University of Wollongong Research Online Faculty of Business - Economics Working Papers Faculty of Business 1990 Ray scale economies and multiproduct cost functions Eduardo Pol University of Wollongong, [email protected] Recommended Citation Pol, Eduardo, Ray scale economies and multiproduct cost functions, Department of Economics, University of Wollongong, Working Paper 90-8, 1990, 8. http://ro.uow.edu.au/commwkpapers/322 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] THE UNIVERSITY OF WOLLONGONG DEPARTMENT OF ECONOMICS RAY SCALE ECONOMIES AND MULTIPRODUCT COST FUNCTIONS E.J. Pol Department of Economics The University of Wollongong Wollongong NSW 2500 Australia Working Paper 90S, Co-ordinated by Dr Charles Harvie & Di Kelly PO Box 1144 [Northfieids Avenue], Wollongong NSW 2500 Australia Phone: [042] 270 725 or 270 555. Telex 29022. Cable: UNIOFWOL. Fax [042] 270 477 ISSN 1035-4581 ISBN 0-86418-122-1 ABSTRACT The purpose of this paper is to show that if the ray scale economies depend on the output vector alone, it is possible to derive the full behaviour of costs as output bundles change. The formal proofs provide operational criteria for generating multiproduct cost functions for which ray scale economies depend either on cost level alone, or on output proportions alone, in a presassigned manner. 1. Introduction In the m u l t i p r o d u c t and t h e re fo re (1977), cost cannot the s t a n d a r d d e f i n i t i o n cannot be applied. e co nom ies case a v e r a g e An a n a l y t i c a l l y in a m u l t i p r o d u c t tr ac tab le ec on om ie s co nc ep t (1977)- is ter me d e c o n o m i e s ” . It is a s t r a i g h t f o r w a r d of costs scale of scale s e t t i n g - i n t r o d u c e d by Baumol and Pan za r and W i l l i g of s i n g l e - p r o d u c t of be defined, scale ec on om ie s "ray scale ex t e n s i o n of and ind ic at es the conce pt the be h a v i o r as the p r o d u c t i o n levels of a g i v e n b u n d l e of ou tpu ts cha ng e e q u i p r o p o r t i o n a t e l y . Since ray e c o n o m i e s scale may be d i f f e r e n t at d i f f e r e n t m ay be us ef u l to c h a r a c t e r i z e for w h i c h ec on om ie s o u tp ut v e c t o r alone. scales of operati on, the c la ss es of it f u nc ti ons in terms of the this p a p e r is that a k n o w l e d g e of a ray scale e c o n o m i e s this p r o p e r t y allows of cost of scale can be d e s c r i b e d The pu r p o s e of to sho w function having the d e r i v a t i o n of the m u l t i p r o d u c t cost function. 2. Oirectional elasticity and ray average cost Let C: Y — *R be a m u l t i p r o d u c t cost fun ct io n d e f i n e d by the fo rmu la C = C ( y ) = C(yi ,...,y „ ), wh er e yt for the ph y s i c a l q u a n t i t y of o u t p u t (i = l ,...,n) i, Y for the n o n n e g a t i v e o r t h a n t of R“ , and R for the set of n o n n e g a t i v e By d i r e c t i o n a l e l a s t i c i t y of e v a l u a t e d at an d in the total the d i r e c t i o n of stands real numbers. cost f u n c t i o n the o u t p u t C = C(y) v e c t o r y it is m e a n t y a (y) =* --C(y) C(9y) lim Q-+1 - C(y) 0>0 , 9-1 (1) if the limit exists. When C(y) limit is differentiable at y, the (1) exists and it turns out to be the sum of all partial cost elasticities, i.e. 1 a (y ) = R a y aver a g e cost * ^C(y) --- 2 _ C(y) t = l yi -----^ yi (RAC) is (2) the cost of an out pu t v e ct or of fixed pr o p o r ti o n s d iv i d e d by an h o mo gen eou s m e a s u r e of size of the outputs. Ana ly ti ca ll y, the measure 9 ev a l u a t e d the RAC in terms of the at the o u tp u t vec to r y is C(0y) RAC = ------ , 0>O (3) 0 It is not d i f f i c u l t determines the sign of d i f f e r e n t i a t i o n of 0 = 1 , to show that (3) the n u m er ic al v al ue the slope of the RAC. with r e s p e c t to 0, of a(y) In fact, the f o l l o w e d by s e t t i n g yields dRAC(y) -------- = a ( y )-1 (4) de In particular, RAC a s uf fi c i e n t is that the d i r e c t i o n a l [Cf. Baumol et al. (1982, c o n d i t i o n of s tr ic tl y d e c r e a s i n g e l a s t i c i t y be less p.51)]. From now on, than un ity a(y) wi l l be r e f e r r e d to as a r a y scale e c o n o m i e s function. 3. Homotheticity and ray scale economies functions Be f o r e g o i n g into the proof of an o p e r a t i o na l m e t h o d g e n e r a t i n g m u l t i p r o d u c t cost f u n ct io ns with v a r i a b l e economies denote some ad di t i on al n o m e n c l a t u r e is in order. the class of all p o s i t i v e l y h o m o ge ne ou s d e g r e e m. Let f £ H be a m u l t i p r o d u c t scale Let H fu n c t i o n s cost function. for A of continuously differentiable and g' (f) >0 for 0^f<°°, ( H C F ) . Finally, to mak e in a m u l t i p r o d u c t term ed explicit setting st r o n g e r d e f i n i t i o n of consider is fu nc t i o n C = git), a h o m o t h e t i c cost f u n c t i o n contac t with scale ec on om ie s it is n e c e s s a r y to in di ca te a(y). Let C = C(y) a continuously differentiable composite f u nc ti on function, if a = h«g«f: y<7C(y) Given a homogeneous ec on om ie s where g(0)=0 cost a be an HCF and function h: R — >R. The Y— *R is a r a y s c a l e e c o n o m i e s = a (y)C (y) (5) f u n c t i o n and a ray scale fu n c t i o n it is s h o w n b e l o w h o w these fu n c t io ns be t r a n s f o r m e d to y i e l d an HCF can e x h i b i t i n g the p r e a s s i g n e d sc ale economies. Theorem 1 Let f £ H . T h e re exi st s scale e c o no mie s sa t i s f i e s an HCF, function C = C(y), a = a(y), if and only if, the f o l l o w i n g d i f f e r e n t i a l dlogC h(C) d l o gf m with p r e a s s i g n e d C equation: Proof Necess ity. If there exi sts an HCF, C = C(y), w i t h h(C) preassigned, yVC(y) But since f £ H , it fo l l o w s = dC y — Vf df = h(C)C fr o m Euler' s dC — mf=h(C)C, df i.e. the d e s i r e d result. (7) theor em that (8) Sufficiency. The general solution of equation (6) can be written as: exp [<f> (y) ] = kf (9) where 0(y) and k is a c o n s t a n t A p p e n d i x that differential (9) of = mJdC/h(C)C i n te gr at io n. is the g e n e r a l equation (5). Thus (10) It is shown in the s o l u t i o n of the partial sufficiency is proved. 4- Inhomothetic cost functions. HCFs have contours, scale economies so that w h e n the p r e c e d i n g a(y) i n v ar ia nt is ho mo g e n e o u s theorem breaks generating constant a along every ray, down. c a n n o t be alone will be t er m e d economies of deg re e In fact, a a l o n g each ray, for w h i ch ray scale to y along isocost an HCF. a cost zero, function but di f f e r e n t values Those cost functions d e p e n d on output pr op ort ion s i n h o m o t h e t i c cost f u n c t i o n s ( ICF). Theorem 2 The fu nc tio na l form of an ICF is a (y) C {y ) = w here B(y) one, is an a r b i t r a r y and a(y) [B(y)] (11) f u n c t i o n h o m o ge ne ou s is h o m o g e n e o u s of de gr e e zero. of degree of Proof Using the same s o l u t i o n of technique (5) as is r e a d i l y in the Appendix, seen the general to be given by F (K t .....K« ) = 0 , where F(.) is an a r b i t r a r y (12) function, yl Kl-t ---- ( i - 2 , ----n) (13) yt and Kd Equation (12) - C [ y t ® > ]-t mu s t be so l u b l e (14) as a (y) K„ = [J(Ki.... Kn-i )] w h e r e J(.) is an a r b i t r a r y for Kt - i >0, i=2,...,n. (15) f u n c t i o n tak in g pos iti ve values Therefo re, a (y) C = and the p ro of [J(Ki ----- Ka-i )yi ] (16) is complete. 5. Conclusions A d u a l i t y for the m u l t i p r o d u c t s c a l e ec o n o m ie s fi r m exists b e tw ee n the ray and the cost fu nctions. provide operational criteria for g e n e r a t i n g m u l t i p r o d u c t fu n c t i o n s w i t h v a r i a b l e scale e c on om ie s. m u l t i p r o d u c t HCF a s s o c i a t e d w i t h r a y scale e c o n o m i e s differential Moreover, cost a the f u n c t i o n can be o b t a i n e d by solving the e q u a t i o n of v a r i a b l e s alone, In fact, 2 a p a r t i c u l a r choice of separated if the ra y scale e c o n o m i e s proportions T h e o r e m 1 and the class of form (6). d e p e n d on the output ICF is d e s c r i b e d by (11). Several m et ho ds de v e l o p e d since for m e a s u r i n g the 1930s. scale The m e s s a g e this paper is that an e c o n o m e t r i c p ara met er s of d e r i v a t i o n of ec onomies the ray scale have been that comes across with es ti ma t i o n of the economies fu nc ti on permi ts the u n d e r l y i n g m u l t i p r o d u c t cost the function. Appendix The ge ner al s o l u t i o n of pa rti al d i f f e r e n t i a l the q u a s i - l i n e a r equation wh er e k is a constant, 0(y) (5) first order is gi ve n by exp[0(y)] = raJdC/h(C)C, = Jcf, and f £ H is an a r b i t r a r y function. Proof The technique of s o l u t i o n e m p l o y e d here Sm irn ov (1964, esp. p p . 310-316). dyi/yi is eq ui v a le nt y 2 /yi = ... to e q u a t i o n = ki , ..., independent. yn /yi Then is d i s c u s s e d in T he d i f f e re nt ia l system = d y n /y a = d C / h ( C ) C (5). Clearly, = kn -i, system (18) (18) the first inte gr al s exp [ 0 ( y ) ] /y? = kn has a gener al (19) so lu t i o n of the form <3( yz /yi , ..., wh er e G{ yn /yi , ex p[ 0(y)]/yi 1 is an a r b i t r a r y f u nc ti on. for the last argument, 1=0, Solvi ng eq ua tio n (20) (20) yields: YV\ exp [0 (y) ] = yi Thus, J6H. the proof J ( y 2 /yt, Let J = k f , w h e r e is complete. ..., yn /yi ) k is a c o n s t a n t and f £ H , (21) and REFERENCES Baumol, William J., 1977, On the Proper Cost Tests for Natural Monopoly in a Multiproduct Industry, American Economic Review 5, 809-22. ...... — ........ ; John C. Panzar and Robert D. Willig, 1982, Contestable Markets and the Theory o f Industry Structure (Harcourt Brace Jovanovich, San Diego). Panzar, John C. and Robert D. Willig, 1977, Economies of Scale in Multi-Output Production, Quarterly Journal o f Economics 3, 481-493. Smirnov, Vladimir I., 1964, A Course o f Higher Mathematics, Vol. IV (Pergamon Press, London). I wish to thank Professors William J. Baumol and Robert D. Willig for helpful comments and suggestions on an earlier draft of this paper. In particular, I have found Professor W illig’s insights most useful. The usual disclaimer applies. PAPERS IN THE SERIES 90-1 C-H. Hanf and D J. Thampapillai, Optimal Taxation Policies for a Nonrenewable but Quasi-infinite Energy Resource: a Two-period. Framework. 90-2 C. Nyland, Sexual Difference and Industrial Relations Research. 90-3 J. Halevi, Employment, Investment and Structural Maturity. 90-4 A. Levy, Repudiation, Retaliation, and the Secondary Market Price of Sovereign Debts. 90-5 A. Chaturvedi, V.H. Tran and G. Shukla, Performance of the Stein-rule Estimators when the Disturbances are Misspecified as Homoscedastic. 90-6 C. Nyland, John Locke and the Social Position of Women. 90-7 EJ. Wilson, Exchange Rate Variability.
© Copyright 2026 Paperzz