University of South Carolina Scholar Commons Faculty Publications Chemical Engineering, Department of 1-1-1991 A Mathematical Model of Electrochemical Reactions Coupled with Homogeneous Chemical Reactions Ken-Ming Yen Texas A & M University - College Station Taewhan Yeu Texas A & M University - College Station Ralph E. White University of South Carolina - Columbia, [email protected] Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub Part of the Chemical Engineering Commons Publication Info Journal of the Electrochemical Society, 1991, pages 1051-1054. © The Electrochemical Society, Inc. 1991. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society. http://www.electrochem.org/ DOI: 10.1149/1.2085714 http://dx.doi.org/10.1149/1.2085714 This Article is brought to you for free and open access by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Mathematical Model of Electrochemical ReactionsCoupled with HomogeneousChemical Reactions Ken-Ming Yin,* Taewhan Yeu,* and Ralph E. White** Chemical Engineering Department, Texas A & M University, College Station, Texas 77843-3122 T h e z i n c / b r o m i n e (Zn/Br2) flow battery has r e c e i v e d considerable a t t e n t i o n in r e c e n t years [e.g., (2-4)]. A l t h o u g h it is agreed that t h e solution c h e m i s t r y is i m p o r t a n t in the system, m o s t of t h e w o r k that has b e e n d o n e is concentrated on t h e d e s i g n variables. In this n o t e the basic mass transfer-solution and surface kinetics are studied to furnish a b e t t e r u n d e r s t a n d i n g of the system. The results pres e n t e d are for e l e c t r o c h e m i c a l reaction 2Br- ~ Br2 * 2e [1] gle electrochemical-chemical reactions, A one-dimensional model is used here, i.e., the model is strictly valid at the center of the RDE. Additional assumptions used are: (i) Dilute solution theory applies, i.e., the driving force for the flux of species is related to the ion-solvent friction. Ionion interactions are not considered. (it) Double-layer charging is not considered. (iii) The solution is isothermal. (iv) The physical and transport parameters are constant within the diffusion layer. c o u p l e d w i t h t h e h o m o g e n e o u s c o m p ] e x a t i o n reaction Governing equations.--Steady-state mass c o n s e r v a t i o n of species i can be written as (Ref. (5), p. 218) kf B r - + Br2 ~ Br3[2] kb on a rotating d i s k e l e c t r o d e (RDE) (4). A detailed discussion of the m i g r a t i o n effect is included. T h e m i g r a t i o n effect for cases w i t h o u t the i n t e r f e r e n c e of h o m o g e n e o u s c h e m i c a l reactions has b e e n d i s c u s s e d t h o r o u g h l y by N e w m a n (Ref. (5), Chap. 19) and other researchers [e.g., Ref. (6-8)]. Also, H a u s e r and N e w m a n (9) p o i n t e d out t h e possibility of an interesting potential minim u m w i t h i n the diffusion layer w h e n the s u p p o r t i n g electrolyte participates in t h e e l e c t r o d e reaction w i t h o u t hom o g e n e o u s c h e m i c a l reactions involved. E l e c t r o c h e m i c a l m e t h o d s h a v e b e e n u s e d for the determ i n a t i o n of h o m o g e n e o u s reaction rate constants (10-13). F o r e x a m p l e , t h e l i m i t i n g c u r r e n t d e n s i t y d e p e n d s on the rate of a h o m o g e n e o u s c h e m i c a l reaction; Kouteck:~ and L e v i c h (12) analytically d e r i v e d a l i m i t i n g c u r r e n t density e x p r e s s i o n for an e l e c t r o c h e m i c a l r e a c t i o n on a R D E c o u p l e d w i t h c h e m i c a l reactions of t h e t y p e s A ~ B and 2A. B. Also, an e x p e r i m e n t a l d e t e r m i n a t i o n of the dissociation rate of acetic acid has b e e n d o n e on t h e R D E by A1b e r y and Bell (Ref. (11), p. 132). A l t h o u g h analytic analysis has b e e n done, it is s h o w n in this c o m m u n i c a t i o n that a c o m p r e h e n s i v e n u m e r i c a l analysis is r e q u i r e d to s t u d y t h e s e systems. F o r e x a m p l e , the b e h a v i o r b e l o w the l i m i t i n g c u r r e n t w i t h h o m o g e n e o u s c h e m i c a l reactions c a n n o t be p r e d i c t e d by any analytic approach, b e c a u s e t h e e l e c t r o d e kinetics n e e d to be incorporated. A m a t o r e and S a v e a n t (14) n u m e r i c a l l y investigated the e l e c t r o c h e m i c a l , chemical, e l e c t r o c h e m i c a l (ECE) and the d i s p r o p o r t i o n a t i o n m e c h a n i s m s . A l t h o u g h e l e c t r o d e kinetics are i n c l u d e d , t h e y forcefully set one of the reactant c o n c e n t r a t i o n s to zero at the interface, e v e n at the n o n l i m i t i n g c u r r e n t condition, w h i c h is not correct. Yen and C h a p m a n (15) u s e d t h e o r t h o g o n a l collocation m e t h o d for t h e E C E m e c h a n i s m and s h o w e d that t h e value of the h o m o g e n e o u s rate c o n s t a n t modifies t h e limiting current d e n s i t y t r e m e n d o u s l y . T h e m e t h o d t h e y u s e d m a y save c o m p u t a t i o n time, b u t a c c u r a c y is sacrificed b e c a u s e the c h e m i c a l r e a c t i o n occurs close to t h e interfacial region in w h i c h no collocation points are allocated. A d a n u v o r et al. (16) c o n s i d e r e d t h e s a m e s y s t e m as that s t u d i e d here w i t h the m i g r a t i o n effect; h o w e v e r , the b u l k c o n c e n t r a t i o n s t h e y u s e d do n o t satisfy the e q u i l i b r i u m condition, w h i c h leads to q u e s t i o n a b l e p r e d i c t e d c u r r e n t densities. In this note, this d i s c r e p a n c y is r e m o v e d . R e c e n t l y , H a u s e r and N e w m a n (17) s t u d i e d t h e c o m p t e x a t i o n reaction rate of cup r o u s ions by the singular perturbation method and demonstrated a strategy for the data analysis by lumping relevant variables. Theory For generality, the mode] equations are developed for m u l t i p l e reactions, a l t h o u g h the s t u d i e d s y s t e m is for sin* Electrochemical Society Student Member. 9* E l e c t r o c h e m i c a l S o c i e t y A c t i v e M e m b e r . 0 = - V 9N, + Ri [3] w h e r e Ni is the m o l a r flux of species i and R, is the net generation rate of i by h o m o g e n e o u s c h e m i c a l reactions. F o r the h o m o g e n e o u s c h e m i c a l reaction s h o w n in Eq. [2], RBr= RBr2 = --RBr3- = - k f CBr-CSr2 ~- kbCBr3-. Ni i n c l u d e s migration, diffusion, and c o n v e c t i o n (Ref. (5), p. 301) Ni = -ziu~Fc~VdP - - [4] DiVc~ + VC, w h e r e the m o b i l i t y u, can be a p p r o x i m a t e d by DJRT acc o r d i n g to the N e r n s t - E i n s t e i n relation (Ref. (5), p. 229). F o r a o n e - d i m e n s i o n a l model, Eq. [3] b e c o m e s 0 = D , ~ y 2 - v, = - + z i u y l c i dy \ dy 2 dy dy / + R, [5] T h e n o r m a l v e l o c i t y at a small d i s t a n c e from t h e d i s k surface can be e x p r e s s e d b y the first t e r m of a p o w e r series approximation v~ = -a12 y2 [6] w h e r e a is a c o n s t a n t w i t h the v a l u e 0.51023262 (Ref. (5), p. 282), f~ is t h e rotation s p e e d (rad/s), and v is t h e kinetic viscosity. Also, the solution c o n c e n t r a t i o n s of the various species m u s t satisfy the e l e c t r o n e u t r a l i t y c o n d i t i o n nion 0 -= ~ ciz, [7] i=l B o u n d a r y conditions.--The ionic c o n c e n t r a t i o n s app r o a c h t h e u n i f o r m b u l k c o n d i t i o n s after a certain characteristic d i s t a n c e or the diffusion layer t h i c k n e s s (5) f r o m t h e interface =\a~/ \~/ [8] w h e r e D R r e p r e s e n t s t h e diffusivity of t h e limiting species (Br-). It is c o n v e n i e n t to set the b u l k b o u n d a r y conditions at y = 2~ cL(2~) = Ci,b~tk [9] w h e r e t h e b u l k ionic c o n c e n t r a t i o n s satisfy t h e equilibr i u m c o n d i t i o n (Keq = kr/kb = CB,-3.b~Ik/CB,..bu~kCm2.bu,k)and the e l e c t r o n e u t r a l i t y c o n d i t i o n (Eq. [7]). T h e solution potential at 25 can be assigned an arbitrary c o n s t a n t for conv e n i e n c e ; since t h e v a l u e of cP(25) is immaterial, it only serves as a basis of c o m p u t a t i o n (18). Note that these b o u n d a r y c o n d i t i o n s do n o t i n c l u d e the e x a c t position of the r e f e r e n c e e l e c t r o d e (YRE) b e c a u s e t h e o h m i c drop bet w e e n 25 and YRE can be easily c o m p e n s a t e d if the applied c u r r e n t d e n s i t y and specific c o n d u c t i v i t y of the solution d. Electrochem. Soc., Vol. 138, No. 4, April 1991 9 The Electrochemical Society, Inc. 1051 Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp J. Electrochem. Soc., Vol. 138, No. 4, April 1991 9 The Electrochemical Society, Inc. 1052 are k n o w n b y a s s u m i n g t h a t O h m ' s law (/T = --~ ddp/dy) applies b e t w e e n 25 and YRET h e b o u n d a r y c o n d i t i o n s at t h e e l e c t r o d e surface are that the flux of e a c h ionic species is e q u a l to the associated surface e l e c t r o c h e m i c a l reactions nr , i- -- Z siz~j = Ni [10] 2.0 . . . . , . . . . | . . . . , . . . . kt=10 ? k~lOs ^ke'0~ "' ~ /~ t=lO , . . . . 9 / / X L6 j=l n y w h e r e Ni = - ziuiFc~ dcP/dy - D~ d c / d y at t h e surface a n d s,j is t h e s t o i c h i o m e t r i c coefficient of species i in electroc h e m i c a l r e a c t i o n j. T h e partial c u r r e n t d e n s i t y ij is exp r e s s e d b y t h e B u t l e r - V o l m e r e q u a t i o n (18, 19) kt_~lOH I.e - - with migration ............ without migration exp (c 0t- r c~a'jnjF "'" - - Uj ,'ef)l J 1.0 . . . . o.o ' o., . . . . ' . . . . o.z t . . . . o.', , . . . . o.4 o.~ i T (A/am e) [11] Fig. 1. Polarization curves with different rote constants: kf -< lO 3, = | 0 s, = 10 7, = | 0 9, -> | 0 u, from lower to higher current densities. T h e e x c h a n g e c u r r e n t d e n s i t y i0j.~efis b a s e d on the c h o s e n r e f e r e n c e c o n c e n t r a t i o n s ; p,.j and qij are t h e reaction orders for a n o d i c and c a t h o d i c reactions. The potentiald e p e n d e n t term, Va - (P0 - U~.~,f,is t h e o v e r p o t e n t i a l at the interface for r e a c t i o n j, w h i l e a,,j and (~c4 are the corresp o n d i n g transfer coefficients for a n o d i c and c a t h o d i c reactions. T h e e x p r e s s i o n U j ~ is s h o w n in Eq. [8] of Ref. (18). Finally, the e l e c t r o n e u t r a l i t y c o n d i t i o n (Eq. [7]) and t h e exp r e s s i o n of total a p p l i e d c u r r e n t d e n s i t y Results and Discussion F i g u r e 1 s h o w s t h e s i m u l a t e d a n o d i c polarization c u r v e s w i t h different h o m o g e n e o u s rate constants. T h e migrat i o n - e x c l u d e d case is i n c l u d e d for c o m p a r i s o n , w h i c h is d o n e by t a k i n g out t h e m i g r a t i o n t e r m in Eq. [5] and by rem o v i n g the e l e c t r o n e u t r a l i t y c o n d i t i o n (Eq. [7]). F o r kf _< 103, the p e r t u r b a t i o n of the h o m o g e n e o u s c h e m i c a l react i o n can b e n e g l e c t e d so that t h e polarization curves are t h e s a m e as t h o s e calculated by letting Ri = 0. It is s h o w n that for kf -> 107, t h e p r e d i c t e d l i m i t i n g c u r r e n t densities inc l u d i n g m i g r a t i o n are significantly larger t h a n t h o s e without i n c l u d i n g t h e m i g r a t i o n effect. Obviously, the migrat i o n effect is m a g n i f i e d by i n c r e a s i n g kf (or kb). The c o n c e n t r a t i o n profiles w i t h i n t h e diffusion layer are s h o w n in Fig. 2a. T h e m u c h larger Br2 c o n c e n t r a t i o n at t h e interface w h e n c o n s i d e r i n g m i g r a t i o n reflects t h e larger limiting c u r r e n t d e n s i t y in Fig. 1. T h e generally larger predicted c u r r e n t densities w h e n m i g r a t i o n is i n c l u d e d can be e x p l a i n e d b y t h e c o n c e n t r a t i o n profiles of B r - and Br3b e i n g v e r y close to t h e e l e c t r o d e surface as s h o w n in Fig. 2b. At t h e interface CN,+ = CB~3-,since e l e c t r o n e u t r a l i t y m u s t be p r e s e r v e d w h e n m i g r a t i o n is considered, this causes a h i g h e r CBr3- n e a r the surface. In o t h e r words, t h e a n o d e attracts m o r e n e g a t i v e Br3- ions to the electrode, w h i c h t h e n releases m o r e r e a c t a n t B r - by t h e c h e m i c a l reaction [2] n e a r t h e e l e c t r o d e c o m p a r e d to the case w i t h o u t migration. B e c a u s e Br3- p l a y e d t h e role as t h e s u p p l i e r of B r , B r - has a h i g h e r c o n c e n t r a t i o n n e a r t h e e l e c t r o d e w h e n c o n s i d e r i n g migration, and, c o n s e q u e n t l y , has a h i g h e r g r a d i e n t at t h e interface at t h e l i m i t i n g c u r r e n t condition. F r o m t h e l i m i t i n g c u r r e n t d e n s i t y at kf = 109 in Fig. 1, it s h o u l d be clear t h a t t h e g r a d i e n t is a b o u t t w i c e as m u c h w h e n c o n s i d e r i n g m i g r a t i o n c o m p a r e d to the one w i t h o u t c o n s i d e r i n g migration. A n i n t e r e s t i n g b e h a v i o r is o b s e r v e d for t h e electric field (E = - d , b / d y ) . As s h o w n in Fig. 3a, the electric field is al- l ~l \Ci,ref/ exp L ~ (Y d - (~I)0 - , i T = ~ ij [12] j=l s e r v e as t h e last t w o e q u a t i o n s for the interface solution p o t e n t i a l q)0 a n d t h e e l e c t r o d e p o t e n t i a l ltd. In this currentc o n t r o l l e d m o d e l , total c u r r e n t d e n s i t y (iT) rather t h a n t h e a p p l i e d p o t e n t i a l (Vd - 4PRE)is set. Solution Technique T h e g o v e r n i n g e q u a t i o n s and related b o u n d a r y conditions are cast in t h e finite difference form. T h e s e e q u a t i o n s are s o l v e d u s i n g N e w m a n ' s B A N D s u b p r o g r a m w i t h a matrix solver M A T I N V (Ref. (5), p. 419). T h e u n k n o w n s determ i n e d are ionic c o n c e n t r a t i o n s , q(y), solution potential, (I)(y), and e l e c t r o d e potential, Vd. T h e e l e c t r o d e potential, Vd, w h i c h has o n l y a single v a l u e at t h e electrode, is treated as an u n k n o w n c o n s t a n t in B A N D (6, 7, 19). Parameters T h e e x a m p l e c h o s e n is t h e Br-/Br2 e l e c t r o d e reaction c o u p l e d w i t h the t r i b r o m i d e c o m p l e x reaction in the a q u e o u s solutions. T h e c h e m i c a l s i n t r o d u c e d into the b u l k solution are Br 2 (0.3 molfliter) and N a B r (0.3 mol/liter). N o t e the e q u i l i b r i u m b u l k c o n c e n t r a t i o n s s h o u l d be calculated b a s e d on t h e e q u i l i b r i u m c o n s t a n t and t h e a m o u n t of c h e m i c a l s t h a t are added. T h e associated c h e m i c a l and e l e c t r o c h e m i c a l reactions are s h o w n in Table I. T h e n e e d e d t r a n s p o r t data are listed in Table II. Table II. Mass transport data. Table I. Electrochemical and chemical reactions. Electrochemical reaction 2/~r- - Br2 --> 2e (~a., 0.5 (x~.~ 0.5 Dal • I 0 s U~a (V) 1.087b Electrochemical kinetic parameters n~ i0j.~ef(A/cm2) 2 0.001861 ~ (~) Species U~.,'~f(v) 1.0466d Chemical equilibrium Equilibrium constant (cm3/mol) kf Br2+Br ~Br3kb 17 x 10~ a Although the example is for a single electrochemical reaction, the subscript j is kept for consistency. b Ref. (3). c The exchange current density corresponds to c,.r,.rin Ref. (3). d Calculated from Eq. [8] in Ref- (18). zt Cbi,bulk X 103 c%,.,,r • I0 :r (mol~ (mol~ \~m3] \ c ma/ Na + ~r- 1 - 1 1.334 2.084 0.3 0.106647 1.0 1.08 Br2 Br3- 0 -1 1.31 1.31 0.106647 0.193353 0.05 0.92 v=0.0123cm2/s T - 2 9 8 K =2.23• 10 scm po=l.0g/cm 3 12= 104.7rad/s a DNa%DBr from Ref. (5), p. 230; Din2, DBr3 from Ref. (3). b The equilibrium bulk concentrations are calculated according to the introduced NaBr and Br2 concentrations. c The concentrations are from Ref. (3); they correspond to ir = 0.001861 A/cm2. Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp J. Electrochem. Soc., Vol. 138, No. 4, April 1991 9 The Electrochemical Society, Inc. $SO.O . . . 1053 , . . . . . , . . . . , . . . . 10.0 ~.O.O 9.0 ~ &O . . . . ' . . . . ' ' kf = 10 It . . . . kf = 109 180.0 k zo ~ A n . . . . with migration s.O4.o~.0""..." ....~ . . .'.., . ~ . x ~ ~, k f ffi 1 0 7 ........................ kf = 105 kf = 103 ............ without migration ~.o ........- : : i x' : : : . , ~ ~ , ~ z.o S40.O ............ 200.0 ISO.O + _ __ +i B.r~- 1 ,o 0.5 0.0 0.0 ~ O.O , 0.5 , I !.5 , 1.0 1,0 dimensionless I.w distance S.O (~') 2,0 dimensionless distance (0 800.0 .... , . . . . , . . . . , . . . . , . . . . , .... ~.0.0 SSO.O 25.0 Na + uo.o 20.0 200.0 ~- ~ with. migration ......... without migration 1o.o ~ 100,0 - l'a.O k r = lolO~~________....~ / / 120,0 k f ffi I 0 O ............ 6O.O . ~ ~ k f = 107 40.0 5,0 Br- 0.0 o.o ~;'"":':'?::'7."7.'"I'F"7"."':'"':':'II 0.000 0.000 0.010 0.015 II I O.OBQ dimensionless distance (0 Fig. 2. (a, top) The concentration profiles within the diffusion !ayer under limiting current density for kt ~- !0 9. (b, bottom) Concentration profiles of Na +, Br-, and Br3- close to the electrode under limiting current density for kf = 10 9. most constant near the outer region of the diffusion layer where the concentrations are close to the bulk concentrations. However, higher homogeneous rate constants correspond to higher E values because of the larger limiting current densities. E increases rapidly when approaching the electrode because the ionic species are depleted there. There is a m a x i m u m in E close to the electrode as can be seen more clearly in Fig. 3b. Note that the m a x i m u m for kf = 10~ occurs at ~ ~ 0.04, as shown in Fig. 3a. Such phenomenon can be explained by the significant difference in corn centration gradients in two regions, i.e., the outer diffusion region and the i n n e r chemical reaction region. Figure 4 shows the concentration profiles of Br- within the diffu~ sion layer. It is clear that for kf ~ 107, a significant difference occurs between the concentration gradients in the two regions. The larger the r~te constant, the narrower the inner region (see Fig. 2b for the inner region at kf = 10~). The total current density, which is constant across the diffusion layer, can be e~;pressed by the respective contributions from Ohm's law and the diffusion current (Ref. (5), p. 221) dcP dci iT -~ -K---dy - F~. ziD~ d Y .... ' ..... ' .... ' .... o.~1o o.oso O.OZO dimensionless distance (0 o.o~ o.oso Fig. 3. The potential gradient profiles (a, top) within and (b, bottom) near the diffusion layer at different rate constants under limiting current conditions. in iDiffafter a maximum, then iDiff increases rapidly near the surface. The drop in ibm.m u s t be due to the decrease in the concentration gradients (dc,/dy, especially for Br-), i.e., concentrations in this region are somewhat flattened. The flattening should come from the continuous release of Brfrom Br3-. The flattened concentration region is reflected by the m i n i m u m of iDiff in Fig. 5b. It should now be clear that iDiff will rise again at the interface because of the larger dCBr-/dy there due to the Br- concentration passing through a flattened region and then suddenly dropping to zero at the limiting current condition. Note that for kr = 1011, the diffusion current increases after a m i n i m u m at ~ < 0.005 which cannot be seen in Fig. 5b. The flattened concentration region and the latter larger concentration gradient at interface characterize the increase and decrease of the potential gradient in Fig. 3b. 10.0 [13] where K = F~z~uic~. As shown in Fig. 5a and b, Ohm's law (iOhm = --K dq)/dy) applies well for ~ > 1.5 until the diffusion current ( i D i f f = ~ FZiziDi dcJdy) becomes important closer to the interface. For kf -< 103, when the chemical reaction can be neglected, the diffusion current density (Fig. 5b) increases monotonically toward the electrode because concentration gradients increase steadily when approaching the electrode. As kr increases, the diffusion-migration m e c h a n i s m induced diffusion current is important when -< 1.5. Unlike the no-chemical reaction case, there is a drop ' " " ' ' ' .... o.ooo o.ooe ///:/ S.O ---- - k / . l l O 11 kf=lO u .L o 4.o kt=lO ? kr=lO 5 ~o kt-~lOs O.O I O.O 0.6 dimensionless 1.0 distartce 1.6 , , , , 2.0 (0 Fig. 4. The Br- concentration profiles within the diffusion layer at various homogeneous rate constants. Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp J. Electrochem. Soc., Vol. 138, No. 4, April 1991 9 The Electrochemical Society, Inc. 1054 0.50 . . . . I . . . . I . . . . I . . . . 0.45 0.40 0.35 }................................................................................................................... 0.00 O.25 2 ........ k f = l O 11 ............... kf=lO ? 0.20 kr=lO 3 0.10 0.I0 0.00 , O.OO 0.o , , . , . . . . 0.0 dimensionless , . . . . l.O distance , . . . . 1.$ (~) 2.0 0.10 0.14 0.15 0.12 O.II O.IO O.OS i 0.06 0.07 ........ k f = l O 11 ............... kf=lO ? ~, O.OS kt=lO 3 0.05 0.04 0.03 O.OS 0.01 O.OO o.o 0.0 I.O I~ 2.0 d i m e n s i o n l e s s distance (~) Fig. 5. (a, top) The contribution from ohmic current within the diffusion layer at different rate constants under the limiting current conditions. (b, bottom) The contribution from diffusion current within the diffusion layer at different rate constants under the limiting current conditions. i0j.re~ exchange current density at reference concentrations for reaction j, A/cm 2 iT total current density, A/cm 2 kb backward h o m o g e n e o u s rate constant, 1/s kf forward h o m o g e n e o u s rate constant, cm3/s mol Keq equilibrium constant, cm3/mol nlon n u m b e r of ionic species nr n u m b e r of electrochemical reactions (equal to 1 here) nj n u m b e r of electrons transferred in reaction j N1 flux vector of species i, mol/cm 2 9 s Ni flux of species i in y direction, mol/cm 2 - s p,j anodic reaction order of ionic species i in reaction j, dimensionless qi4 cathodic reaction order of species i in reaction j, dimensionless R universal gas constant, 8.3143 J/mol 9K Ri the h o m o g e n e o u s reaction rate of species i, mol/s 9c m 3 sij stoichiometric coefficient of ionic species i in electrochemical reaction j, dimensionless T absolute temperature, K ui mobility of species i (=Di/RT), tool - cm2/J 9 s Uj.r~f theoretical open-circuit potential of reaction evaluated at reference concentrations, V U~ standard electrode potential for reaction j, V v solution velocity vector, cm/s vy normal solution velocity, cm/s Vd potential of the working electrode, V y normal coordinate, cm YRE position of reference electrode, cm zi charge n u m b e r of species i Greek letters ~a,j anodic transfer coefficient for reaction j, dimensionless ~c.j cathodic transfer coefficient for reaction j, dimensionless characteristic layer thickness according to Eq. [8], cm K v po ~0 Summary A one-dimensional model of electrochemical reactions coupled with h o m o g e n e o u s chemical reactions is given. An e x a m p l e of the oxidation of Br- coupled with Br + Brz Br3- shows the importance of including the migration effect. The h o m o g e n e o u s chemical reaction causes a maxim u m in the electric field within the reaction layer. 1. 2. 3. 4. Acknowledgments The authors are grateful for the support of this project given by Sandia National Laboratories, the Texas Advanced Technology and Research Program, and the Texas A&M University Board of Regents through the Available University Fund. 5. Manuscript submitted J u l y 23, 1990; revised manuscript received Nov. 30, 1990. 9. 10. Texas A & M University assisted in meeting the publication costs of this article. 11. 6. 7. 8. 12. L I S T OF SYMBOLS a c~ cj~ 0.51023262 concentration of species i, mol/cm 3 concentration of species i at the solid-solution interface, mol/cm 3 ci.b~m bulk solution concentration of species i, mol/cm 3 ci.~r reference concentration of species i, mol/cm 3 D~ diffusion coefficient of species i, cm2/s DR diffusion coefficient of the limiting species (Br-), cm2/s E electric field (= -d(P/dy), V/cm F Faraday's constant, 96,487 C/mol ij partial current density due to reaction j, A/cm ~ iD~,~ diffusion current density (= -F~iziD i dci/dY), A/cm ~ ioh~ ohmic contribution to total current density (= -K d~P/dy), A/cm 2 13. 14. 15. 16. 17. 18. 19. solution conductivity, 1/~ 9cm kinematic viscosity, cm2/s dimensionless distance (=y/g) pure solvent density, g/cm 3 solution potential, V solution potential adjacent to electrode surface, V disk rotation speed, rad/s REFERENCES J. Lee and J. R. Selman, This Journal, 129, 1670 (1982). M. J. Mader and R. E. White, ibid., 133, 1297 (1986). T. I. Evans and R. E. White, ibid., 134, 866 (1987). Yu. V. Pleskov and V. Yu. Filinovskii, "The Rotating Disc Electrode," Consultants Bureau, New York (1976). J. S. Newman, "Electrochemical Systems," Prentice Hall, Inc., En g l ew o o d Cliffs, N J (1973). S. Chen, K.-M. Yin, and R. E. White, This Journal, 135, 2193 (1988). K.-M. Yin and R. E. White, AIChE J., 36, 187 (1990). C. Y. Mak and H. Y. Cheh, This Journal, 135, 2262 (1988). A. K. Hauser and J. Newman, ibid., 136, 3320 (1989). E. F. Caldin, "Fast Reactions in Solutions," J o h n Wiley and Sons, N ew York (1964). J. Albery, "Electrode Kinetics," Clarendon Press, Oxford (1975). V. G. Levich, "Physicochemical Hydrodynamics," Prentice Hall, Inc., Englewood Cliffs, N J (1962). A. J. Bard and L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications," J o h n Wiley and Sons, N e w York (1980). C. Amatore and J. M. Saveant, J. Electroanal. Chem., 85, 27 (1977). S.-C. Yen and T. W. Chapman, Chem. Eng. Commun., 38, 159 (1985). P. K. Adanuvor, R. E. White, and S. E. Lorimer, This Journal, 134, 1450 (1987). A. K. Hauser and J. Newman, This Journal, 136, 3250 (1989). R. E. White, S. E. Lorimer, and R. Darby, ibid., 130, 1123 (1983). R. E. White, Ph.D. Thesis, University of California at Berkeley (1977). Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp
© Copyright 2025 Paperzz