GEOPHYSICAL RESEARCHLETTERS,VOL. 20, NO. 14, PAGES1419-1422, JULY 23, 1993 A COMPARISON OFOBSERVED(I-•LOE) AND MODELED(CCM2) METHANE AND STRATOSPHERIC WATER VAPOR PhilipW. Mote1,James R.Holton 1,James M. Russell III 2,andByronA. Boville 3 Abstract.Recentmeasurements (21 September - 15 October1992)of methane andwatervaporbytheHalogen Occultation Experiment (HALOE)ontheUpperAtmosphere Research Satellite(UARS) arecompared with modelresults forthesameseason froma troposphere-middle atmosphere versionof the NationalCenterfor Atmospheric Research (NCAR)Community ClimateModel(CCM2). Severalimportantfeatures of thetwoconstituent fieldsarewellreproducedbytheCCM2,despite theuseof simplified methane photochemistry in theCCM2 andsomenotabledifferences between themodel's zonalmeancirculation andclimatology. Observed featuressimulated bythemodelincludethefollowing: 1) subsidence overa deeplayerin theSouthern Hemisphere polarvortex;2) widespread dehydration in thepolar vortex;3) existence of a regionof lowwatervapormixing ratiosextendingfrom theAntarcticintotheNorthernHemisphere tropics, whichsuggests thatAntarctic dehydration contributes to midlatitude andtropicaldryness in thestratosphere. Introduction horizontal resolution of approximately 3.75' x 3.75', andextends from the surface to 76 km. A satisfactory modelof middleatmospheric watervapor mustincludethewatervaporsourcefrommethaneoxidation. We haveaccomplished thisby carryingmethaneasa tracer andincludinga parameterization for methaneoxidation. Methane isitselfa long-lived •xacer usefulfordiagnosing the transportcirculationof the model andfor modelvalidation usingsatellite observations. Therateconstants forthesimple methanechemistryincludedin themodelwerederivedfrom a two-dimensional 6hemistry-transport model(Garciaand Solomon1983)andarefunctions of latitude,heightand month. Oxidation of methane produces • watermolecules per methane moleculeoxidized,where[l mustlie between1.5 and2.0 (Remsberg et al., 1984).Boththemodeling results of Le Texieret al. (1988)andan analysis of LIMS (H20) and SAMS(CI-I4)observations (Hansen andRobinson, 1989) indicate that[l increases withheightin thestratosphere, reachingvaluescloseto 2 at thestratopause. At thisaltitude the photodissociation of methaneis mostefficient.For this With thelaunchof theUpperAtmosphere Research Satellite(UARS) in September1991andthereleaseof a new versionof theNationalCenterfor Atmospheric Research (NCAR)Community ClimateModel(CCM2) in September 1992,newgenerations of bothstratospheric constituent data andmodelresultsarenowbecoming availablefor comparison.Contrasting of UARS observed constituent fieldsto reason,andbecause someH2 is ultimatelyconverted to wa- model simulated fields is a valuable aid to model validation. andthedynamicalfieldsweretakenfrom an earlierrun of the Specifically, comparison of simulated watervapormixing ratiofieldswithobserved fieldsprovides animportant testof modelphysics andnumerics since,owingto itsverylarge gradients nearthetropopause anditscondensation sink,water. vaporis a difficultconstituent to modelaccurately.Likewise, themodelresultscanbeusedasanaidin interpreting theobservations since,unlikeobserved fields,modeldynamical fieldsarecompletelyknown. CCM2in whichthewatervaporhadnotyetreached equilibrium,andthestratosphere wasquitedry(lessthan2 ppmvof H20 abovethemiddlestratosphere). Thebeginning dateof theintegration wasSeptember 1. Theozonedistribution and theseasurface temperature werespecified basedonmonthly means(interpolated to eachday)takenfromclimatology. Themethane mixingratioin thelowertroposphere washeld fixedat 1.5ppmv,a valuesomewhat belowtoday's global tervapor,weset[l = 2 everywhere. Thiswill tendtoproduceanoverestimate of stratospheric watervapor,butlikely by not morethan 10%. The model was initialized with a zonal mean methane mix- ing ratio takenfrom the two-dimensional modelof Garcia andSolomon (1983).Theinitialdistributions of watervapor meanof 1.72ppmv(IPCC, 1990). Aftera four-year runatlowervertical resolution to "spin Modelandexperiment design. up"themethane andwatervapor,theverticalresolution was The CCM2 is a globalspectral modelthathasa numberof changes fromprevious NCARmodels. It employs a semiLagrangian scheme forconstituent transport andimproved radiative,convective, andcloudparameterizations. A com- increased to75 levels(L75)withroughlylkm spacing throughout themiddleatmosphere. TheRayleigh friction profile(usedtocrudely parameterize unresolved dragforces pletedescription maybe foundin Hacket al., 1992. For this studywe utilizea "middleatmosphere" version,whichhas teractthetendency fortheSouthern Hemisphere polarnight jet to become excessively strong. Also,to diminishtheex- in theupperstratosphere) wasmodifiedsomewhat to coun- cessive dehydration in theSouthern winterpolarstratosphere (wherethemodeltemperatures arecolderthanobserved), the 1Department ofAtmospheric Sciences, Univ.ofWashington minimum saturation vaporpressure wassettocorrespond to 2NASALangleyResearch Center itsvalueat 181K(0.65ppmvat 100mb).Because saturation 3National Center forAtmospheric Research mixingratioisproportional to saturation vaporpressure dividedbyambient pressure, thischange hasthegreatest imCopyright 1993bytheAmerican Geophysical Union. pactatlowpressures, effectively restricting thedehydration Papernumber93GL01764 0094-8534/93/93GL-01764503.00 regionto a thinnercolumnat lower altitudethanwould other- wisebethecase.Thismodification haslittleornoimpact on 1419 1420 Moteetal.: Comparison of observed andmodelled CH4andH20 mixingratiosin thelowerstratosphere, eitherat thepolesor in the tropics. Observational data source HALOE usesthe gasfilter correlationradiometertechniquefor measurement of CH4, HC1,HF, andNO, andbroad bandradiometryto measureH20, 03, andNO2 [Russellet al., 1993a].Theexperimental approach is solaroccultation, whichprovides anessentially self-calibrating, highlyprecise measurement sincetheexoatmospheric solarsignalis usedto normalize radiance transmitted through theatmosphere at any givenaltitude.Comparisons of HALOE CH4 andH20 measurementsat the 20 km level with in situ data collected from theER-2 aircraftshowagreement to within 13% [Tucket al., 1993a].OtherHALOE comparisons withground based,balloon,androcketdataagreeto withintheerrorbarsof thedata sets. UARS is operating in a 57ø,585km orbit,whichprovides coverage from80øSto 80øN.HALOE samples twolatitude/ longitudepointsperorbit,onesunrise andonesunset, for a totalof 30 measurements perday. Its spatialresolution for a singlemeasurement is approximately 6 kmhorizontally (perpendicular to thetangent track)by2 kmvertically,and about200km alongthetangent track.Longitudinal sampling occursat theorbitspacing of 24ø. Because of theslowprecessionof thesatellite's orbit,HALOE samples anygiven latitudeonlyonceduringa thirty-three daysweepfromone poleto theother,it should,consequently, be bornein mind that the meridional sections shown below for HALOE do not representtruetime averages,but arecomposites in whichthe solaroccultation measurements madea slowsweepfrom 60'N to 80'S. Results. HALOE watervaporandmethanecrosssectionsfor SouthernHemispherespringareshownin Figuresl a and2a. Thesecrosssectionsareconsistent with previousobservations, and are describedelsewhere[Russellet al., 1993b; Tucket al., 1993b].In thisnotewe focuson somedynamically significantaspectsof the measurements, whicharealso clearlypresentin theCCM2 simulation. In spiteof thedifficultiesinherentin three-dimensional tracermodeling,andthe additionaldifficultiesof modelingwatervapor,the CCM2 reproducesimportantlarge-scalefeaturesof the zonalmean distributions:the generaldecreaseof methaneandincrease of watervapormixingratioswithheight,andthesteepslopes of themixingratioisopleths in thesubtropics of bothhemispheres. We hereconfineourcomparison to theperiodSeptember 21 to October15, 1992,shownin theHALOE datain Figures 1 and2. The sametimeperiodhasbeentakenfrom thebeginningof thefifth yearof integration of theCCM2, soit shouldbekeptin mindthatthetransition to highervertical resolution tookplaceonlya few weeksbeforethetimeperiod underconsideration. Duringthefourthyearof integration atL35 resolution, thelowerlimit onthesaturation vapor pressure minimumdiscussed abovewasemployed, sodehydrationduringthefourthSouthern winter,justbeforethetime Methane. BothHALOE data(Figure la) andCCM2 output(Figurelb) showsmoothupwardbulgesin themixing ratio isoplethscenteredat Northernlow latitudes,reflecting the meantropicalascentandextratropicaldescentof the Brewer-Dobsoncirculation[Brewer, 1949]. Above about 5hPa,the HALOE methanecontourshavea doublepeaked structurein the subtropics andflat isoplethsnearthe equator, whichis knownto be associated with theequatorialsemi-annualoscillation[Gray andPyle, 1986;Choi andHolton, 1991]. By contrast, theCCM2 methaneisopleths retaintheir curvedshapewell into theupperstratosphere, with no evidenceof a doublepeak. On eachsideof theregionof tropical ascentis a narrowzonewith largemeridionalgradientsof methane;the isoplethsof HALOE methaneare somewhat steeperin the SouthernHemispheremiddlestratosphere than thosein the CCM2, thoughthe slopesareaboutthesamein theNorthernHemisphere.Betweenapproximately 20øSand 50øSbothHALOE andCCM2 showevidenceof mixingby planetarywaves,whichresultsin flatterisopleths; theyare, indeed,almostcompletelyflat in theCCM2. The Southernpolarregionis of particularinterestsince thisis the seasonof intenseozonedepletion.Subsidence within the polarvortexis evidentin bothfigures,whichshow thatmethane-poorair hasbeentransported downwardinto the lowerstratosphere. Suchair, mesospheric in origin,extends deeperin theHALOE methanedistribution, whichindicates thattheregionof substantial subsidence extendsto lower altitudein theobserved polarvortexthanin themodel. Watervapor. The watervaporfieldsof bothHALOE (Figure2a) andCCM2 (Figure2b) sharemanyfeatures with themethanefields.Theseincludetheupwardbulgein the tropics,thedoublepeakin HALOE, steepsubtropical isopleths,flatterisoplethsin midlatitudes (particularlyin the CCM2), anddepressed isoplethswithintheSouthernpolar vortex. But, unlikemethane,watervaporhasa sinkin the polarlowerstratosphere, andthissinkproduces broadregions of dramaticdehydration in boththeHALOE andCCM2 watervaporfields. The dehydration causedby theformationof polarstratospheric cloudsis evidentlyof roughlythe same magnitudein bothcases,althoughit clearlyoccursovera muchdeeperlayerin the CCM2. Thisdehydrated air originatingin thepolarvortexis dispersedequatorward, whereit is caughtin theupwardflow of the Brewer-Dobson circulation so that the altitude of mini- mummixingratioincreases towardthetropics. The factthat methanevaluesincreasesubstantially towardthe equator (particularly in theHALOE data)alongthewatervaporminimum surface indicates that there must be substantial wave mixingwith lowerstratospheric air fromlow latitudesalong thissurface.Suchmixingwill of courseaffectmethanefar morethanwatervaporbecausethecoldtropicaltropopause will leadto dehydration of air crossingfrom the tropical troposphere. This differingbehaviorof methaneandwater vaporin thelowerstratosphere of theSouthern Hemisphere suggests thattransport fromthetropicsto mid-latitudes may be rather slow, which is consistentwith the existenceof a periodconsideredhere,was lessthanin earlierSouthern substantial potentialvorticitybarrierin thetropics(see,e.g., TrepteandHitchman,1992). In the CCM2, watervapormoreeasilypassesfrom troposphereto stratosphere in subtropical latitudes,asevidentby theupwardintrusionof highermixingratios(yellow). From winters in the simulation. Novemberto March (not shown),a local minimum in water 1421 Moteet al.' Comparison of obseiwed andmodelled CH4andH20 MALOE CClV• 10 10 o.6• 0.2 0.0 -80 -57 -33 - 10 I.A•E 1• 37 60 -80 -57 (DEG) -33 - 10 I.A•E 13 37 (DEG) (a) Co) Fig. 1. Zonalmeanmethanemixingratio(ppmv)for theperiodSeptember 21 to October15, (a) HALOE data (sunsetsonly) for 1992; (b) CCM2 outputfrom a 75-levelversionof the model. Color scalethe samefor both plots. HALOE CCM2 '-I "•..... -1 .... I ' ! '1 .....• i I I I I :.:.. 8.0 7.4 ß •.0 2.0 -57 -• -10 13 37 60 LA'ITHJDE (DEG) -80 -57 -• -10 13 LAiTIIJDE (DEG) 37 (a) Fig. 2. As in Fig. 1, butfor watervapormixingratio. vapormixingratio appearsat 85 hPafrom about10øSto 10*N dueto lower temperatures andgreaterdehydration; but outsidethoselatitudes,theCCM2 remainsconsiderably more moistin the lower stratosphere. Near0.2 hPa,HALOE indicatesslightlyhigherwater va- pormixingratiosthandoestheCCM2. Thiscouldbedueto thelow valueof tropospheric methaneusedin themodel. Above0.2 hPa,mixingratiosdecrease dueto thephotodissociation of watervapor,a process notincludedin theCCM2 simulation. Discussion and conclusions. The pole-to-equator distributionof dry air in the lower stratosphere in SouthernHemispherespringwasfaintly suggestedin Octobermeansfrom SAGE II [Rindet al., 1993], andwasalsosuggested in limitedaircraftprofilestakenduring theAirborneAntarcticOzoneExpedition[Kelly et al., 1989], andin theGCM studyof theAntarcticozoneholeof Cariolleet al [1990].But its full extenthasnotpreviously been documented,and it is remarkable for a few reasons. First,it suggests thatconsiderable transport takesplaceout of thelowerportionof thepolarvortexduringearlyspring. In mid-Octoberthevortexis stillquitevigorous,andit is generallythoughtthatthe largepotentialvorticitygradient preventssignificant transport outof thevortex(see,e.g., Schoeberl et al., [ 1992]),althoughTuck [ 1989]hasargued thatthereis considerable exchangeof air acrossthevortex boundary.Admittedly,thepotentialvorticityconstraint is muchweakerin thelowerstratosphere (say,below50 hPa), butit is stillsomewhat surprising thatsufficientdry air canbe transported outof thevortexto completelyfill theSouthern Hemisphere lowerstratosphere at thisseason. Second,theseresultsindicatethatair dehydrated by polar stratospheric cloudsin theSouthern polarregioncaninfluencethewatervapordistribution in thetropics.The HALOE data show a distinctminimum at about 10*S, 50 hPa, which is very nearthe "hygropause."That thisis relatedto Antarctic dehydration is apparentfromplotsof thequantity2'[CI-I4]+ [H20], a goodtracerof dehydrated stratospheric air, shown in Tucket al. (1993b). AlthoughAntarcticdehydration probablydoesnotcontroltropicallower stratospheric mixingratioson an annualbasis,it apparently playsanimportantrole duringsomemonths,andmayprovideanexplanation for the existence of a watervapormixingratiominimumwell above thetropopause overPanamain September [Kley et al., 1982]. In theCCM2, in whichtemperatures in theSouthern polar regionare colderandresidualcirculationweakerthan observed, theeffectsof dehydration persistall year(figures not shown). SAGE II data showeda hint of it in October,but 1422 Moteet al.: Comparison of observed andmodelledCH4andH20 nonein January.As laterHALOE resultsare processed, it will be interestingto seehow the watervapordistributionin the SouthernHemispherelowerstratosphere evolves.We intendto presentmoredetailedanalysesin a longerpaper. Acknowledgments: We wishto thankAdrianTuck for helpful commentson a preliminaryversionof the manuscript,and MatthewHitchmanandan anonymous reviewerfor detailed suggestions for improvement.This workwassupported by NASA contractNAS5-26301 (UW), NASA Grant W18181 (NCAR), andNASA GlobalChangeFellowshipNGT 30076 (UW). REFERENCES Kley, D. A., A. L. Schmeltekopf, K. Kelly, R. H. Winkler, T. L. Thompson andM. McFarland,Transportof watervapor throughthetropicaltropopause. Geophys. Res.Lett., 9, 617-620, 1982. Le Texier, H., S. Solomon,and R.R. Garcia, The role of molecularhydrogenandmethaneoxidationin thewater vapourbudgetof thestratosphere. Quart.J. Roy.Meteor. Soc. 114,281-295, 1988: Remsberg, E.E.,J.M. RussellIII, L.L. Gordley,J.C.Gille, andP.L. Bailey,Implications of thestratospheric watervapordistribution asdetermined fromtheNimbus7 LIMS experiment.J. Atmos.Sci. 41, 2934-2945,1984. Rind, D., E.-W. Chiou, W. Chu, S. Oltmans,J. Lerner, J. Larsen,M.P. McCormick andL. McMaster, Overview of theStratospheric AerosolandGasExperimentII watervaBrewer,A.W., Evidencefor a worldcirculationprovidedby the measurement of heliumandwatervapourdistributionin the stratosphere, Quart.J. Roy.Meteor.$oc.75, 351-363, 1949. Cariolle,D., A. Lasserre-Bigorry andJ. Royer,A generalcirculationmodelsimulationof the springtimeAntarctic ozonedecreaseandits impacton mid-latitudes. J. Geophys. Res., 95, 1883-1898, 1990. Choi, W. K. andJ. R. Holton,Transportof N20 in the stratosphererelatedto the equatorialsemiannual oscillation.J. Geophys.Res.,96, 22,543-22,557, 1991. Garcia, R.R., and S. Solomon, A numerical model of the zon- ally averageddynamicalandchemicalstructureof the middleatmosphere.J. Geophys. Res. 88, 1379-1400, 1983. Gray, L. G. andJ. A. Pyle, The semi-annualoscillation andequatorialtracerdistributions.Quart.J. Roy.Meteor. $oc., 112, 635-651, 1986. Hack, J.J.,B.A. Boville, B.P. Briegleb,J.T. Kiehl, P.J.Rasch, D.L. Williamson, Descriptionof theNCAR Community Climate Model (CCM2), TechnicalNote NCAR/TN382+STR, NCAR, Boulder, Colorado, 1992. Hansen,A.R., andG.D. Robinson,Watervaporandmethane in theupperstratosphere: an examinationof someof the Nimbus-7measurements. J. Geophys. Res. 94, 84748484, 1989. Intergovernmental Panelon ClimateChange,Climate Change: TheIPCC ScientificAssessment. J.T. Houghton, G.J. JenkinsandJ.J.Ephraums,eds. CambridgeUniversity Press,Cambridge,1990. Kelly, K. K., A. F. Tuck, D. M. Murphy,M. H. Proffitt,D. W. Fahey,R. L. Jones,D. S. McKenna,M. Loewenstein,J. R. Podolske,S. E. Strahan,G. V. Ferry,K. R. Chan,J. F. Vedder,G. L. Gregory,W. D. Hypes,M.P. McCormick,E. V. Browell andL. E. Heidt, Dehydrationin the lower Antarcticstratosphere duringlate winterandearly spring,1987.J. Geophys.Res.,94, 11,317-11,357,1989. porobservations: method, validation, anddatacharacteristics,J. Geophys. Res.,98, 4835-4856,1993. Russell,J. M. III, et al., The HalogenOccultation Experiment. J. Geophys. Res.Specialissueon UARS,98, (in press),1993a. Russell,J. M. III, A. F. Tuck, L. L. Gordley,J. H. Park, S. R. Drayson,J.E. Hardes,R. J. CiceroneandP. J. Crutzen, HALOE Antarcticobservations in the Springof 1991, Geophys. Res.Lett.,20, 719-722, 1993b. Schoeberl,M. R., L. R. Lait, P. A. Newman and J. E. Rosenfield,The structureof thepolarvortex.J. Geophys. Res., 97, 7859-7882, 1992. Trepte,C.R.,andM.H. Hitchman,Tropicalstratospheric circulation deduced from satellite aerosol data. Nature, 355 (6361), 626-628, 1992. Tuck,A. F., Synopticandchemicalevolutionof the Antarcticvortexin latewinterandearlyspring,1987.J. Geophys. Res.,94, 11,687-11,737,1989. Tuck, A. F., J. M. RussellIII, S. J. Hovde, K. K. Kelly, C. R. WebsterandR. D. May, Intercomparison of HALOE and ER-2aircraft H20 andCH4 observations collected during the secondAirborneArctic Stratospheric Experiment (AASE-II). Geophys. Res.Lett.,20, (in press),1993a. Tuck,A. F., J. M. RussellIII andJ. E. Hardes,Stratospheric dryness: antiphased desiccation overMicronesiaand Antarctica.Geophys. Res.Lett.,20, (in press),1993b. B.A. Boville, NationalCenterfor AtmosphericResearch, P.O. Box 3000, Boulder, Colorado, 80307. J.R.Holton andP.W. Mote, Departmentof Atmospheric SciencesAK-40, Universityof Washington,Seattle, Washington,98195. J.M. RussellIII, AtmosphericSciencesDivision,NASA LangleyResearchCenter,Hampton,VA, 23665 Received:April 6, 1993 Accepted:April 30, 1993
© Copyright 2026 Paperzz