U4 L5b Related Rates Distances Solutions

MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
0
Page 1 of 12
EXAMPLE 1: A man 6 ft. tall walks at a rate of 2 ft./sec away from a lamp post that is
13 ft. high. At what rate is the length of his shadow changing when he is 25 ft. away from
the lamp post.
x represents his distance away from the lamp post.
y represents the length of his shadow.
πŸπŸ‘ 𝒙 + π’š
=
πŸ”
π’š
13
π’…π’š πŸ” 𝒅𝒙
=
𝒅𝒙 πŸ• 𝒅𝒕
πŸπŸ‘π’š = πŸ”π’™ + πŸ”π’š
x
y
π’š=
πŸ”
𝒙
πŸ•
π’…π’š πŸ”
𝟏𝟐
= (𝟐) =
𝒇𝒕/𝒔𝒆𝒄
𝒅𝒙 πŸ•
πŸ•
x+y
The 25 did not matter.
=
20
x –1
EXAMPLE 2: A spotlight on the ground shines on a wall 10 m away. A man 2 m tall
walks from the spotlight toward the wall at a speed of 1.2m/s. How fast is his shadow on
the wall decreasing when he is 3 m from the spotlight?
x represents his distance away from the spotlight
ym
y represents the length of his shadow on the wall
xm
10 m
Use Similar Triangles
Differentiate with respect to t
𝟐
π’š
=
𝒙 𝟏𝟎
π’…π’š
𝒅𝒙
= βˆ’πŸπŸŽπ’™βˆ’πŸ
𝒅𝒕
𝒅𝒕
π’™π’š = 𝟐𝟎
π’…π’š
= βˆ’πŸπŸŽ(πŸ‘)βˆ’πŸ (𝟏. 𝟐)
𝒅𝒕
π’š=
𝟐𝟎
= πŸπŸŽπ’™βˆ’πŸ
𝒙
π’…π’š
πŸ–
= βˆ’ π’Ž/𝒔
𝒅𝒕
πŸ‘
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 2 of 12
EXAMPLE 3: A rocket rising vertically is being tracked by a radar command post on the ground
10 km from the launch pad. How fast is the rocket rising when it is 8 km high and its distance from
the radar station is increasing at a rate of 1000 km/h?
At any given time
z km
x km
π’™πŸ + 𝟏𝟎𝟐 = π’›πŸ
πŸπ’™
𝒙
𝒅𝒙
𝒅𝒛
+ 𝟎 = πŸπ’›
𝒅𝒕
𝒅𝒕
𝒅𝒙
𝒅𝒛
=𝒛
𝒅𝒕
𝒅𝒕
10 km
When it is 8 km high
πŸ–πŸ + 𝟏𝟎𝟐 = π’›πŸ
𝒛 = βˆšπŸ–πŸ + 𝟏𝟎𝟐 = βˆšπŸπŸ”πŸ’ = πŸβˆšπŸ’πŸ = 𝟏𝟐. πŸ–
𝒙
𝒅𝒙
𝒅𝒛
=𝒛
𝒅𝒕
𝒅𝒕
(πŸ–)
𝒅𝒙
= (πŸβˆšπŸ’πŸ)(𝟏𝟎𝟎𝟎)
𝒅𝒕
𝒅𝒙 (πŸβˆšπŸ’πŸ)(𝟏𝟎𝟎𝟎)
=
= πŸπŸ“πŸŽβˆšπŸ’πŸ
𝒅𝒕
πŸ–
𝒅𝒙
= πŸπŸ”πŸŽπŸŽ
𝒅𝒕
The rocket is rising at 1600 km/h when it is 8 km high.
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 3 of 12
EXAMPLE 4: A passenger car approaches a railway crossing from the east at 50 km/h, while
a locomotive approaches the crossing from the north at 110 km/h.
How fast is the distance between them changing at the moment when the car is 30 m and the
train is 40 m from the intersection?
𝒙 𝟐 + π’šπŸ = 𝒛 𝟐
Draw a diagram
Differentiate with respect to t
πŸπ’™
𝒅𝒙
= βˆ’πŸπŸπŸŽπ’Œπ’Ž/𝒉
𝒅𝒕
z
x
𝒙
𝒅𝒙
π’…π’š
𝒅𝒛
+ πŸπ’š
= πŸπ’›
𝒅𝒕
𝒅𝒕
𝒅𝒕
𝒅𝒙
π’…π’š
𝒅𝒛
+π’š
=𝒛
𝒅𝒕
𝒅𝒕
𝒅𝒕
y
π’…π’š
= βˆ’πŸ“πŸŽπ’Œπ’Ž/𝒉
𝒅𝒕
Find the distance between them when the car is 30 m and the train is 40 m
from the crossing.
πŸ’πŸŽπŸ + πŸ‘πŸŽ = π’›πŸ
𝒛 = βˆšπŸ’πŸŽπŸ + πŸ‘πŸŽπŸ = πŸ“πŸŽ π’Œπ’Ž
Substitute into the derivative
(πŸ’πŸŽ)(βˆ’πŸπŸπŸŽ) + (πŸ‘πŸŽ)(βˆ’πŸ“πŸŽ) = (πŸ“πŸŽ)
βˆ’πŸ“πŸ—πŸŽπŸŽ = (πŸ“πŸŽ)
𝒅𝒛
𝒅𝒕
𝒅𝒛
𝒅𝒕
𝒅𝒛
= βˆ’πŸπŸπŸ– π’Œπ’Ž/𝒉
𝒅𝒕
The distance between them is decreasing at 118 km/h
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 4 of 12
EXAMPLE 5: A 5 m ladder which is leaning against a wall begins to slip. The top slips down
the wall at a rate of 60 cm/s.
a) How fast is the bottom moving when it is 3 m from the wall?
𝒙 𝟐 + π’šπŸ = πŸ“πŸ
5m
Differentiate implicitly
xm

𝒅(π’™πŸ ) 𝒅(π’šπŸ ) 𝒅(πŸ“πŸ )
+
=
𝒅𝒕
𝒅𝒕
𝒅𝒕
ym
𝒅𝒙
= βˆ’πŸ”πŸŽ π’Ž/𝒔
𝒅𝒕
π’…π’š
=? ? ? ? π’Ž/𝒔
𝒅𝒕
πŸπ’™
𝒅𝒙
π’…π’š
+ πŸπ’š
=𝟎
𝒅𝒕
𝒅𝒕
Find the height of the ladder when the
ladder is 3m
from the
𝟐 wall.
𝟐
𝟐
𝒙 +πŸ‘ =πŸ“
𝒙 = βˆšπŸ“πŸ βˆ’ πŸ‘πŸ = πŸ’
Substitute into the derivative
πŸπ’™
𝒅𝒙
π’…π’š
+ πŸπ’š
=𝟎
𝒅𝒕
𝒅𝒕
𝟐(πŸ’)(βˆ’πŸ”πŸŽ) + 𝟐(πŸ‘)
βˆ’πŸ’πŸ–πŸŽ + πŸ”
π’…π’š
=𝟎
𝒅𝒕
π’…π’š
=𝟎
𝒅𝒕
π’…π’š
= πŸ–πŸŽ π’„π’Ž/𝒔
𝒅𝒕
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 5 of 12
EXAMPLE 5 continued
b) At what rate is the angle formed by the ladder and the floor decreasing when
the base of the ladder is 3m from the wall? (Round to 2 decimals)
Using Trigonometric Ratios
5m
xm
𝐬𝐒𝐧 𝜽 =

ym
𝒅𝒙
= βˆ’πŸ”πŸŽ π’Ž/𝒔
𝒅𝒕
𝐜𝐨𝐬 𝜽
𝒙 𝟏
= 𝒙
πŸ“ πŸ“
π’…πœ½ 𝟏 𝒅𝒙
=
𝒅𝒕 πŸ“ 𝒅𝒕
πŸ‘
When the base of the ladder is 3 m from the wall 𝐜𝐨𝐬 𝜽 = πŸ“
𝐜𝐨𝐬 𝜽
π’…πœ½ 𝟏 𝒅𝒙
=
𝒅𝒕 πŸ“ 𝒅𝒕
πŸ‘ π’…πœ½ 𝟏
= (βˆ’πŸ”πŸŽ)
πŸ“ 𝒅𝒕 πŸ“
π’…πœ½
πŸ“
= (βˆ’πŸπŸ) ( ) = βˆ’πŸπŸŽ
𝒅𝒕
πŸ‘
The angle is decreasing at a rate of 20 rads/s when the base of the ladder is 3 m from
the wall.
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 6 of 12
EXAMPLE 6: Two people are 50 feet apart. One of them starts walking north at a rate so that the angle
shown in the diagram below is changing at a constant rate of 0.01 rad/min. At what rate is distance
between the two people changing when πœƒ = 0.5 radians?
Method 1
Method 2
πŸ“πŸŽ
𝐜𝐨𝐬 𝜽 =
= πŸ“πŸŽπ’™βˆ’πŸ
𝒙
𝒙
𝐬𝐞𝐜 𝜽 =
πŸ“πŸŽ
𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽
π’…πœ½
𝟏 𝒅𝒙
=
𝒅𝒕 πŸ“πŸŽ 𝒅𝒕
βˆ’ 𝐬𝐒𝐧 𝜽
π’…πœ½
𝒅𝒙
= βˆ’πŸ“πŸŽπ’™βˆ’πŸ
𝒅𝒕
𝒅𝒕
π’…πœ½ 𝒅𝒙
=
𝒅𝒕 𝒅𝒕
βˆ’ 𝐬𝐒𝐧 𝜽
π’…πœ½ βˆ’πŸ“πŸŽ 𝒅𝒙
= 𝟐
𝒅𝒕
𝒙 𝒅𝒕
πŸ“πŸŽπ¬πžπœ 𝜽 𝐭𝐚𝐧 𝜽
πŸ“πŸŽ 𝐬𝐞𝐜 𝟎. πŸ“ 𝐭𝐚𝐧 𝟎. πŸ“(𝟎. 𝟎𝟏) =
𝒅𝒙
= 𝟎. πŸ‘πŸ 𝒇𝒕/π’Žπ’Šπ’
𝒅𝒕
𝒅𝒙
𝒅𝒕
𝒅𝒙 π’™πŸ 𝐬𝐒𝐧 𝜽 π’…πœ½
=
𝒅𝒕
πŸ“πŸŽ 𝒅𝒕
When 𝜽 = 𝟎. πŸ“ 𝒓𝒂𝒅
πŸ“πŸŽ
𝐜𝐨𝐬 𝟎. πŸ“ =
𝒙
πŸ“πŸŽ
𝒙=
𝐜𝐨𝐬 𝟎. πŸ“
𝒙 = πŸ“πŸ”. πŸ—πŸ•
𝒅𝒙 (πŸ“πŸ”. πŸ—πŸ•)𝟐 𝐬𝐒𝐧(𝟎. πŸ“)
=
(𝟎. 𝟎𝟏)
𝒅𝒕
πŸ“πŸŽ
𝒅𝒙
= 𝟎. πŸ‘πŸ 𝒇𝒕/π’Žπ’Šπ’
𝒅𝒕
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 7 of 12
EXAMPLE 7: Optional
A triangle has 2 sides of length 15 cm and 17 cm. The angle between these sides is increasing at a rate
πœ‹
π‘Ÿπ‘Žπ‘‘/𝑠. At what rate is the length of the third side increasing when the opposite angle
24
πœ‹
measures
A
π‘Ÿπ‘Žπ‘‘ ?
3
of
17 cm
15 cm
a
Using the Law of Cosines: a2 = b2 + c2 – 2bc cos A
π’‚πŸ = πŸπŸ•πŸ + πŸπŸ“πŸ βˆ’ 𝟐(πŸπŸ•)(πŸπŸ“) 𝐜𝐨𝐬 𝑨
πŸπ’‚
𝒅𝒂
𝒅𝑨
= 𝟎 + 𝟎 βˆ’ πŸ“πŸπŸŽ 𝐬𝐒𝐧 𝑨
𝒅𝒕
𝒅𝒕
𝒅𝒂
𝒅𝑨
= βˆ’πŸ“πŸπŸŽ 𝐬𝐒𝐧 𝑨
𝒅𝒕
𝒅𝒕
𝝅
𝑾𝒉𝒆𝒏 𝑨 = 𝒓𝒂𝒅
πŸ‘
πŸπ’‚
𝝅
π’‚πŸ = πŸπŸ•πŸ + πŸπŸ“πŸ βˆ’ 𝟐(πŸπŸ•)(πŸπŸ“) 𝐜𝐨𝐬 ( )
πŸ‘
𝟏
π’‚πŸ = πŸπŸ–πŸ— + πŸπŸπŸ“ βˆ’ πŸ“πŸπŸŽ ( ) = πŸπŸ“πŸ—
𝟐
𝒂 = βˆšπŸπŸ“πŸ—
𝟐(βˆšπŸπŸ“πŸ—)
𝒅𝒂
𝝅 𝝅
= βˆ’πŸ“πŸπŸŽ 𝐬𝐒𝐧 ( ) ( )
𝒅𝒕
πŸ‘ πŸπŸ’
𝒅𝒂
= 𝟏. πŸ–
𝒅𝒕
The side is increasing at a rate of approximately 1.8 cm/s
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
ASSIGNMENT
/3
Page 8 of 12
MARK______________21 + 4 = ____________%
1. A streetlight is 6 m tall. A person who is 2 m tall is walking away from the light
at a rate of 1.5 m/s. How fast is the shadow cast by the person moving away from
the base of the light post?
x represents his distance away from the light post.
y represents the length of the shadow
By similar triangles
πŸ”
𝟐
=
𝒙+π’š π’š
x
πŸ”π’š = πŸπ’™ + πŸπ’š
y
πŸ’π’š = πŸπ’™
x+y
π’…π’š 𝟏 𝒅𝒙
=
𝒅𝒕 𝟐 𝒅𝒕
π’š=
π’…π’š 𝟏
= (𝟏. πŸ“π’Ž/𝒔 )
𝒅𝒕 𝟐
π’…π’š
= 𝟎. πŸ•πŸ“ π’Ž/𝒔
𝒅𝒕
𝟏
𝒙
𝟐
The shadow is moving at a speed of
0.75 + 1.5 = 2.25 m/s away from the
light post.
2. A spotlight set on the ground is shining on a wall 20 m away. A person 1.7 m tall
walks away from the light toward the wall at a rate of 1.4 m/s. At what rate is the
shadow cast on the wall decreasing in height when the person is 14 m from the wall?
/3
y
𝟏. πŸ•
π’š
=
𝒙
𝟐𝟎
π’™π’š = πŸ‘πŸ’
1.7 m
x
20 m
dy
ο€½ 1.4m / s
dx
π’…π’šπ’š = πŸ‘πŸ’ = βˆ’πŸ
π’…π’™βˆ’πŸ
πŸ‘πŸ’π’™
= βˆ’πŸ‘πŸ’π’™
𝒙
𝒅𝒕
𝒅𝒕
π’…π’š
= βˆ’πŸ‘πŸ’(πŸπŸ’)βˆ’πŸ (𝟏. πŸ’)
𝒅𝒕
π’…π’š
= βˆ’πŸŽ. πŸπŸ’ π’Ž/𝒔
𝒅𝒕
The shadow is decreasing in height at
a speed of 0.24 m/s.
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 9 of 12
𝑑π‘₯
3. A plane flies horizontally with a speed of 600 km/h ( 𝑑𝑑 ) at an altitude of 10 km
and passes directly over the town of Quinton. Find the rate at which the direct
𝑑𝑧
distance (𝑑𝑑 ) is increasing when it has flown 20 km.
y
At any given time
102 + y2 = z2
Differentiate with respect to t.
10km
z
π’…π’š
𝒅𝒛
𝟎 + πŸπ’š
= πŸπ’›
𝒅𝒕
𝒅𝒕
π’…π’š
𝒅𝒛
Q
π’š
=𝒛
𝒅𝒕
𝒅𝒕
0 + 2y dy = 2z dz
dt
dt
/3
20 km
10km
z=?
Q
dy = the
z dzplane is 20 km from
Find zywhen
dt
dt
Quinton.
2
2
2
20 + 10 = z
z2 = 500
𝒛 = βˆšπŸ“πŸŽπŸŽ = πŸπŸŽβˆšπŸ“ = 𝟐𝟐. πŸ’π’Œπ’Ž
Substitute into the derivative. Give your
answer to the nearest whole km/h.
𝒅𝒛
(𝟐𝟎)(πŸ”πŸŽπŸŽ) = πŸπŸŽβˆšπŸ“
𝒅𝒕
𝒅𝒛 𝟏𝟐𝟎𝟎𝟎
=
= πŸπŸ’πŸŽβˆšπŸ“ 𝒐𝒓 πŸ“πŸ‘πŸ• π’Œπ’Ž/𝒉
𝒅𝒕
πŸπŸŽβˆšπŸ“
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 10 of 12
4. Joe is driving west at 60 km/h and Dave is driving south at 70 km/h. Both cars
are approaching the intersection of the two roads. At what rate is the distance
between the cars decreasing when Joe’s car is 0.4 km and Dave’s is 0.3 km from
the intersection?
𝒙 𝟐 + π’šπŸ = 𝒛 𝟐
– 70 km/h
𝒅𝒙
π’…π’š
𝒅𝒛
πŸπ’™
+ πŸπ’š
= πŸπ’›
𝒅𝒕
𝒅𝒕
𝒅𝒕
/3
z
x
𝒙
(𝟎. πŸ‘)𝟐 + (𝟎. πŸ’) = π’›πŸ
𝒛 = 𝟎. πŸ“ π’Œπ’Ž
𝒅𝒙
π’…π’š
𝒅𝒛
+π’š
=𝒛
𝒅𝒕
𝒅𝒕
𝒅𝒕
– 60 km/h
y
(𝟎. πŸ‘ π’Œπ’Ž)(– πŸ•πŸŽ π’Œπ’Ž/𝒉 ) + (𝟎. πŸ’ π’Œπ’Ž)(– πŸ”πŸŽ π’Œπ’Ž/𝒉 ) = (𝟎. πŸ“ π’Œπ’Ž)
𝒅𝒛
𝒅𝒕
𝒅𝒛 (𝟎. πŸ‘ π’Œπ’Ž)(– πŸ•πŸŽ π’Œπ’Ž/𝒉 ) + (𝟎. πŸ’ π’Œπ’Ž)(– πŸ”πŸŽ π’Œπ’Ž/𝒉 )
=
=– πŸ—πŸŽπ’Œπ’Ž/𝒉
𝒅𝒕
𝟎. πŸ“π’Œπ’Ž
5. A ladder 4 m long rests against a vertical wall. If the bottom of the ladder slides
away from the wall at a speed of 0.30 m/s.
a) How quickly is the top of the ladder sliding down the wall when the bottom of
the ladder is 2 m from the wall?
4m
x
𝑑𝑦
= 0.30 π‘š/𝑠
𝑑𝑑
y
At any given time
x2 + y2 = 42
Differentiate with respect to t.
𝒅𝒙
π’…π’š
πŸπ’™
+ πŸπ’š
=𝟎
𝒅𝒕
𝒅𝒕
𝒅𝒙
π’…π’š
𝒙
+π’š
=𝟎
𝒅𝒕
𝒅𝒕
Find x when the ladder is 2 m from the wall.
x2 + 22 = 42
x2 = 12
𝒙 = √𝟏𝟐 = πŸβˆšπŸ‘ = πŸ‘. πŸ“
Substitute into the derivative. Give your answer to the nearest hundredth m/s.
𝒅𝒙
πŸβˆšπŸ‘π’Ž
+ πŸπ’Ž(𝟎. πŸ‘πŸŽπ’Ž/𝒔 ) = 𝟎
𝒅𝒕
𝒅𝒙 βˆ’πŸπ’Ž(𝟎. πŸ‘πŸŽπ’Ž/𝒔 ) βˆ’πŸŽ. πŸ‘πŸŽ
=
=
𝒐𝒓 βˆ’ 𝟎. πŸπŸ•πŸ‘π’Ž/𝒔
𝒅𝒕
πŸβˆšπŸ‘ π’Ž
βˆšπŸ‘
U4 L5b ANS Related Rates Distances with Cos Law 2015
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 11 of 12
b) How fast is the angle between the ladder and the ground decreasing when the
bottom of the ladder is 2 m from the wall?
/3
From above 𝒙 = √𝟏𝟐 = πŸβˆšπŸ‘ 𝒐𝒓 πŸ‘. πŸ“ when the ladder is y = 2 m from the wall.
𝑑π‘₯
= βˆ’0.173 π‘š/𝑠
𝑑𝑑
Method 2
Method 1
𝒙 𝟏
𝐬𝐒𝐧 𝜽 = = 𝒙
πŸ’ πŸ’
ο€ 
4m
x
𝐜𝐨𝐬 𝜽
𝜽
y=2m
When x = πŸβˆšπŸ‘ 𝐬𝐒𝐧 𝜽 =
𝑦 1
cos πœƒ = = 𝑦
4 4
π’…πœ½ 𝟏 𝒅𝒙
=
𝒅𝒕 πŸ’ 𝒅𝒕
βˆ’ sinΞΈ
𝟐 π’…πœ½ 𝟏
= (βˆ’ 𝟎. πŸπŸ•πŸ‘)
πŸ’ 𝒅𝒕 πŸ’
𝑑𝑦
= 0.3 π‘š/𝑠
𝑑𝑑
π’…πœ½ 𝟏
πŸ’
= (βˆ’πŸŽ. πŸπŸ•πŸ‘) ×
𝒅𝒕 πŸ’
𝟐
= βˆ’πŸŽ. πŸŽπŸ–πŸ•π’“π’‚π’…/𝒔𝒆𝒄
βˆ’
π‘‘πœƒ
𝑑𝑑
40
x cm
 rad
y cm
𝐬𝐒𝐧 𝜽 =
𝐜𝐨𝐬 𝜽
/3
𝒙
πŸ”πŸ’
π’…πœ½
𝟏 𝒅𝒙
=
𝒅𝒕 πŸ”πŸ’ 𝒅𝒕
πŸ’πŸŽ π’…πœ½
𝟏
=
× (βˆ’πŸ“)
πŸ”πŸ’ 𝒅𝒕 πŸ”πŸ’
π’…πœ½
𝟏
πŸ”πŸ’
𝟏
=
× (βˆ’πŸ“) ×
=βˆ’
𝒓𝒂𝒅/𝒔
𝒅𝒕 πŸ”πŸ’
πŸ’πŸŽ
πŸ–
U4 L5b ANS Related Rates Distances with Cos Law 2015
=
βˆšπŸ‘
𝟐
√3 π‘‘πœƒ 1
= (0.30)
2 𝑑𝑑 4
1
= 4 (0.30) × βˆ’
2
√3
= βˆ’0.087rad/sec
6. The length of the hypotenuse of a right triangle is constant at 64 cm. The vertical
leg of the triangle is decreasing at a rate of 5 cm/s. At what rate is the angle
opposite the vertical side changing when the horizontal side is 40 cm long?
When y = 40 cos πœƒ = 64
πŸ’
π‘‘πœƒ 1 𝑑𝑦
=
𝑑𝑑 4 𝑑𝑑
The angle between the ladder and the ground is decreasing at a rate of – 0.0867 rad/s
64 cm
πŸβˆšπŸ‘
MATH 31
UNIT 4 LESSON #5b
RELATED RATES: DISTANCES
NAME ANSWERS
Page 12 of 12
Question 7 is a bonus question
7. Two sides of a triangle have fixed lengths of 20 cm and 24 cm. The third side is
increasing at a rate of 3.5 cm/s. When the third side is 15 cm in length, what is
the rate of change for the angle between the fixed sides?

20 cm
/4
da
ο€½ 3.5cm / s
dt
24 cm
Using the Law of Cosines:a a2 = b2 + c2 – 2bc cos A
da
ο€½ 3.5cm / s
dt
cm
π’‚πŸ = 𝟐𝟎𝟐 + πŸπŸ’πŸ βˆ’ 𝟐(𝟐𝟎)(πŸπŸ’) 𝐜𝐨𝐬 𝑨
π’‚πŸ = πŸ—πŸ•πŸ” βˆ’ πŸ—πŸ”πŸŽ 𝐜𝐨𝐬 𝑨
πŸπ’‚
𝒅𝒂
𝒅𝑨
= 𝟎 βˆ’ πŸ—πŸ”πŸŽ (βˆ’π¬π’π§ 𝑨)
𝒅𝒕
𝒅𝒕
πŸπ’‚
𝒅𝒂
𝒅𝑨
= πŸ—πŸ”πŸŽ 𝐬𝐒𝐧 𝑨
𝒅𝒕
𝒅𝒕
When a = 15 cm
𝟐𝟎𝟐 + πŸπŸ’πŸ βˆ’ πŸπŸ“πŸ
𝐜𝐨𝐬 𝑨 =
𝟐(𝟐𝟎)(πŸπŸ’)
A= 0.672 rad
𝒅𝑨
πŸπ’‚
𝒅𝒂
=
𝒅𝒕 πŸ—πŸ”πŸŽ 𝐬𝐒𝐧 𝑨 𝒅𝒕
𝒅𝑨
𝟐(πŸπŸ“)(πŸ‘. πŸ“)
=
= 𝟎. πŸπŸ•π’“π’‚π’…/𝒔
𝒅𝒕 πŸ—πŸ”πŸŽ(𝐬𝐒𝐧 𝟎. πŸ”πŸ•πŸ—)
U4 L5b ANS Related Rates Distances with Cos Law 2015