Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions Calculations of antibaryon nuclear bound states Jaroslava Hrtánková Ji°í Mare² Nuclear Physics Institute, eº, Czech Republic ECT* workshop, Trento, October 27 - 31, 2014 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions Introduction study of antibaryon (p̄ , Λ̄, Σ̄, Ξ̄) bound states in selected nuclei: behavior of antibaryons in the nuclear medium changes of the binding energy, single particle energies and density distributions in the nuclear core p̄ absorption in a nucleus knowledge of p̄ nucleus and Ȳ nucleus interaction for future experiments (PANDA@FAIR) testing models of (anti)hadronhadron interactions possibility of long living p̄ in the nuclear medium due to phase space suppression? (I.N. Mishustin et al, Phys. Rev. C 71 (2005)) 2 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions RMF approach Baryons treated as Dirac elds interacting via the exchange of meson elds isoscalar-scalar eld σ , isoscalar-vector eld ωµ , isovector-vector eld ρ ~µ , and massless vector eld Aµ . The standard RMF models TM and density dependent model TW99 giN (ρVN ) = giN (ρsat )fi (x ) , i = σ, ω, ρ , where ρVN is a vector baryon density and (S. x = ρVN /ρsat Typel, H.H. Wolter, Nucl. Phys. A 656 (1999) 331 ) 3 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions RMF approach Dirac equation for nucleons and antibaryon ~ + β(mj + Sj ) + Vj ]ψ α = α ψ α , [−i α ~∇ j j j S j = N , B̄ , 1 + τ3 A0 + Σ R , 2 ∂ gρN ∂ gσN ∂ gωN ρVN ω0 + ρ IN ρ 0 − ρSN σ . ΣR = ∂ρVN ∂ρVN ∂ρVN = gσj σ, Vj = gωj ω0 + gρj ρ0 τ3 + ej Klein-Gordon equations for meson elds (−4 + mσ2 )σ = −gσN (ρVN )ρS −gσB̄ (ρVN )ρS B̄ (−4 + mω2 )ω0 = gωN (ρVN )ρV +gωB̄ (ρVN )ρV B̄ (−4 + mρ2 )ρ0 = gρN (ρVN )ρI +gρB̄ (ρVN )ρI B̄ −4A0 = e ρp +eB̄ ρB̄ . 4 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions B -nucleus interaction Nucleon-meson couplings obtained by tting nuclear matter and nite nuclei properties Hyperon-meson coupling constants: for ω and ρ eld obtained from SU(6) symmetries, for σ eld obtained from ts to experimental data (Λ hypernuclei, Σ atoms, Ξ production in (K + , K − ) reactions) gσΛ = 0.621gσN , gσΣ = 0.5gσN , gσΞ = 0.299gσN , gωΛ = 2/3gωN , gωΣ = 2/3gωN , gωΞ = 1/3gωN , gρΛ = 0 , gρΣ = 2/3gρN gρΞ = gρN , 5 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions B̄ -nucleus interaction NN → N̄N interaction G-parity + optical potential B -nucleus → B -nucleus interaction G-parity transformation gσB̄ = gσB , gωB̄ = −gωB , gρB̄ = gρB 400 400 repulsive 200 200 0 U [MeV] U [MeV] S+V ~ -750 MeV 0 16 -200 attractive 16 O Op S+V ~ -50 MeV -400 0 1 2 3 4 r [fm] 5 -200 S V 6 1 2 3 4 r [fm] Fig.1: The scalar and vector potential acting on nucleon in (right), calculated statically in the TM2 model. 16 5 O (left) and -400 6 p̄ in 16 Op̄ 6 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions p̄-nucleus interaction Antiprotonic atoms and p̄ scattering o nuclei at low energies → the depth of ReVp̄ ∼ 100 − 300 MeV Reduced p̄ coupling constants gσp̄ = ξ gσN , gωp̄ = −ξ gωN , gρp̄ = ξ gρN , where parameter ξ is from h0, 1i large polarization eects conrmed (I.N. Mishustin et al, Phys. Rev. C 71 (2005)) 7 Introduction Model The issue of the B̄ -nucleus interaction Results Spin symmetry Conclusions p̄ self-interaction KG equations for a meson eld acting on nucleons: ξ=0.25 ξ=0.5 ξ=0.75 ξ=1 1 -3 ρp [fm ] 2 (−4 + mM )ΦN = gMN ρMN + gM p̄ ρM p̄ 1.2 0.8 208 208 Pbp TM1 1.2 1 0.8 Pbp TM1 0.6 no self-interaction 0.6 acting on p̄ : 0.4 0.4 2 )Φp̄ = gMN ρMN (−4 + mM h ( (p̄( +h gMh ρM( h ( p̄ h ( h 0.2 0.2 0 0.5 1 r [fm] 1.5 0 0.5 1 r [fm] 1.5 2 Fig.2: The p̄ density in 208 Pbp̄ , calculated with and without the p̄ self-interaction. 8 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions Density-dependent vs. standard RMF model 0.1 0 0.08 -0.01 0.06 Pbp TM1 -3 ρp - ρn [fm ] 208 0.04 0.02 208 ξ=0.25 ξ=0.5 ξ=0.75 ξ=1 208 Pbp TW99 -0.02 -0.03 -0.04 Pb 0 -0.05 -0.02 -0.06 G [-] 12 TM1 4 0 1 2 r [fm] Fig.3:The isovector density in 208 12 Gσ Gω Gρ 8 3 8 TW99 ξ=1 0 1 2 r [fm] 4 3 4 Pbp̄ , calculated within the TM1 and TW99 model. 9 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions Antibaryon potential 0 20 -50 S+V [MeV] 0 ξ=0.2 -20 TM2 16 -40 16 16 -60 0 Fig.4: The 16 1 2 3 4 r [fm] B nucleus TM2 16 Op 16 OΛ 16 OΣ0 16 OΞ0 5 (left) and 0 1 2 B̄ nucleus 3 4 r [fm] -100 -150 Op OΛ OΣ0 -200 -250 OΞ0 5 6 (right) potentials in 16 O. Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions Antibaryon spectrum 0 Ξ + 0 Ξ + Σ EΒ [MeV] -50 0 Σ − -100 Σ Λ TM 40 -150 6 16 Li 12 90 Ca ξ=0.2 Zr 208 Pb p O C -200 0 10 20 [-] 30 40 2/3 A Fig.5: The A dependence of ξ = 0.2. B̄ single particle energies, calculated in TM model for 11 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions Baryon vs. antibaryon s.p. energies 0 -5 6 Li 16 12 O + Ξ ξ=0.2 − Ξ C E [MeV] -10 TM 40 -15 90 Ca Zr 208 -20 Pb -25 -30 -35 -40 0 5 10 15 20 2/3 A 25 30 35 40 Fig.6: Single particle energies of Ξ− and Ξ̄+ for ξ = 0.2 in various nuclei, calculated dynamically in the TM model. Introduction The Model B̄ -nucleus interaction Results Spin symmetry Conclusions p̄ absorption p̄nucleus optical 1.0 potential: ξ = 0.2, Imb0 = 1.9 fm √ s = 2mN − Bp̄ − BN 2π fs [-] ReVp̄ =ξ VRMF , X ImVp̄ = fs Br Imb0 ρRMF , channel 0.8 πω 0.6 ηω πρ 0.4 ρω 2ω 3π 2πρ 2πω 0.2 2πη 4π 0 0.5 s 1/2 1 [GeV] 5π 6π 1.5 7π 2 Fig.7: The phase space suppression factor f√ s as a function of the center-of-mass energy s . 13 Introduction The B̄ -nucleus interaction Model Results Spin symmetry Conclusions p̄ absorption Table 1: The 1s single particle energies Ep̄ and widths Γp̄ (in MeV) in 16 Op̄ , calculated dynamically (Dyn) and statically (Stat) with the real, complex and complex with fs potentials (TM2 model), consistent with p̄ atom data. Ep̄ Γp̄ Real Dyn Stat 193.7 137.1 - Complex Dyn Stat 175.6 134.6 552.3 293.3 Complex + fs Dyn Stat 190.2 136.1 232.5 165.0 14 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions CMS vs LAB frame p̄ absorption in a nucleus → non-negligible contribution from the momentum dependent term in s = (EN + Ep̄ )2 − (~pN + ~pp̄ )2 , ~pN + ~pp̄ 6= 0, where Ei = mi − Bi for i = N , p̄ . (A. Cieply et al., Phys. Lett. B 702, 402 (2011) ) Table 2: The 1s single particle energies Ep̄ and widths Γp̄ (in MeV) in 16 √Op̄ , calculated dynamically in TM2 model with dierent approach to s , consistent with p̄ atom data. Ep̄ Γp̄ CMS 190.2 232.5 LAB 191.6 179.9 Introduction B̄ -nucleus interaction Model Spin symmetry in Results Spin symmetry Conclusions p̄ spectrum relativistic symmetry of Dirac Hamiltonian when V=S+const J.N. Ginocchio, Phys. Rep. 414, 165 - 261 (2005) spin doublets - states with j = ` ± upper components of 1 2 are degenerate wave function are equal gnr ,`+1/2 (r ) = gnr ,`−1/2 (r ) lower components are related by the equation ∂ `+2 ∂ `−1 + fnr ,`+1/2 (r ) = − fnr ,`−1/2 (r ) ∂r r ∂r r p̄ spin symmetry is well preserved in antinucleon spectra X.T. He, S.G. Zhou, J. Meng, E.G. Zhao and W. Scheid, Eur. Phys. J. A 28, 265 - 269 (2006) 16 Introduction B̄ -nucleus interaction Model Results Spin symmetry Conclusions Spin symmetry 0.003 0 0.002 -0.0004 -0.0006 0.001 -0.0008 f p1/2 f p3/2 ] -0.0002 0.0005 16 p in O TM2 -0.0004 ξ=0.2 dyn with absorption 16 p in O TM2 -0.001 ξ=0.2 dyn 0 1 2 r [fm] 3 40 1 2 r [fm] 3 0 -3/2 wave function [fm wave function [fm -3/2 ] -0.0002 g p1/2 g p3/2 0.001 differential relation f p1/2 f p3/2 differential relation g p1/2 g p3/2 0 4 Fig.8: Upper (g) and lower (f) components of the p̄ wave function in 16 Op̄ TM2, calculated dynamically. 0 1 2 r [fm] 3 40 1 2 r [fm] 3 4 Fig.9: Upper (g) and lower (f) components of the p̄ wave function in 16 Op̄ TM2, calculated dynamically with p̄ absorption in the nucleus. 17 Introduction Model B̄ -nucleus interaction Results Spin symmetry Conclusions Conclusions antibaryons are deeply bound in the nuclear medium large polarization eects of the nuclear core due to B̄ conrmed p̄ absorption in a nucleus p̄ widths are suppressed due to the phase space reduction, but still remain large for potentials consistent with p̄atom data signicant contribution from ~pp̄ and ~pN to Γp̄ spin symmetry in p̄ spectrum is preserved even if the polarization eects in the nucleus and the p̄ absorption are taken into account 18
© Copyright 2026 Paperzz