TUTORIAL #3, 26 Sep. 2008 GNG 1105A DGD Moment Resultant Forces (2D) R x = ∑ Fx R y = ∑ Fy F = Fx i + Fy j F = Fx2 + Fy2 Fx = F cos θ x ⇒ cos θ x = Fx F Fy = FSinθ x ⇒ Sinθ x = Fy 1 F Space: (2D and 3D) Forces, Resultant, and Equilibrium y , θy F A θx θz B Fy x Fx Fz z Fx = F cos θ x ⇒ cos θ x = Fx F Fy = F cos θ y ⇒ cos θ y = Fy Fz = F cos θ z ⇒ cos θ z = → AB : cos θ x = X B− X A AB F cos θ y = YB− YA AB Fz F cos θ Z = Z B− Z A AB F = Fx2 + Fy2 + Fz2 AB = (X B − X A ) 2 + (YB − YA ) 2 + ( Z B − Z A ) 2 1 = cos 2 θ x + cos 2 θ y + cos 2 θ z → AB = FAB .λ AB F = Fx i + Fy j + Fz k => F = FAB . AB → AB : cos θ x = X B− X A YB −Y A ZB− Z A , cos θ y = , cos θ Z = , AB AB AB AB = ( X B − X A ) 2 + (YB − YA ) 2 + ( Z B − Z A ) 2 2 Resultant Forces R x = ∑ Fx R = R x2 + R y2 + R z2 R y = ∑ Fy R = R xi + R y j + R zk = Rz = ∑F R = ∑ Fx .i + ∑ F y . j + ∑ F z .k z R = R x2 + R y2 + R z2 y θy F θx θz Fy x Fx Fz z R = R xi + R y j + R zk = R = ∑ Fx .i + ∑ F y . j + ∑ F z .k Equilibrium ∑F x =0, ∑F y =0, ∑F z =0 3 Vector Product of two vectors: V = P×Q Q θ P V = PQsin θ V = P×Q P×Q = - Q× P P×(Q1+ Q2) = P×Q1+ P×Q2 j k i i×i = 0 i×j = k i×k = -j j×i = j×j = j×k = k×i = k×j = k×k = V = P×Q i j k V = Px Py Pz Qx Qy Qz V = P×Q =i (Py . Qz - Pz . Qy) –j (Px . Qz - Pz . Qx) +k(Px . Qy - Py. Qx) 4 Mo F θ d r Moment of a force about a point Mo = r×F rFsin θ = Fd rFsin θ = Fd V = P×Q P×Q = - Q× P r×(F1+ F2+ …) = r×F1+ r×F2+…. r = xi+yj+x k F = Fx i+Fy j+Fz k Mo = Mx i+My j+Mz k Mx = y Fz –z Fy My = z Fx –x Fz Mz = x Fy –y Fx 5 6 7 ∑M ∑M ∑F D x ∑F y c = 1.6m.P sin 60 − 1.1mP cos 60 = 585Nm = −0.6m.P cos 60 = −2.4m.B → B = 87.5N → P cos 60 = D cos θ → D = 350 cos θ → P sin 60 = B + D sin θ = B + 350 tan θ → D = 626N Second Method Next Page: 8 9 10 11 12
© Copyright 2026 Paperzz