MEM202 Engineering Mechanics - Statics MEM Shear Forces and Bending Moments in Beams Sign Convention 1 MEM202 Engineering Mechanics - Statics MEM Shear Forces and Bending Moments in Beams P B A a Reactions ⎛a⎞ ( ) ( ) = − = ⇒ = M B L P a 0 B ⎜ ⎟P ∑ A y y ⎝ L⎠ ⎛ a⎞ = + − = ⇒ = F A B P 0 A ⎜1 − ⎟ P ∑ y y y y ⎝ L⎠ ∑ Fx = Ax = 0 P A Ax B a L Ay For 0 ≤ x ≤ a By Mx A x A Ay ∑F y Vx Ay For a ≤ x ≤ L L ∑M = −A y P Mx a x ⎛ a⎞ = Ay − Vx = 0 ⇒ Vx = Ay = ⎜1 − ⎟ P ⎝ L⎠ Vx ∑F y ⎛ a⎞ ⋅ x + M x = 0 ⇒ M x = Ay ⋅ x = ⎜1 − ⎟ Px ⎝ L⎠ ⎛a⎞ = Ay − P − Vx = 0 ⇒ Vx = −⎜ ⎟ P ⎝ L⎠ ∑ M = −A y ⎛ x⎞ ⋅ x + P( x − a) + M x = 0 ⇒ M x = ⎜1 − ⎟ Pa ⎝ L⎠ 2 MEM MEM202 Engineering Mechanics - Statics Shear Forces and Bending Moments in Beams For a ≤ x ≤ L For 0 ≤ x ≤ a ⎛a⎞ F A P V 0 V = − − = ⇒ = − ⎜ ⎟P ∑ V y x x ⎝ L⎠ ⎛ a⎞ ∑ FV = Ay − Vx = 0 ⇒ Vx = Ay = ⎜⎝1 − L ⎟⎠ P ∑M = −A y ⎛ a⎞ ⋅ x + M x = 0 ⇒ M x = Ay ⋅ x = ⎜1 − ⎟ Px ⎝ L⎠ ∑M = −A y P A ⎛ a⎞ ⎜1 − ⎟ P L⎠ ⎝ ⎛ a⎞ M max = ⎜1 − ⎟ Pa ⎝ L⎠ ⎛ a⎞ ⎜1 − ⎟ Px ⎝ L⎠ a x⎞ ⎛ ⋅ x − Pa + M x = 0 ⇒ M x = ⎜1 − ⎟ Pa ⎝ L⎠ RB L B ⎛a⎞ − ⎜ ⎟P ⎝ L⎠ x⎞ ⎛ ⎜1 − ⎟ Pa ⎝ L⎠ 3 MEM MEM202 Engineering Mechanics - Statics Shear Forces and Bending Moments in Beams q B A L Reactions ∑ M A = By (L) − q(L)(L 2) = 0 ⇒ By = q B A Ax L Ay By Mx A x Ay Vx ∑ Fy = Ay + By − qL = 0 ⇒ Ay = ∑F x qL 2 qL 2 = Ax = 0 ⎛L ⎞ = − − = ⇒ = 0 F A qx V V q ⎜ − x⎟ ∑ y y x x ⎝2 ⎠ qx 2 qx (L − x ) 0 M = − A ⋅ x + + M = ⇒ M = ∑ y x x 2 2 4 MEM MEM202 Engineering Mechanics - Statics Example Reactions ∑M about A = RB (24 ) − P (9 ) − q(30)(30 2 ) = 0 ⇒ RB = 9 k; RA = 11 k Free-body diagram #1 ∑ F = 11 − 0.2(15) − 14 − V = 0 ⇒ V = −6 k ∑ M = −V (15) − 14(9) − 0.2(15)(15 2) + M = 0 V x ⇒ M = 58.5 ft - k 15 ft Free-body diagram #2 ∑ F = V + 9 − 0.2(30 − 15) = 0 ⇒ V = −6 k ∑ M = − M + 9(9) − 0.2(15)(15 2) = 0 ⇒ M = 58.5 ft - k V 9 ft 15 ft 5 MEM202 Engineering Mechanics - Statics MEM Shear Forces and Bending Moments in Beams Relations among w, V, and M w( x ) B A x dx L ∑F y = V + wdx − (V + dV ) = 0 or dV = wdx dV =w dx ∫ x2 x1 V2 wdx = ∫ dV = V2 − V1 V1 x2 V2 = ∫ wdx + V1 x1 6 MEM MEM202 Engineering Mechanics - Statics Shear Forces and Bending Moments in Beams Relations among w, V, and M w( x ) 2 B A x w(dx ) ∑ M O = − M − Vdx − 2 + (M + dM ) = 0 dx L w(dx ) dM = Vdx + 2 2 or dM =V dx ∫ x2 x1 Vdx = ∫ M2 M1 dM = M 2 − M 1 x2 M 2 = ∫ Vdx + M 1 x1 7 MEM202 Engineering Mechanics - Statics MEM Shear-Force and Bending Moment Diagrams w= dV dx V= dM dx 8 MEM202 Engineering Mechanics - Statics MEM Shear-Force and Bending Moment Diagrams One Concentrated Load Several Concentrated Loads 9 MEM202 Engineering Mechanics - Statics MEM Shear-Force and Bending Moment Diagrams Uniform load over the entire span Uniform load over part of the span. 10 MEM202 Engineering Mechanics - Statics MEM Shear-Force and Bending Moment Diagrams Cantilever beam with two concentrated loads. Cantilever beam with a uniform load. 11 MEM202 Engineering Mechanics - Statics MEM Shear-Force and Bending Moment Diagrams Beam with an overhang and a concentrated moment 12 MEM202 Engineering Mechanics - Statics MEM Shear Forces and Bending Moments in Beams RB RA ∑M B = − RA (10 ) + 2000(13) + 1000(6)(5) + 2000(2 ) = 0 RA = 6000 lb ∑ F = −2000 + 6000 − 1000(x − 2) − V = 0 ∑ M = 2000(3 + x ) − 6000 x y a −a 2 ( x − 2) + 1000 +M =0 2 V = −1000 x + 6000 lb M = −500 x 2 + 6000 x − 8000 ft - lb 13 MEM MEM202 Engineering Mechanics - Statics Shear Forces and Bending Moments in Beams q q B A L x qL 2 ∫ x 0 ∫ x 0 L Mx A Vx qL 2 wdx = ∫ (− q )dx = − qx = Vx − V0 0 Vdx = ∫ 0 qL 2 qL w = − q V0 = 2 x x B A ⎛ Lx x 2 ⎞ ⎛L ⎞ − ⎟⎟ = M x − M 0 q⎜ − x ⎟dx = q⎜⎜ 2⎠ ⎝2 ⎠ ⎝ 2 M0 = 0 ⎞ ⎛L Vx = q ⎜ − x ⎟ ⎠ ⎝2 Mx = qx (L − x ) 2 14
© Copyright 2026 Paperzz