving genes or ribosomal spacer regions, e.g. between 16S and 23S rDNA, is necessary to resolve the phylogenetic relationships among CIM. I n addition, it is useful to obtain the complete 16S rDNA sequence because variable positions can be restricted to particular regions of the 16S gene (Mylvaganam & Dennis, 1992). In Nasonia CIM diagnostic sites are restricted to a region between nucleotide position 1000 and 1500, and most changes are associated with stem loops. Taq polymerase or sequencing errors may be partly responsible for non-diagnostic nucleotide differences between the two ribosomal types. Sequence information of multiple clones of each type are needed to determine possible Taq or sequencing errors. All CIM appear to be closely related and group into a monophyletic assemblage of intracellular parasites ( O'Neill et aL, 1992). We cannot yet identify potential ancestors. Because CIM occur in diverse insect taxa, this suggests lateral transmission of the micro-organisms between insect groups. One possibility is transfer between i nsects that are associated with each other. For instance, in the case of Nasonia, CIM-like 16S rDNA sequences have also been found in Protocalliphorid flies, which Nasonia wasps parasitize (J.A.J. Breeuwer and J.H. Werren, unpublished results). Associations such as these are likely avenues of intertaxon transfer. Experimental procedures Wasp strains Total genomic DNA was isolated from the following wasp strains. Labll, l aboratory strain Leiden, The Netherlands, Europe. Asymc, strain of Labll cured of CIMs in 1986. N. vitripennis. RV2, collected in Virginia, USA, 1986. RV2T, strain of RV2 cured of CIMs in 1988. N. giraulti. N. longicomis. IV7, collected of I V7 cured of CIM in 1989. in Montana, USA, 1986. I V7T strain As indicated, symbiont free lines were derived from the wild-type strain of each species by feeding females tetracycline (1 mg ml - ' tetracycline in 10% sucrose) prior to egg laying. This was repeated for three generations, at which time no bacteria could be detected in the cytoplasm of freshly laid eggs stained with 2% lacmoid (Breeuwer & Werren, 1990). These strains have been maintained free of CIM for several years of laboratory maintenance and show altered compatibility relationships in intra- and interspecific crosses (Breeuwer & Werren, 1990). DNA preparation DNA was prepared from 5 to 10 ovaries (all strains) or 500 to 1000 eggs (only Labll and Asymc). Ovaries were dissected in Tris buffer 34 J. A. J. Breeuwer et al. Table 3. Variable positions between sequenced Nasonia CIM clones and their location inferred from the 16S rRNA secondary structure of E. coli (Woese, et al., 1983). Diagnostic positions are in boxes. (V and E = N. vitripennis, G = N. giraulti, L = N. longicornis.) Clone Position El V12 G6 L36 V27 37 62 74 77 101 182 183 421 436 450 468 587 589 593 614 620 632 645 646 662 682 683 693 760 844 907 989 1037 1041 1047 1127 1129 1143 1145 1146 1171 1210 1215 1245 1256 1262 1264a 1268 1271 1274 1278 1285 1292 1327 1364 1421 1440 1441 1442 1455 1457 1479 1485 1488 U G A U A C G U C G A U G A G U U A U G G A A A A U A U A G U A U U G A U A C G U C G A A G A C A G C G A G G G U G C A U A G U A U G G C G G U A G G G U A G A C U G U A A G A A A C A C A G U A U A U G U C G G A C A U A U A U C G G A C U A A U U U G G G A A A G G17 L44 A U G U U G G A C A C U G A U A C G U C G A U A A G U U A U A G A A A A C A C A G U A U G A U G U U G G A C A U U G A U A C G U C G A A G A C U G C G A G G G U A C G C G A C G U C G A G G A C U G U A A G G G U A C G C G A C G C C A U A C G U C U A A G A C U G C A A G G G U A C G C G A C G G G C G G C A G G C G G C A G G C G G C A A A U U U G G G G A C U C G C U G C A G G A U U C G C U G C A G G A U U C G C U A A U U U G G A A U C U G G A A C G A A U G A A U G G G U G G G U A G G U G C A Position paired unpaired paired paired unpaired unpaired unpaired unpaired paired unpaired unpaired paired paired paired paired unpaired paired paired paired paired paired paired unpaired unpaired unpaired unpaired paired paired paired paired unpaired unpaired unpaired unpaired unpaired paired paired paired paired unpaired unpaired unpaired unpaired unpaired unpaired unpaired unpaired paired paired unpaired paired paired paired paired unpaired paired paired paired paired Nucleotide 547 A 96 92 A G 406 G 754 650 646 626 C U UCUU CUC U 606 594 593 744 708 707 G U AGGA GGG U U U 1216 1003 909 1210 G U A UC 1165 1047 990 1292 U AG C AC 1245 1310 UG U 1479 1461 1462 1463 AAAA GGG G U U 1445 1421 1415 1412 U UUCU UUU G C Phylogeny of Nasonia incompatibility microbes [10 mm Tris (pH 8.3), 2.5 mm MgC12 , 50 mm KCI] on a sterilized slide. Samples were transferred into a 0.5 ml microfuge tube containing 0.1 ml sterile zirconium beads (Biospec Product, Bartl esville, OK), 200#1 Tris, 10 ul 20% SDS and 200,ul phenol. The order of tissue collecting from each Nasonia species was first symbiont strain followed by the asymbiont strain of the same species. This allowed a positive check for cross contamination. Samples were shaken in a mini-Bead beater (BioSpec Products) for 3 min. Phases were separated by 10 min spinning in a microcentrifuge. The DNA was then ethanol precipitated and resuspended in 20 ul sterile TE buffer [10 mm Tris (pH 8.0), 1 mm EDTA]. All solutions were filter sterilized ((D 0.22um) before use to reduce the risk of contamination. 35 et al., 1985) using conserved positions as guidelines. All positions in which base composition was not at least 50% conserved were eliminated (Weisburg et al., 1991). The percentage sequence similarity for each pair of sequences was calculated after alignment as the percentage identical basepair positions of the total number of common basepair positions (Olsen, 1988). The estimated evolutionary distance is based on the number of substitutions per sequence position (Jukes & Cantor, 1969). Phylogenetic trees were constructed by the method of Olsen (Olsen, 1988; Swofford & Olsen, 1990) based on pairwise evolutionary distance data and by the branch-and-bound method of PAUP using actual sequence data (Swofford, 1990; Swofford & Olsen, 1990). DNA amplification and purification Bacterial 16S rDNA was amplified using PCR in a volume of 50 ul [1-2 ul DNA sample, 5 ul 10 x buffer (Promega), 1 ul nucleotide mix (10 mm each), 0.625ul 20 mm primer 1, 0.625ul 20 man primer 2, 0.5 ul taq polymerase (Promega), and ddH20 was added to a final volume of 50 ul]. Because PCR is a very sensitive technique and can amplify DNA that is present at very low concentration, extreme care was taken to avoid, but also detect, cross contamination between samples. Again all solutions were filter sterilized ( (D 0.22 um) before use to reduce the risk of contamination. Two primer pairs; fD1 and rP1 for ovaries and fD2 and rP2 for eggs, which specifically hybridize to bacterial 16S rDNA, were used ( Weisburg etaL, 1991). The PCR reaction cocktail was prepared in one batch and then added to each sample. The remainder of the cocktail was run along as a control for contamination. PCR cycling conditions were one cycle (1 min at 94°C, 2 min at 55°C, 3 min at 72°C), 28 cycles (15 s 92°C, 1 min at 60°C, 3 min at 72°C), and 1 cycle (15 s at 92°C, 1 min at 60°C, 10 min at 72°C) (Ericomp thermal cycler). After PCR, 1 ul of amplified product was run on a 1% agarose gel to check for product. The remainder of the PCR product was purified with the Geneclean kit (1310101 Inc., La Jolla, CA) and dissolved in 20ul ddH 2 0. Cloning and sequencing Egg PCR product was restriction digested with San and BamHI and ligated into a similarly cut pGEM-4 vector (Promega). Ovarial PCR product was directly cloned into T-tailed M13mp18 vector (Marchuk et aL, 1990; Sambrook et al., 1989). Plasmid clones were sequenced with Sequenase v 2.0 kit (US Biochemical Corp.) according to their specifications and run on buffer gradient gels (Biggin et al., 1983). Sequencing primers were 357f, 530f, 926f, 1114f (Lane, 1991), universal primer (5'GTTTT000AGTCACGAC), and 65f (5'GTGGCAGACGGGTGAGT). Egg PCR product (E1) was sequenced in both directions, whereas ovarial PCR products (V12, V27, G6, G17, L36, L44) were only sequenced from 5'--> 3'. Because Nasonia CIMs may be closely related, PCR or sequencing errors could obscure phylogenetic analysis. Therefore two clones of each species were sequenced completely to detect microheterogeneity. Estimation of evolutionary distance and phylogenetic tree The 16S rDNA sequences of CIM were manually aligned with the accepted secondary structure of E. coli (Woese etaL, 1983; Gutell Acknowledgements We would like to thank Bill Burke for technical advice, Thomas Eickbush for use of facilities, Lasse Lindahl and Jan Zengel for discussions on ribosomal sequence variation, Leo Beukeboom and Kent Reed for reviewing the manuscript. This research was supported by USDA 91-37302-6206 and NSF BSR8906231. References Biggin, M.D., Gibson, T.J. and Hong, G.F. (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80: 3963-3965. Binnington, K.C. and Hoffmann, A.A. (1989) Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol54: 344-352. Breeuwer, J.A.J. and Werren, J.H. (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558-560. Brosius, J., Palmer, J.L., Kennedy, J.P. and Noller, H.F. (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA75: 4801-4805. Darling, D.C. and Werren, J.H. (1989) Biosystematics of Nasonia (Hymenoptera: Pteromalidae): Two new species reared from birds' nests in North America. Ann Ent Soc Am 83: 352-369. Dryden, S.C. and Kaplan, S. (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobactersphaeroides. Nucl Acids Res 18: 7267-7277. Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R.S., Magrum, L.J., Zablen, L.B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Luehrsen, K.R., Chen, K.N. and Woese, C.R. (1980) The phylogeny of prokaryotes. Science 209: 457-463. Gutell, R.R., Wieser, B., Woese, C.R. and Noller, H.F. (1985) Comparative anatomy of 16S-like ribosomal RNA. Prog Nucl Acid Res Mol Biol32: 155-216. Heinonin, T.Y.K., Schnare, M.N. and Gray, M.W. (1990) Sequence heterogeneity in the duplicated large subunit ribosomal RNA genes of Tetrahymena pyriformis mitochondrial DNA. J Biol Chem 265: 22336-22341. Hertig, M. and Wolbach, S.B. (1936) The Rickettsia. Wolbachia pipientis (Gen. and Sp. N.) and associated inclusions in the mosquito, Culex pipiens. Parasitology28: 453-486. 36 J. A. J. Breeuwer et al. Hoffmann, A.A. (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 48: 61-67. Hoffmann, A.A., Turelli, M. and Simmons, G.M. (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692-701. Holland, C.J., Weiss, E., Burgdorfer, W., Cole, A. I. and Kakoma, I. (1985) Ehrlichia risticii sp nov.: etiological agent of equine monocytic ehrlichiosis (synonym, Potomac horse fever). Int J Syst Bacteriol 35: 524-526. Hsiao, C. and Hsiao, T.H. (1985) Rickettsia as the cause of cytoplasmic incompatibility in the alfalfa weevil, Hypera postica. J Invert Pathol45: 244-246. Jost, E. (1970) Untersuchungen zur Kreuzungs Sterelitat im Culex pipiens Komplex. Wilhelm Roux Arch Entwickl Org 166: 173188. Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism (Munro, H.N., ed.) pp. 21-132. Academic Press, New York. Kellen, W.R., Hoffmann, D.F. and Kwock, R.A. (1981). Wolbachia sp. (Rickettsiales: Rickettsiaceae) a symbiont of the almond moth, Ephestia cautella: ultrastructure and influence on host fertility. J Invertebr Pathol37: 273-283. Krieg, N.R. and Holt, J.G. (1984) Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore. Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Sequencing and Hybridization Techniques in Bacterial Systematics. (Stackebrandt, E. and Goodfellow, M. eds). Wiley, Chichester. Laven, H. (1957) Vererbung durch Kerngene and das Problem der ausserkaryotischen Vererbung bei Culex pipiens. 11 Ausserkaryotische Vererbung. ZInduktAbstamm Vererbungl88: 478516. Marchuk, D., Drumm, M., Saulino, A. and Collis, F.S. (1990) Construction of T-vectors, a rapid method and general system for direct cloning of unmodified PCR products. Nucl Acids Res 19:1154. Montchamp-Moreau, C., Ferveur, J-F. and Jacques, M. (1991) Geographic distribution and inheritance of three cytoplasmic i ncompatibility types in Drosophila simulans. Genetics 129: 399-407. Mylvaganam, S. and Dennis, P. P. (1992) Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130: 399410. Olsen, G.J. (1988) Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164: 793-812. O'Neill, S.L. (1989) Cytoplasmic symbionts in Tribolium confusum. J Invertebr Pathol53: 132-134. O'Neill, S.L., Giordano, R., Colbert, A.M.E., Karr, T.L. and Robert son, H.M. (1992) 16S rRNA phylogenetic analysis of the bac- terial endosymbiont associated with cytoplasmic incompatibility i n insects. Proc Natl Acad Sci, USA 89: 2699-2702. Pace, N.R., Lane, D.A. and Olsen, G.J. (1986) The analysis ofnatural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol9: 1-55. Richardson, P.M., Holmes, W.P. and Saul II, G.B. (1987) The effect of tetracycline on nonreciprocal/incompatibility in Mormoniella ( = Nasonia) vitripennis. J Invert Patho150: 176-183. Ryan, S.L. and Saul, G.B. (1968) Post-fertilization effect of i ncompatibility factors in Mormoniella. Molec Gen Genet 103: 29-36. Saul, G.B. (1961) An analysis of non-reciprocal cross incompatibili ty in Mormoniella vitripennis (Walker). Z Vererbungsl92: 2833. Stackebrandt, E., Murray, R.G.E. and Triiper, H.G. (1988) Proteobacteria classic nov., a name for the phylogenetic taxon that i ncludes the "purple bacteria and their relatives". Int J Syst Bacteriol38: 321-325. Swofford, D.L. (1990) PAUP V3.0. Illinois Natural History Survey, Champaign. Swofford and Olsen (1990) Phylogeny reconstruction. In: Molecular Systematics. (Hillis, D.M. and Mortitz, C. eds). Sinauer Associates, Inc, MA. Trpis, M., Perrone, J.B., Reissig, M. and Parker, K.L. (1981) Control of cytoplasmic incompatibility in the Aedes . scutellaris complex. JHered72:313-317. Wade, M.J. and Stevens, L. (1985) Microorganism mediated reproductive isolation in flour beetles (Genus Tribolium). Science 278: 527-528. Weisburg, W.G., Dobson, M.E., Samuel, J.E., Dasch, G.A., Mallavia, L.P., Bca, O., Mandelco, L., Sechrest, J.E., Weiss, E. and Woese, C.R. (1989) Phylogenetic diversity of the Rickettsia. J Bacteriol 171: 230-236. Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697-703. Woese C. R. (1987) Bacterial evolution. Microbiol Rev 51: 221271. Woese, C.R., Gutell, R., Gupta, R. and Noller H.R. (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47: 621-669. Wright, J.D. and Barr, A.R. (1980) The utrastructure and symbiotic relationships of Wolbachia of mosquitoes of the Aedes scutellaris group. J Ultrastruct Res 72: 52-64. Yen, J.H. and Barr, A.R. (1971) New hypothesis of the cause for cytoplasmic incompatibility in Culex pipiens. Nature 232: 657968. Yen, J.H. and Barr, A. R. (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Patho122: 242250.
© Copyright 2026 Paperzz