Tectonophysics 324 (2000) 169–187 www.elsevier.com/locate/tecto New empirical relationships between magnitude and distance for liquefaction Paolo Galli * Servizio Sismico Nazionale, Via Curtatone 3, I-00185 Rome, Italy Received 1 November 1999; accepted for publication 22 April 2000 Abstract Historical research performed in the 1990s has updated previous compilations of liquefaction-induced phenomena that occurred during the last millenium in Italy. Liquefaction indications are reported in Italy for earthquakes with I >5–6 (MCS ) and M ≥4.2, 90% of the cases falling within 50 km of the epicenter. The recently re-evaluated seismic o s parameters of the Italian historical earthquakes, together with the location of 317 indications of liquefaction features, provide a relatively complete database, permitting the author to highlight the distribution of intensity/magnitude values versus epicentral distance. In paleoseismic analyses these relationships may be considered a tool in evaluating the minimum energy of an earthquake that induced liquefaction features. © 2000 Elsevier Science B.V. All rights reserved. Keywords: coseismic processes; engineering geology; geologic hazard; Italy; liquefaction; paleoseismicity 1. Introduction Although the systematic study of liquefaction features is a young discipline, it is widely accepted that the recognition of this phenomenon (e.g. by means of paleoseismological studies) can be assumed as an indicator of strong past earthquakes (i.e. Tinsley et al., 1985). However, since other natural causes can produce or mimic liquefaction features (e.g. structures of syndepositional origin, due to artesian condition, formed by weathering or in periglacial environment), the non-seismic causes should always be investigated (see Obermeier, 1996) in order to avoid hazardous statements about the seismicity of an area. * Tel.: +39-06-4444-2276. fax: +39-06-4466-579. E-mail address: [email protected] (P. Galli) Liquefaction is the transformation of a granular deposit from a solid state into a liquefied state as a consequence of the increased pore-water pressure determined by cyclic shaking ( Youd, 1977). Liquefaction features may vary from place to place in geometry, type, and dimension, due to the anomalous propagation and amplification of the seismic waves at the surface and to the differing site conditions (grain size and density of deposits, position of the ground-water level ). It is therefore sometimes difficult to recognize liquefaction in the field, and particularly difficult through the historical description of earthquake-induced effects (Galli and Meloni, 1993). The most common and conclusive surficial features induced by liquefaction are sand blows that occur both isolated (sand volcanoes; Figs. 1 and 2) or along fissures. Other clear liquefactioninduced phenomena are the lateral spreads of huge 0040-1951/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0 0 4 0- 1 9 51 ( 0 0 ) 0 01 1 8 -9 170 P. Galli / Tectonophysics 324 (2000) 169–187 Fig. 1. 1783 Calabrian earthquake. The banks of the Mesima River affected by hundreds of sand volcanoes (from an original etching in Sarconi, 1784). masses of soil overlying a liquefied layer or the geometrical settlement of surficial deposits (i.e. craters; Figs. 3–5). A typical effect on anthropic structures is the differential settlement and tilting of buildings, bridges and quays, the swelling of pavement of the ground-floors of buildings or swimming-pools, and the apparent extrusion of pillars or wells above the ground surface, due to the sinking of the surrounding soil (Fig. 6). All these effects are easily detectable during earthquake field surveys, but some of them are difficult to recognize and/or identify univocally as due to liquefaction in the historical description of earthquakes. This is mainly due to the convergence of forms with other collapse features and damage caused by seismic shaking. Although the most impressive liquefaction features occur during strong earthquakes (M ≥6.5), s whose epicentral areas are located close to regions highly susceptible to liquefaction (e.g. the alluvial plains of South Carolina during the earthquakes of 1886; the plains of Alaska, 1964; Nijgata, 1964; Kobe, 1995; Izmit, 1999), the database of historical liquefaction in Italy (Galli and Meloni, 1993; Galli et al., 1999) also accounts for a large number of moderate earthquakes (M ≥4.2) producing liques faction (as for liquefaction cases induced by moderate earthquakes, see also Papadopoulos, 1993). In fact, the Italian territory shows a remarkable mismatching between high seismicity areas (mainly located inside the Apennine chain) and broad liquefaction-prone areas (the Adriatic and Tyrrhenian coasts, and the Po River alluvial plain; Galli and Ferreli, 1995). Among those last-mentioned regions, only Calabria, eastern Sicily, northern Apulia and, partly, the western Ligurian coast experienced strong historic earthquakes. Nevertheless, the long tradition of historical written sources in Italy supplies data also concerning areas characterized by moderate seismicity, allowing the recognition of 59 liquefaction features resulting from earthquakes with M ≤5.9. s The liquefaction database presented here is a completely reviewed and updated version of previous catalogs. It is the result of new systematic historical research performed in archives and P. Galli / Tectonophysics 324 (2000) 169–187 171 Fig. 2. 1783 Calabrian earthquake. Particular of the sand volcanoes observed in the Rosarno Plain (from an original etching in Sarconi, 1784). libraries utilizing only primary sources (Galli et al., 1999). The data suggest relationships between the epicentral distance of a liquefaction feature and the magnitude (and intensity) of the earthquake. They also suggest a relationship between epicentral distance and site intensity. The curves obtained replace those reported by Galli and Meloni (1993) 172 P. Galli / Tectonophysics 324 (2000) 169–187 Fig. 3. 1783 Calabrian earthquake. Circular settlement of sandy deposits in the Rosarno Plain (from an original etching in Sarconi, 1784). and Galli and Ferreli (1995), for which earthquakes were characterized only in terms of MCS (Mercalli–Cancani–Sieberg) intensity, by using different types of magnitude and re-evaluated intensity values from Italian updated seismic catalogs (NT4.1, Camassi and Stucchi, 1997 and CPTI, 1999). With respect to Ambraseys (1991) and Papadopulos and Lefkopulos (1993), the bounding equations of datapoints distribution presented here account for a larger number of liquefaction features (317) that occurred during 61 earthquakes characterized by focal depths <20 km and mainly related to normal faulting. Landslide descriptions P. Galli / Tectonophysics 324 (2000) 169–187 173 Fig. 4. 1783 Calabrian earthquake. A crater, due to geometrical settlement of sands in the Rosarno Plain (from an original etching in Sarconi, 1784). 174 P. Galli / Tectonophysics 324 (2000) 169–187 Fig. 5. 1783 Calabrian earthquake. Radiating fissures, probably due to local swelling in the Jerocarne area (from an original etching in Sarconi, 1784). have been a priori excluded from the database in an attempt to reduce ‘contamination’ of the data by liquefaction features of uncertain interpretation. 2. Previous studies Kuribayashi and Tatsuoka (1975) proposed a correlation between maximum epicentral distance R (in kilometers) and earthquake magnitude M e for liquefaction cases observed in Japan. These authors derived the equation log R =0.77M−3.60. (1) e Youd (1977) and Youd and Perkins (1978) introduced the idea of measuring the distance from the fault rather than from the epicenter for liquefaction that occurred during several earthquakes in the USA. Keefer (1984) collected data from 40 historical earthquakes and presented new curves of magnitude versus epicentral distance, showing an exponential increase in distance at higher magnitude values. Ambraseys (1991) used 137 liquefaction cases from around the word, in a wide variation of tectonic and sedimentary settings, and correlated a uniform type of magnitude (moment magnitude, M ) both with epicentral distance R (in centimew e ters; namely the farthest observed liquefaction effect) and fault distance R (in centimeters): f M =−0.31+2.65×10−8R +0.99 log(R ) (2) w e e M =0.18+9.2×10−8R +0.90 log(R ). (3) w f f According to Ambraseys (1991), for each value of magnitude M , R and R are the maximum w e f distance within which liquefaction is likely to occur (with some exceptions). Galli and Meloni (1993) and Galli and Ferreli (1995) collected liquefaction data reported during several historical earthquakes in Italy and placed a limiting distance of liquefaction occurrence on P. Galli / Tectonophysics 324 (2000) 169–187 175 Fig. 6. 1783 Calabrian earthquake. Apparent extrusion of the Santa Cristina well in the courtyard of the Celestini Friar’s Monastery, close to the town of Terranova. This phenomenon is probably due to the sinking of the surrounding loose deposits (from an original etching in Sarconi, 1784). the basis of epicentral intensity (I , MCS scale) o versus epicentral distance (d, kilometers): I =6.875+0.035(d ) (Galli and Meloni, 1993) o (4) I =e2.04+0.003(d) (Galli and Ferreli, 1995). (5) o Finally, Papadopulos and Lefkopulos (1993), updating the data collected by Ambraseys (1991) by means of new information from 30 Greek earthquakes, two American (Loma Prieta and Falcon State) and one from New Zealand ( Edgecumbe), provided the following equations concerning maximum epicentral distance R (in e centimeters) and maximum fault distance R (in f centimeters): M =−0.44+3×10−8R +0.98 log R (6) w e e M =−2.5×10−3+9.25×10−8R +0.9 log R . w f f (7) Considering only the Greek data they calculated the relationships (R in kilometers): M =3.686+1.584 log R (M >5.9) s e s (8) M =5.647+0.181 log R (5.8≤M ≥5.9) s e s (9) M =5.623+0.209 log R (5.8≤M ≥5.9). s f s (10) Recently, Troften (1997) provided an example of such studies using Eqs. (4) and (5) and similar correlations presented by Tinsley et al. (1985) in order to evaluate the intensity and magnitude of the paloevents that strongly hit southern Sweden at the beginning of the Holocene. This author surveyed liquefaction phenomena in the varved deposits of Vasterhanige, Olivelund and Turinge regions by means of paleoseismic analysis and considered the radius of the area of distribution to be d in Eqs. (4) and (5). Analogously, Papadopoulos (1993) calculated a minimum magnitude for the 373 BC earthquake (western Corinth Gulf, Greece) by using the epicentral distance of reported liquefaction features in Eq. (6). 176 P. Galli / Tectonophysics 324 (2000) 169–187 3. The database of liquefaction indication The database used is an updated version of the one revised by Galli et al. (1999) with the aim of reducing the methodological problems that affected the previous compilations (Berardi et al., 1991; Galli and Meloni, 1993; Galli and Ferreli, 1995). Briefly, this goal was achieved by: $ extending the historical research also to low intensity events ( VI–VII MCS ) that were not considered among those potentially capable of inducing liquefaction and to seismic events occurring far from liquefaction-prone areas (Galli and Ferreli, 1995); $ systematically checking the original sources that concern liquefaction cases reported by previous compilation (i.e. Berardi et al., 1991), thus avoiding repetition or mistakes; $ since seismic catalogs and compilations do not always report environmental effects, descriptions of liquefaction features may have been left out. The historical research has directly investigated the primary sources quoted by these catalogs. Original sources studied include: studies, reports and tales concerning earthquakes, chronicles and diaries, archivistic documentation and seismic bulletins. Earthquake parameters in the database include the values of epicentral intensity (MCS ) and magnitude (M and M ) reported by Camassi and e s Stucchi (1997) and CPTI (1999) and the site intensities given by the existing database (Monachesi and Stucchi, 1998) and Boschi et al. (1995). Liquefaction features have been subdivided into several classes, depending on the type of described effects. This classification was created on the basis of the literary description of the phenomena reported by historical sources and does not follow the classification proposed by CEE–CETS–CNR (1985) (e.g. ground oscillation, flow failure, lateral spread). All possible lateral spread and flow failures have been a priori excluded because of the difficulty in distinguishing between gravity driven phenomena, triggered by the seismic shaking, and liquefaction-induced landslide. For the same reason we preferentially considered the descriptions concerning flat areas. The adopted classification is: $ A=ground fissuring and related phenomena A1=only ground fissures A2=water emission A3=mud, sand and gravel venting A4=mixed water and sand venting (sand boils) A5=mud volcanoes $ B=surface deformation B1=local settlement B2=local swelling $ C=differential settlement of building $ D=liquefaction evidence s.l. or without description. The database (Appendix A) is divided into two sections: epicentral parameters of the seismic events and liquefaction site parameters. Epicentral parameters reported include the date (year, month, day), the geographic coordinates ( latitude and longitude), the intensity (MCS ), the magnitude (M , derived from the intensity datae points distribution and surface-wave magnitude M ) and the epicentral area. s Site parameters include the site name, the geographic coordinates, the epicentral distance (km), the site intensity and the type of failure. (Numbers in the first column refer to the bibliography, which is available from the author.) 4. Relationships between magnitude and distance The database presented contains indication of liquefaction related to earthquakes that occurred in Italy from 1117 AD to 1990 ( Fig. 7). The seismic event intensity ranged from 5.5 to 11, while the magnitude ranged from 4.2 to 7.5 for M and s from 4.83 to 7.46 for M . e Table 1 summarizes the frequency occurrence of liquefaction for intensity classes. The largest number of liquefaction features come from earthquakes with epicentral intensity (MCS ) of 9–10, 10, and 11 (respectively, 57, 63, and 119 cases). These classes account for 76% of the total number of observed liquefaction features, while 22% are related to intensity ranging from 7–8 to 9 and only 2% for intensity from 5–6 to 7. If compared with the total number of earth- P. Galli / Tectonophysics 324 (2000) 169–187 177 Fig. 7. Distribution map of liquefaction cases reported in Appendix A. Inset A is a particular concerning the 1783 Calabrian earthquakes. Bold lines represent the possibly seismogenetic faults of the three main events ( large circles, from south to north: February 5 and 7, and March 28). quakes reported by the seismic catalog, indication of liquefaction has been found for the 75% of events of intensity 11, 25 and 30% for intensity 10 and 9–10, respectively. Table 2 shows the relationship between M and s liquefaction for the period 1900–1992 (M values s for this period are instrumentally observed). All the earthquakes with M ≥6.5 induced liquefaction s (101 cases), about 80% of all observed liquefaction for this century. 178 P. Galli / Tectonophysics 324 (2000) 169–187 Table 1 Number of liquefaction cases per intensity class. Column 3 is the number of earthquakes that induced liquefaction, to be compared with the total number of events existing in the CPTI (1999; column 4) seismic catalog per intensity class Intensity class No. of liquefactions No. of events Events in CPTI 11 10 9–10 9 8–9 8 7–8 7 6–7 6 5–6 119 63 57 16 20 18 15 4 1 1 1 9 6 8 7 5 9 4 4 1 1 1 12 24 26 50 46 85 121 381 286 876 412 Table 2 Number of liquefaction cases per M interval. Column 3 is the s number of events that induced liquefaction, to be compared with the total number of events existing in the CPTI (1999; column 4) seismic catalog per magnitude interval class M s interval No. of liquefactions No. of events Events in CPTI 7.5 7–7.3 6.5–6.9 6–6.4 5.5–5.9 5–5.4 4.7 15 19 67 11 11 3 1 1 2 3 3 4 2 – 1 2 3 8 32 123 – All the data for which site parameters were available have been considered for the correlation of epicentral distance versus both epicentral intensity and magnitude (M and M ). Generally speaks e ing, 46% of liquefaction cases occurred within 10 km from the epicenter, 66% within 20 km, 79% within 30 km, 86% within 40 km, and 90% within 50 km (see Fig. 8). The distance between liquefaction features and the fault that produced the earthquake was not taken into account in this work due to the difficulty of relating earthquakes to seismogenetic faults in Italy (Galadini et al., 1999; Galadini and Galli, 2000; e.g. inset A of Fig. 8. Distribution of earthquake-induced liquefaction cases in terms of epicentral intensity (MCS ) and epicentral distance. The bounding equation is reported in the text as Eq. (11). Fig. 7, which shows the three possibly seismogenetic faults for the 1783 Calabrian earthquakes). Fig. 8 shows the relationship between epicentral intensity I and distance R . The distribution of o e data clearly indicates the limits of occurrence of the phenomenon that decreases exponentially with the distance. Only two cases fall out from the general trend, one, which occurred in 1117, being of not unequivocal interpretation. The bounding equation determined from these data is: I =1.6+4.3 log(R ). (11) o e Fig. 9A shows the relationship between magnitude and distance for liquefaction that occurred between 1117 and 1990. This distribution is also bounded by an exponential limit which is also recognizable for the data concerning this last century (Fig. 9B). The bounding equation for this dataset is: M =1.0+3.0 log(R ) s e while considering only (12) the (instrumentally) P. Galli / Tectonophysics 324 (2000) 169–187 179 Fig. 9. Distribution of earthquake-induced liquefaction cases in terms of M and epicentral distance for the period 1117–1990 (A) s and 1900–1990 (B). M values in (B) are from instrumental measurements. The bounding equations are reported in the text as Eqs. s (12) and (13), respectively. observed values of magnitude (period 1900–1990; Fig. 9B) the bounding equation obtained is: M =1.5+3.1 log(R ). (13) s e As mentioned above, a different magnitude scale, M , has recently been introduced for historie cal earthquakes in Italy (CPTI, 1999; Gasperini et al., 1999). Fig. 10 shows the distribution of this dataset, whose bounding equation is: M =2.75+2.0 log(R ). (14) e e As for the use of these relationships, in agreement with Obermeier (1996, p. 389), Eqs. (11)–(14) offer the ability to place crude limits on earthquakes intensity and magnitude, i.e. by evaluating the area (and consequently R ) interested by e liquefaction features, by means of paleoseismological analyses (e.g. Troften, 1997; Papadopoulos, 1993). Table 3 presents the application of Eq. (13) to some historical earthquakes in Italy that produced a minimum of five observed liquefaction features. Eq. (13) yields values of M (M in Table 3) s liq Fig. 10. Distribution of earthquake-induced liquefaction cases in terms of M and epicentral distance for the period 1117– e 1990. The bounding equation is reported in the text as Eq. (14). 180 P. Galli / Tectonophysics 324 (2000) 169–187 Table 3 Comparison between magnitude values reported by seismic catalogs (CPTI, 1999; NT4.1, Camassi and Stucchi, 1997) and the magnitude (M , minimum magnitude) evaluation by means of liq Eq. (13). Only earthquakes with more than five liquefaction cases are reported Event (y:m:d ) I , MCS o M , CPTI e M , NT4 s M liq 1627:07:30 1693:01:11 1783:02:05 1783:03:28 1846:08:14 1894:11:16 1905:09:08 1908:12:28 1915:01:13 1916:08:16 1968:01:15 1976:05:06 1980:11:23 10 11 11 10 8.5 8.5 11 11 11 8 10 9.5 10 6.78 7.46 6.88 6.98 5.45 6.1 6.88 7.18 6.98 5.59 6.45 6.34 6.88 7 7.3 7.3 6.7 5.9 5.9 7.5 7.3 7 6.1 5.9 6.5 6.9 6.47 7.24 7.51 6.68 5.05 6.08 7.38 4.85 7.08 5.6 5.89 4.3 6.98 similar to both those computed by means of macroseismic evaluations (M and M before 1900) e s and the instrumental ones (M after 1900). The s magnitude evaluated through Eq. (13) is considerably lower than the actual value for only two strong earthquakes (1908 and 1976). In particular, the 1908 event (which occurred in the marine area between Sicily and Calabria) induced a destructive tsunami along the surrounding Calabrian and Sicilian coasts that probably erased many liquefaction features on the shores and monopolized the attention of contemporary scientists and reporters. The 1976 Friuli event was instead generated by a blind thrust in the rocky mountains of the eastern Alps and induced extensive liquefaction features only in the epicentral area ( Tagliamento River alluvial plain). Finally, it is worth noting that M calculated are minimum values of magnitude, liq since Eqs. (11)–(14) are related to bounding curves and not mean curves. Fig. 11 compares the curves presented in this paper [Eqs. (12)–(14)] with those provided by Kuribayashi and Tatsuoka [1975; Eq. (1)], Ambraseys [1988; Eq. (2)] and Papadopulos and Lefkopulos [1993; Eq. (8)]. The most significant difference is that curves given by Eqs. Fig. 11. Comparison among the different equations provided by the previous authors [Eqs. (1), (2), (8)] and those presented in this paper [Eqs. (12)–(14)]. (12) and (14), which account for the whole liquefaction dataset (years 1117–1990, using respectively M and M ), under 70–80 km of epicentral s e distance are consistently below the curves given by Eqs. (2) and (8). This implies that liquefaction may occur in a wider magnitude/distance combination than that previously predicted by Eqs. (2) and (8). 5. Conclusions Galli et al. (1999) updated the Italian catalog of liquefaction (Galli and Meloni, 1993) by means of new systematic historical researches and by using only primary sources. This database, together with the recently revised values of the parametric data from the Italian seismic catalog (Camassi and Stucchi, 1997; CPTI, 1999), permitted the construction of empirical relationships between the epicentral parameters of the earthquake (I , M , and M ) and the distance of the o s e observed liquefaction (R ) for 317 cases related to e 61 different earthquakes in Italy since 1117. The triggering events range from intensity (MCS ) 5.5 to 11, from magnitude (M ) 4.2 to 7.5, and magnis P. Galli / Tectonophysics 324 (2000) 169–187 tude (M ) 4.83 to 7.46. Eqs. (11)–(14) are based e on the dataset presented in Appendix A and are complementary to and/or update the previous bounding Eqs. (1)–(8). As demonstrated by Obermeier (1996), the use of these kinds of bounding equation (i.e. collecting paleoliquefaction evidence through detailed and widespread paleoseismic analysis; Fig. 12) can provide values of intensity and magnitude not outrageously lower than the actual value, and can be a comparative tool for hazard assessment studies. This could be particularly useful for regions characterized by poor historical data or in evaluating earthquake size occuring during pre-historic periods. Finally, these empirical relationships could have practical applications to geotechnical problems, e.g. for designing foundations of buildings located within a certain distance from known seismogenic sources [R in Eqs. (11)–(14)] in liquefactione prone regions. 181 Acknowledgements F. Meloni and A. Rossi participated in the construction and continuous updating of the liquefaction database. The insightful and constructive criticism of H. Abramson and G. Papadopoulos is gratefully acknowledged. I believe that their revision process greatly improved this paper. I am grateful to P. Lembo and R. De Marco who encouraged this work. Appendix A The catalog of liquefaction features that have occurred in Italy since 1117 AD revised after Galli et al. (1999) is given in Table 4. Fig. 12. An example of liquefaction features surveyed by means of paleoseismic analysis (in this case, a trench in the Fucino Plain, Central Italy, 1915 Avezzano earthquake; Galadini and Galli, 1999). 182 P. Galli / Tectonophysics 324 (2000) 169–187 Table 4 Epicentral parameters of the seismic events Sites with indication of liquefaction Ref. Date Latitude Longitude I o M e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 45.330 44.480 44.000 37.230 44.498 40.520 44.820 44.820 44.820 44.820 44.820 44.820 44.820 44.820 44.820 44.650 41.730 41.730 41.730 4 1.730 41.730 41.730 39.030 39.030 39.030 41.280 41.280 37.130 37.130 37.130 37.130 37.130 37.130 37.130 42.470 42.470 44.930 44.235 44.235 44.235 44.235 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 6.56 6.4 Verona area 5.30 5 Bologna 5.85 6.2 Scarperia 6.4 Sortino 5.00 5.2 Borgo V. Taro 6.45 6.4 Vallo di Diano 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Ferrara 5.30 5.5 Argenta 6.78 7 Capitanata 6.78 7 Capitanata 6.78 7 Capitanata 6.78 7 Capitanata 6.78 7 Capitanata 6.78 7 Capitanata 6.98 7.3 Nicastro 6.98 7.3 Nicastro 6.98 7.3 Nicastro 6.67 7.3 Sannio-Matese 6.67 7.3 Sannio-Matese 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 7.46 7.3 Eastern Sicily 6.67 6.2 L’Aquila area 6.67 6.2 L’Aquila area 5.00 5.5 Cozie Alps 5.72 6.2 Faentino 5.72 6.2 Faentino 5.72 6.2 Faentino 5.72 6.2 Faentino 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 6.88 7.3 Southern Calabria 1117.01.03 1505.01.03 1542.06.13 1542.12.10 1545.06.09 1561.08.19 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1570.11.17 1624.03.18 1627.07.30 1627.07.30 1627.07.30 1627.07.30 1627.07.30 1627.07.30 1638.03.27 1638.03.27 1638.03.27 1688.06.05 1688.06.05 1693.01.11 1693.01.11 1693.01.11 1693.01.11 1693.01.11 1693.01.11 1693.01.11 1703.02.02 1703.02.02 1753.03.09 1781.04.04 178 1.04.04 1781.04.04 1781.04.04 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1 783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 11.200 11.250 11.380 14.920 9.844 15.480 11.630 11.630 11.630 11.630 11.630 11.630 11.630 11.630 11.630 11.850 15.350 15.350 15.350 15.350 15.350 15.350 16.280 16.280 16.280 14.570 14.570 15.020 15.020 15.020 15.020 15.020 15.020 15.020 13.200 13.200 7.180 11.797 11.797 11.797 11.797 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 1 5.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 9.5 7.0 9.0 9.5 7.5 9.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 10.0 10.0 10.0 10.0 10.0 10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0 10.0 6.5 9.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.00 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 M Area s Sitea Latitude Longitude Venezia Zola Predosa Borgo S. Lorenzo Siracusa and neighbour [2] Pontremoli [1] Muro Lucano Boara Ferrara (P.te S.Paolo, S.Pietro) Ficarolo Giara del Po La Punta Localita’ indefinite Polesino di S.Giovanni Battista Polesino di San Giorgio Torre della Fossa Argenta Foci del Fortore Lesina Ripalta Localita’ indefinita Serra-S.Agata ( Valle d. Fortore) Troia San Nicola Valle del R. Lamato [2] Localita’ indefinite Piedimonte d’Alife [2] S. Giorgio la Molara Cassaro [2] Lentini [2] Mascari [2] Piana di Catania [2] Siracusa Sortino Val di Noto Montereale Pizzoli-Arischia Localita’ indefinite Castel Bolognese Localita’ indefinite Pergola Quartolo Acquaro* Bagnara Calabra* [1] Borrello (Fondaco di)* Calanna* (Loc. Sperone e Torre) Caraffa del Bianco [1] Castellace ( Vecchio) [1 ] River S.Biase [Fiumara Boscaino] Catanzaro [1] Cinquefrondi Cinquefrondi ( Ventriconi) Casalnuovo [Cittanova] Coccorino Cosoleto Vecchio (P. di Cineti) Dasa’* Paracocio [Delianuova] [2] Drosi*(C. del Crocifisso) Fiumara Secca* River Porcione*[R.Marepotamo] [1] Galatoni *[1] Marina di Gallico Ganzirri (Pantano)* Gerocarne- Soriano Calabro* Gioia Tauro Joppolo Laganadi [1] Laureana di Borrello (C. Vaticano) Lubrichi (western slope of Lago R.) Maida Marina Maropati (Loc. Eja) Maropati (Contrada Scigala’) Messina Nicotera (C. Ravello) Oppido V. [Mamerto] (Torre)[1] Oppido V. (Loc. Nicolella) 45 44 43 37 44 40 44 44 44 44 44 – 44 44 44 44 41 41 41 – 41 41 39 38 – 41 41 37 37 37 37 37 37 36 42 42 – 44 – 44 44 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 12 11 11 15 9 15 11 11 11 11 11 – 11 11 11 11 15 15 15 – 15 15 16 16 – 14 14 14 15 15 15 15 15 15 13 13 – 11 – 11 11 16 15 06 15 16 15 15 16 16 16 16 15 15 16 15 15 16 16 16 15 15 16 15 15 15 16 15 16 16 16 15 15 15 15 26 30 57 04 23 45 52 49 57 48 49 00 40 30 00 50 30 49 20 47 40 37 55 52 51 50 22 11 54 21 16 06 19 45 25 04 09 53 31 26 19 17 15 33 17 30 11 05 18 19 55 25 24 21 36 17 34 14 26 20 37 20 10 15 35 25 35 10 29 16 52 25 26 11 32 17 18 20 00 40 00 45 30 15 00 35 30 30 15 15 20 13 23 16 53 29 41 37 26 41 40 00 00 30 00 38 20 37 30 37 00 50 17 21 17 14 19 18 15 22 54 57 03 12 02 16 02 04 15 18 48 48 49 11 48 04 43 05 56 56 35 06 05 05 52 55 12 55 57 03 11 02 39 37 13 54 54 44 03 57 13 06 06 33 56 58 57 25 15 10 25 50 40 40 10 00 40 40 40 00 d I s (km) 89 3 6 36 13 26 7 1 21 5 3 – 3 0 3 4 21 15 14 – 15 40 17 15 – 19 28 7 21 71 32 23 3 28 7 9 – 9 – 5 2 34 15 25 25 26 2 4 87 17 16 11 34 5 36 9 16 8 40 7 32 31 39 14 32 25 23 4 66 18 19 39 26 1 2 7.0 7.0 8.0 8.0 6.0 9.0 7.5 8.0 7.0 7.0 7.5 – 8.0 8.0 7.5 9.0 8.5 10.0 10.0 – 9.5 7.5 10.5 8.5 – 9.0 8.5 11.0 11.0 9.5 10.0 10.0 11.0 10.0 9.0 9.0 – 7.0 – 7.5 8.5 10.5 11.0 [9.5] 9.0 8.0 11.0 11.0 6.0 10.5 10.5 10.5 8.0 11.0 [8.0] 11.0 [10.0] 11.0 8.0 [11.0] 9.0 7.5 8.0 10.0 8.0 9.0 9.5 11.0 6.5 10.0 10.0 7.5 9.0 11.0 11.0 Type A2 A1 A3–5 A2 A1–2 A1–2 A1 A3 D A3–5 A1–5 B C D A1 A4–5 A1 A1 A4 A1 A3 A4 A1 A4 B A1 A4 B A1 A4 B A1–4 C D A1 A4–5 D C C A4 A1 A4 A5 A1–2 B A1–2 A5 A1–2 B A1–2 BC A1 A3 D A1 A4–5 D A1 A4 D A1–2 A4–5 D A1–2 A4–5 A1 A3 B D B A2 A1–2 A4–5 A1–2 A1 A3 A1 A3 A1 A3 A1 A3 A1 A4–5 B A1–2 A4–5 B A1–2 A4–5 A1 A4–5 A1 A4–5 B A4–5 B A1–2 A4–5 A5 A1 A4–5 B A1 A4–5 A1–2 A5 B A1 A4–5 A1 A4 A3 A5 B A1–2 A3 A5 B A1 B E A1 A4–5 A1–2 A4–5 C A1 A1 A4–5 A2 B A1 A4–5 B A1 A4–5 A1 A3–5 B A1 A4 A1 A4–5 A1–2 A4–5 A1–2 A5 B C E A1–5 C A1–2 A4–5 B C 183 P. Galli / Tectonophysics 324 (2000) 169–187 Table 4 (continued ). Epicentral parameters of the seismic events Sites with indication of liquefaction Ref. Date Latitude Longitude I o M e M Area s Sitea Latitude 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.300 38.580 38.580 38.580 38.900 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 38.780 – – 42.564 42.564 42.580 43.980 43.505 45.420 45.420 41.500 41.500 41.500 41.500 41.500 41.500 37.600 37.600 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 15.970 16.200 16.200 16.200 16.600 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 16.470 – – 12.777 12.777 12.660 12.580 12.208 9.850 9.850 14.470 14.470 14.470 14.470 14.470 14.470 15.130 15.130 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 7.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 – – 8.0 8.0 8.0 8.0 8.5 8.0 8.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 9.0 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.98 6.98 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.56 6.56 6.56 – 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.96 6.98 6.98 6.98 6.98 6.98 6.98 6.98 – – 5.15 5.15 – 5.59 5.59 5.59 5.59 6.56 6.56 6.56 6.56 6.56 6.56 6.22 6.22 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7 7 7 5 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 – – 5.5 5.5 5.5 5.5 5.9 5.5 5.5 6.7 6.7 6.7 6.7 6.7 6.7 6.2 6.2 38 38 38 38 38 38 38 39 38 38 38 39 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 39 38 38 38 38 38 38 38 42 42 42 44 43 45 – 41 40 41 41 41 41 37 37 37.600 40.520 15.130 15.730 9.0 8.0 Oppido V. ( Tricuccio R. landslide) Pedavoli [2] Polistena Vecchia Polistena V. (C. Giuseppina) Radicena (T. Razza) Reggio Calabria (I Giunchi) Rise del R. Mesima* Rosarno (C. di Simeone-Mesima) Rosarno (Mesima Bridge) San Fili* San Floro* [1] S.Lucido (Lago di M.S.Giovanni) San Procopio (La Conturella) San Procopio (C. Ruffino) San Procopio (La Goletta) San Procopio (Bombardara) Sant’Anna di Seminara Santa Crist. Aspromonte Santa Giorgia Scido [2] Scrofario* Seminara Serra S. Bruno [1] Soriano Calabro [1] Sitizano Terranova ( Vecchia) Torre Faro Tresilico Trodi [1] Verapodio [ Varapodio] Monteleone [ Vibo Valentia] [1] Laureana - Vallelonga Reggio Calabria (I Giunchi) Soriano Calabro Catanzaro (Quart. S. Giuseppe) Acconia Borgia Cortale Curinga Fondaco del Fico Gizzeria* Iacurso Laureana di Borrello Maida Plain Montauro Monterosso Calabro Pantano di Tremola Pogliolo Roccelletta Sant’Eufemia Vetere* S. Pietro a Maida Squillace (River Palagoria)* Squillace (Podere Teti)* Vena di Maida Monteleone [ Vibo Valentia] [1] Cortale Curinga-Cortale (La Con.) [2] Piediluco (S.Antonio church) S.Nicolo’ Il Canale Rimini Selci Ticengo Localita’ indefinita Boiano Calitri ( Vallone dei monaci) [2] Cantalupo nel Sannio Montac[g]ano Bosso [Busso] Morcone Ramondetta Paterno neighbour (Cav.Alessi prop.) [2] Paraspolo (near R.Simeto) Tito 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.05 1783.02.07 1783.02.07 1783.02.07 1783.02.27* 1783.03.28 1783.03.28 1783.03.28 1783.03.29 1783.03.28 1783.02.05 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.03.28 1783.06.30 1783.106.30 1785.10.09 1785.10.09 1785.10.13** 1786.12.25 1789.09.30 1802.05.12 1802.05.12 1805.07.26 1805.07.26 1805.07.26 1805.07.26 1805.07.26 1805.07.26 1818.02.20 1818.02.20 148 1818.02.20 149 1826.02.01 Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Southern Calabria Soriano Seem Soriano Serre Soriano Serre Catanzaro Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Central Calabria Callabria Callabria Piediluco Piediluco Rieti Plain Rimini Val Tiberina Soncino Soncino Molise Molise Molise Molise Molise Molise Catanese Catanese 6.22 6.2 Catanese 5.72 5.2 Tito 17 14 24 24 20 06 37 30 29 28 50 17 17 17 17 16 19 15 15 15 20 20 35 36 17 19 16 18 17 19 40 39 06 36 54 50 50 50 49 50 59 51 29 51 45 44 50 45 49 57 51 48 48 53 40 50 50 32 31 30 04 31 22 29 54 31 38 33 20 35 34 Longitude 15 15 15 15 16 05 16 35 16 50 15 16 15 55 15 16 16 50 16 10 15 15 30 15 40 15 15 10 15 15 15 16 15 16 16 15 20 16 15 15 15 15 16 16 50 15 16 51 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 10 12 50 12 50 12 12 12 9 – 14 15 14 14 14 14 42 15 14 54 58 55 04 05 01 38 09 59 59 02 31 04 54 53 54 53 53 57 56 56 01 52 20 14 56 00 39 59 55 59 06 17 38 14 35 16 31 25 19 15 12 23 05 04 31 16 35 19 36 14 22 32 32 25 06 25 19 45 44 44 34 12 50 20 20 00 10 45 20 05 0 10 20 35 35 45 09 10 50 30 d I s (km) Type 1 9 15 15 6 35 38 22 22 19 76 111 6 8 6 7 8 5 6 6 5 10 45 40 4 4 28 1 5 2 42 11 71 4 2 19 7 8 14 20 32 11 47 22 5 18 11 14 12 28 12 6 6 12 34 – – 4 4 10 10 1 6 – 11.0 11.0 10.5 10.5 11.0 8.5 8.0 10.0 10.0 [10.0] [6.0] 7.0 10.5 10.5 10.5 10.5 10.0 11.0 11.0 11.0 [11.0] 10.0 7.0 8.0 11.0 11.0 8.0 11.0 11.0 11.0 7.5 8.5 6.5 10.5 6.0 9.5 11.0 10.5 9.5 8.0 6.5 9.5 7.5 9.5 9.5 8.5 10.5 8.5 8.5 7.0 9.5 10.0 10.0 9.5 8.0 – – 9.0 9.0 – 8.0 9.0 8.0 – A1–2 A4–5 B A1 A3–5 A1–2 A4 B A1–2 A4–5 A2 A4–5 B A1–2 A4–5 B A2 A5 A1–2 A4–5 A1 A1–2 A4–5 B A3 B A3 A5 A1 A4 A5 A5 A2 B A3 A1 A3–5 A3 B A1 A3–5 A1–5 B B C A1 A3–5 B A2 A3 B C A1 A4–5 A1–2 B A2 E A1–2 A4–5 A1 A4–5 A2 A2 B A2 B A1 A4–5 A1–2 A4–5 A1 A4–5 B A1 A4–5 A2 A1–2 A1 A4–5 A1 A4–5 A1 A4–5 A2 A1–2 A4–5 B A1 A4 A1 A4–5 A1–2 A4–5 A1–2 A4–5 A1 A4–5 A5 A2 A1 A4–5 A1 A4–5 A4–5 A1 A4 A1 A4–5 A1 A4–5 A1 A3 A1 E A1–2 A5 C A1–2 A3 A1 A5 9.0 6.0 10.0 7.0 10.0 8.0 A1 A4 A1 A4 A1 A3–5 ED A1–2 A5 A1–2 A5 A1–2 A3 A5 28 26 24 2 39 105 34 6 40 20 07 03 10 20 7.5 25 37 24 15 15 05 22 40 35 00 15 40 40 22 8 6.5 9.0 A1–4 A1–2 D 184 P. Galli / Tectonophysics 324 (2000) 169–187 Table 4 (continued ). Epicentral parameters of the seismic events Sites with indication of liquefaction Ref. Date Latitude Longitude I o M e M Area s Sitea Latitude 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 219 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 42.967 42.967 42.967 42.967 39.070 39.070 39.070 44.770 39.570 43.53 1 43.531 43.531 43.531 43.531 43.531 43.531 39.250 39.250 39.250 40.350 40.350 40.350 40.350 40.350 39.220 39.220 46.150 44.070 44.070 41.689 43.920 43.920 43.920 43.920 46.400 41.720 41.867 38.280 38.280 38.280 38.280 38.280 37.216 45.580 44.093 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.670 38.150 38.150 38.150 38.150 38.150 38.150 43.150 41.976 40.976 41.976 41.976 41.976 41.976 41.976 41.976 5.59 5.59 5.59 5.59 6.56 6.56 6.56 5.45 6.22 5.45 5.45 5.45 5.45 5.45 5.45 5.45 6.10 6.10 6.10 6.98 6.98 6.98 6.98 6.98 6.10 6.10 6.34 5.72 5.72 6.22 6.34 6.34 6.34 6.34 – 5.15 – 6.10 6.10 6.10 6.10 6.10 – 5.59 – 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 7.18 7.18 7.18 7.18 7.18 7.18 5.30 6.98 6.98 6.98 6.98 6.98 6.98 6.98 6.98 5.9 5.9 5.9 5.9 6.4 6.4 6.4 5.2 6.4 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.4 6.4 6.4 7 7 7 7 7 6.4 6.4 6.4 5.2 5.2 5.2 6.4 6.4 6.4 6.4 5 5.2 5 5.9 5.9 5.9 5.9 5.9 4.2 5.5 5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.3 7.3 7.3 7.3 7.3 7.3 5.1 7 7 7 7 7 7 7 7 Budine Corvia Cantagalli Loc. Indef. Crocchio River (Giardino di C.) Targine River Steccato plain San Leonardo (Parma) S. AngeloFondi Lorenzana-P.no T.Tora [2] Lorenzana (Casini Serughi) Luciana (Podere Acciaioli) Luciana (Podere Fondo alla Grotta) Luciana (Podere Le Querce) Torrente Fine (Podere SS. Marie) Podere Stagno Cerisano Valle del Drago Cocchiano (C.da Miceli) Marsico [2] Saponara (Agri river banks) Atena (riverbanks) Viggiano [2] Loc. Indef. Tore del Ponte Valle del Drago Paludi del Lago S. Croce Cervia Cesenatico Manfredonia Albenga Pietra Ligate Ceriale Vado Ligure But river Monte Saraceno Punta delle Pietre Nere Cosoleto (Contrada Filesi) Cosoleto (Contrada Sal[r]mata) Ganzirri (Pantano) Messina Forms Reggio Calabria (Acciarello) Contrada Racineri Salò Pieve Fosciana (Pradilana) Amantea-Tropea Amaroni (Loc. Cafio) [2) Curinga (near the shore) [2] Feroleto Antics [2] Maierato (Contrada Angitola) [2] Marcellinara Valle del Drago Piana di Rosarno [2] Sambiase Seminara (Contrada Lago) Bivona [2] S. Sisti [S.Sisto dei Valdesi ] [2] Martirano (River Sa(v)uto) [2] Sova(e)reto (Ponds Nunziante) Vallelonga Ganzirri (Pantano) Messina (Cittadella) Messina (P.ta S. Raineri) Messina (Cso Garibaldi, B.d.S) Reggio Calabria Rumboli Macereto Concerviann Fucino Strada 11 Fucino Strada 12 [2] Fucino Strada 24 Pescina S.Benedetto Molino di Venere Bacinetto canal 42 42 42 – 38 38 38 44 39 – 43 43 43 43 43 43 39 39 39 40 40 40 40 – 39 39 46 44 44 41 44 44 44 44 46 41 41 38 38 38 38 38 37 45 44 – 38 38 38 38 38 39 38 38 38 38 39 39 38 38 38 38 38 38 38 – 43 42 42 42 41 42 42 41 41 1832.01.13 1832.01.13 1832.01.13 1832.01.13 1832.03.08 1832.03.08 1832.03.08 1832.03.13 1836.04.25 1846.08.14 1846.08.14 1846.08.14 1846.08.14 1846.08.14 1846.08.14 1846.08.14 1854.02.12 1854.02.12 1854.02.12 1857.12.16 1857.12.16 1857.12.16 1857.12.16 1857.12.16 1870.10.04 1870.10.04 1873.06.29 1875.03.17 1875.03.17 1875.12.06 1887.02.23 1887.02.23 1887.02.23 1887.02.23 1889.10.13 1893.08.10 1894.03.25 1894.11.16 1894.11.16 1894.11.16 1894.11.16 1894.11.16 1898.11.02 1901.10.30 1902.03.05 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1915.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1905.09.08 1908.12.28 1908.12.28 1908.12.28 1908.12.28 1908.12.28 1908.12.28 1909.08.25 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1915.01.13 12.659 12.659 12.659 12.659 16.900 16.900 16.900 10.470 16.730 10.500 10.500 10.500 10.500 10.500 10.500 10.500 16.300 16.300 16.300 15.850 15.850 15.850 15.850 15.850 16.330 16.330 12.380 12.550 12.550 15.677 8.070 8.070 8.070 8.070 13.000 16.080 15.323 15.870 15.870 15.870 15.870 15.870 14.495 10.500 10.463 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 16.070 15.680 15.680 15.680 15.680 15.680 15.680 11.403 13.602 13.602 13.602 13.602 13.602 13.602 13.602 13.602 8.5 8.5 8.5 8.5 9.5 9.5 9.5 7.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.5 9.5 9.5 11.0 11.0 11.0 11.0 11.0 9.5 9.5 9.5 8.0 8.0 7.5 9.0 9.0 9.0 9.0 6.0 8.0 7.0 8.5 8.5 8.5 8.5 8.5 5.5 8.0 7.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 7.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 Foligno Foligno Foligno Foligno Crotone area Crotone area Crotone area Reggiano Rossano Orciano Pisano Orciano Pisano Orciano Pisano Orciano Pisano Orciano Pisano Orciano Pisano Orciano Pisano Cosentino Cosentino Cosentino Basilicata Basilicata Basilicata Basilicata Basilicata Cosentino Cosentino Bellunese Rimini Rimini S. Marco in Lamis Western Liguria Western Liguria Western Liguria Western Liguria Tolmezzo Gargano Lesina Bagnara Calabra Bagnara Calabra Bagnara Calabra Bagnara Calabra Bagnara Calabra Val di Noto Salò Garfagnana G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia G.S.Eufemia Messina Strait Messina Strait Messina Strait Messina Strait Messina Strait Messina Strait Murlo Fucino Plain Fucino Plain Fucino Plain Fucino Plain Fucino Plain Fucino Plain Fucino Plain Fucino Plain Longitude 57 12 56 23 12 56 00 12 – 57 40 16 59 16 56 30 16 48 10 37 16 – 32 30 10 33 02 10 32 54 10 32 52 10 29 05 10 35 56 10 16 16 22 15 16 20 40 16 21 15 17 30 15 27 15 20 15 – 12 20 16 22 15 16 08 30 12 16 12 12 12 37 15 03 8 09 8 06 8 16 8 24 30 13 42 16 54 15 15 20 15 17 20 15 15 20 15 11 15 05 15 13 14 36 10 07 46 10 – 48 16 50 16 58 16 42 16 56 16 22 15 16 29 15 58 16 20 25 15 42 34 16 22 37 16 05 00 16 30 41 15 39 16 15 15 11 10 15 11 30 15 11 20 15 06 15 – 09 11 19 12 03 13 02 13 59 13 01 13 00 13 59 24 13 59 39 13 38 40 06 38 21 48 13 55 55 15 20 38 31 30 29 30 32 21 11 11 09 48 54 31 54 30 18 36 56 56 10 36 11 20 21 24 54 13 17 14 27 00 03 21 56 55 36 33 39 24 31 25 38 30 00 27 16 23 13 30 11 59 16 52 06 08 12 57 17 37 34 34 33 39 30 55 20 40 10 30 13 30 30 11 59 55 40 10 30 30 17 59 29 31 38 39 37 38 19 33 03 d I s (km) 3 4 4 – 15 10 14 11 10 – 2 2 2 2 6 14 10 16 16 4 8 30 5 – 24 21 4 27 19 20 19 30 24 49 1 3 4 7 4 23 30 29 8 3 5 – 36 25 43 13 47 78 22 37 40 5 79 48 20 19 12 10 10 11 6 – 10 63 13 9 3 6 3 3 5 8.5 8.5 8.5 – 8.5 9.0 9.0 7.0 9.5 8.0 8.0 8.0 8.0 8.0 8.0 6.0 8.5 8.5 8.5 9.0 11.0 10.0 10.0 – 7.0 6.5 8.0 7.0 8.0 7.0 6.5 7.0 7.0 6.0 5.0 9.0 7.0 8.5 8.5 7.5 7.0 7.5 6.5 8.5 – 7.0 9.0 8.0 9.0 7.0 8.5 8.0 8.0 8.0 8.5 7.5 9.5 8.0 7.0 11.0 11.0 11.0 11.0 11.0 – 8.0 8.0 11.0 11.0 11.0 10.0 11.0 10.0 8.0 Type A1 A4 A4–5 A1 A4 D A1 A4 A1 A3 A1 A4 A1 A4–5 D A2 A1–2 A3 A5 D A1–5 A2 A3 A4 A3 A5 A2 A5 A2 A4 A1 A3 A1 A3 A5 A1–2 A4 A1 A4 A5 B A1 A1–2 A3 A5 B A5 A4–5 A2 A1 A1–2 A1–2 A4 A1–2 A1 A4–5 A1 A4–5 B A1 A1 A1 A1 A3 A1 A3 A1 A4 BC B A3 A1 B A4 A1 A4 D A1 A3 A1 A4 A1 A4 A1 A4 A1 A4 A1 A4–5 D A1 A4–5 A1–2 A1 A3 A1 A4 A1 A4 A1 A4 A1–2 A1–2 A1 A4 A1 A4–5 A1 A4–5 A1 A4–5 BC A1 A4–5 A1–2 C A1 A3–5 A1 A4–5 B C A4–5 A4–5 B A1–2 A1–4 A1–4 185 P. Galli / Tectonophysics 324 (2000) 169–187 Table 4 (continued ). Epicentral parameters of the seismic events Sites with indication of liquefaction Ref. Date Latitude Longitude I o M e M Area s Sitea Latitude Longitude 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1915.01.13 1916.05.17 1916.08.16 1916.08.16 1916.08.16 1916.08.16 1916.08.16 1917.04.26 1919.06.29 19 19.06.29 1919.09.10 1930.07.23 1930.07.23 1968.01.15 1968.01.15 1968.01.15 41.976 40.976 40.976 40.976 41.976 44.000 43.970 43.970 43.970 43.970 43.970 43.465 43.950 43.950 42.793 41.050 41.050 37.770 37.770 37.770 13.602 13.602 13.602 13.602 13.602 12.630 12.670 12.670 12.670 12.670 12.670 12.125 11.480 11.480 11.788 15.370 15.370 12.980 12.980 12.980 11.0 11.0 11.0 11.0 11.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 8.0 10.0 10.0 10.0 10.0 10.0 6.98 6.98 6.98 6.98 6.98 5.72 5.59 5.59 5.59 5.59 5.59 5.85 5.98 5.98 4.83 6.78 6.78 6.45 6.45 6.45 7 7 7 7 7 6 6.1 6.0 6.0 6.0 6.0 5.6 6.3 6.3 5.2 6.7 6.7 5.9 5.9 5.9 Fucino Plain Fucino Plain Fucino Plain Fucino Plain Fucino Rimini area Rimini urea Rimini area Rimini urea Rimini urea Rimini area Monterchi Mugello Mugello M. Amiata Irpinia Irpinia Belice Valley Belice Valley Belice Valley 42 41 41 – – 44 43 43 43 44 44 43 43 43 42 41 41 37 37 37 00 40 13 31 58 12 13 36 43 13 37 – – 03 12 34 58 12 44 59 12 40 55 12 55 01 12 39 04 12 34 30 12 08 55 30 11 26 56 30 11 24 50 11 47 02 15 17 12 15 02 42 13 16 54 13 06 44 28 13 00 53 38 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 1968.01.15 1968.01.15 1968.01.15 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.16 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.05.06 1976.09.15 1976.09.15 1976.09.15 1980.11.23 1980.11.23 1980.11.23 37.770 37.770 37.770 46.241 46.241 46.241 46.240 46.241 46.240 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.240 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.241 46.250 46.250 46.250 40.850 40.850 40.850 12.980 12.980 12.980 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.1 19 13.119 13.119 13.119 13.119 13.119 13.1 19 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.119 13.1 19 13.119 13.119 13.119 13.119 13.119 13.119 13.120 13.120 13.120 15.280 15.280 15.280 10.0 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 8.5 8.5 8.5 10.0 10.0 10.0 6.45 6.45 6.45 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.22 6.22 6.22 6.88 6.88 6.88 5.9 5.9 5.9 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 5.9 5.9 5.9 6.9 6.9 6.9 Belice Valley Belice Valley Belice Valley Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Friuli Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Fosso 13 Trasacco plain Sora Undef. loc 1 Undef. loc. 2 Rimini Cattolica Ghetto delle Fontanelle Pesaro Riccione Rimini Monterchi-Citerna River Sieve (Piano di Cistio) River Sieve (Piano di Rabatta) Ponte a Rigs Carosina Montecalvo Irpino [2] Bisacquino Camporeale C.da Mulimo Nuovo (Bridge on R.Belice) C.da Mulino Nuovo [2] Contessa Entellina Timpone Perollo Avasinis (Rio Mazzolar) Avasinis Avasinis Avasinis Avasinis Avasinis Avasinis Bordano (I Salez) Bordano (I Salez) Bordano (I Salez) Bordano (alveo del R. Tagliamento) C. Cucchiaro C.le Baracchino C.le Baracchino (C.Toful-Segheria) C.le Baracchino (C. Toful ) C.le Baracchino C.le Baracchino Campo Buia (C. Ledra-Tagliamento) Campo Buia (Rio Rampo) Campo Buia (C. Garzolino) Campo Buia (Campo) Campo Buia (Sorg. Rio Gelato) Godo sud La Roggia Laghetti Parar Lessi Lessi Lessi (Campo Lessi) Lessi (River Ledra) Maiano nord Mels (C.sa Benedetti)) Mels Mels (Masseria di q. 170) Molino del Cucco Molino del Cucco Tomba est Tomba di sotto Pers Pers Rivoli di Osoppo San Floreano (M.no Pevar) Trasaghis (C. Artificiale) Tomba di Buia (R. Tagliamentuzzo) Tomba di Buia (Rio Gelato) Tomba di sotto - Presa Avasinis C.le Baracchino Lago di Ragogna Alta Valle Agri Alto Sele Buccino 37 37 37 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 – 40 40 44 44 42 17 17 07 17 17 17 17 18 18 18 18 14 12 12 12 11 11 14 14 03 13 13 16 06 13 15 14 14 14 11 11 10 10 13 13 02 13 10 10 13 13 07 02 12 12 17 12 10 08 18 13 13 12 47 13 50 13 33 13 30 13 22 13 20 13 35 13 20 13 22 13 13 13 12 13 52 13 23 13 07 13 00 13 49 13 40 13 22 13 10 13 50 13 43 13 30 13 13 13 08 13 03 13 03 13 55 13 43 13 33 13 07 13 00 13 48 13 54 13 28 13 17 13 55 13 40 13 50 13 40 13 05 13 45 13 07 13 50 13 45 13 36 13 13 13 13 – 47 15 40 15 00 11 56 03 03 03 03 03 03 03 06 06 06 06 05 02 03 03 04 04 05 06 06 05 05 08 08 00 07 07 06 07 04 06 06 06 02 02 05 04 05 05 04 06 03 04 05 04 03 04 00 14 20 30 30 42 36 12 31 08 25 38 04 03 35 31 54 54 36 36 59 08 08 43 03 17 47 45 36 26 58 22 26 50 35 26 20 40 35 56 47 00 40 17 25 20 55 59 17 27 58 Type d I s (km) 7 1 29 – – 8 5 2 20 5 14 4 4 6 4 7 33 26 18 4 8.0 8.0 9.5 – – 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 8.5 8.5 9.5 9.0 7.5 8.0 9.0 4 18 9 8 8 7 8 7 7 9 7 7 7 7 2 7 6 6 6 6 2 1 2 2 3 4 4 8 1 1 1 1 7 6 7 7 6 6 4 3 7 7 4 1 6 5 4 4 7 7 13 – 8 20 9.0 8.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 10.0 10.0 9.0 10.0 10.0 10.0 10.0 8.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0 8.0 8.0 9.0 9.0 9.5 9.0 9.0 9.0 8.0 8.0 8.0 6.5 10.0 8.0 A1–4 A1–4 A4–5 C C A1 A1–2 A4–5 A4–5 A1 A1 A4 C A1–2 A4–5 A1 A4–5 A1 A4–5 A2 A1 A1 A1 A4–5 A1 A4–5 A1 A5 A1 D A1 A4–5 A1 A4–5 D A1 A4–5 B D A1 A4–5 B D A1 A4–5 B D A1 A4–5 B D A1 A4–5 B D A1 A4–5 B D C A1 A4–5 D A1 A4–5 D A1 A4–5 D A1 A4–5 D D A1 A3–5 C D A1 A3–5 C D A1 A3–5 C D A1 A3–5 C D A1 A3–5 C D A3 D A3 D A3 D A3 D D A1 A4–5 C D A3–5 B D D A3 A4 D A3 A4 D A3 A4 D A3 A4 D A3 D A1 A4–5 D A1 A4–5 D A3 C A2 A3 A5 C D A2 A3 A5 C D A4 D D A1 D CD D D A4 D D D D C A1 A4–5 D A1–2 D A1 A4 D A1 A4 B 186 P. Galli / Tectonophysics 324 (2000) 169–187 Table 4 (continued ). Epicentral parameters of the seismic events Sites with indication of liquefaction Ref. Date Latitude Longitude I o M e M Area s Sitea Latitude 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 40.850 37.270 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88 5.30 6.9 6.9 8.9 6.9 6.9 6.9 6.9 8.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 4.7 Calitri Lago Laceno Lioni (Affl. sin. V.ne Acqua.Bianca) Montecalvo Irpino Muro Lucano Muro Lucano Muro Lucano Senerchia Pontecagnano (Torre Picentina) Ruvo deI Monte S. Giorgio La Molara S. Marzano del Sarno S. Michele di Serino S. Michele di Serino (R. Sabato) S. Michele di Serino (R. Sabato) Scafati Sturno Volturara Irpina (P. del Dragone) Augusta 40 40 40 41 40 40 40 40 40 40 41 40 40 41 40 41 41 40 37 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1990.12.13 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.280 15.070 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 7.5 Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Irpinia- Basilicata Augusta 54 49 53 02 44 44 46 43 37 51 16 46 52 52 52 45 01 52 14 Longitude 15 15 58 15 15 18 15 40 15 03 15 15 46 14 15 14 14 35 14 35 14 25 14 36 14 15 52 14 15 26 06 09 02 29 29 27 11 51 32 55 35 51 51 51 56 07 56 13 08 27 32 55 50 21 32 42 55 55 d I s (km) 14 16 12 44 22 20 18 17 43 21 55 59 36 35 35 30 23 28 14 8.0 8.0 10.0 7.0 8.0 8.0 8.0 9.0 7.0 8.0 7.0 6.5 9.0 9.0 9.0 6.0 8.0 8.0 8.0 Type D D A1 A1 A1 A1 A1 D A1 A1 A1 D A1 A4 A4 A1 D A1 A5 A4–5 B D A5 A4–5 A4–5 A4–5 A4–5 A5 A5 A4–5 C D A3 B D A4–5 CD D a * Uncertain indication between February 5 and March 28, 1783. [1] Doubtful indication. [2] Indication relative to a wide or undefined area. The coordinates indicate a central point in the possible area. References Ambraseys, N.N., 1991. Engineering seismology. Int. J. Earthquake Eng. Struct. Dyn. 17, 1–105. Berardi, R., Margottini, C., Molin, D., Parisi, A., 1991. Soil liquefaction: case histories in Italy. Tectonophysics 193, 141–164. Boschi, E., Ferrari, G.Gasperini, P., Guidoboni, E., Smriglio, G., Valensise, G. ( Eds.), 1995. Catalogo dei forti terremoti in Italia dal 461 a.C. al 1980 ING–SGA, Bologna, 973 pp. Camassi, R., Stucchi, M., 1997. NT4.1 a parametric catalog of damaging earthquakes in the Italian area. Gruppo Nazionale per la Difesa dai Terremoti, Milano. CEE–CETS–CNR, 1985. Liquefaction of Soils During Earthquakes. National Academic Press, Washington, DC, 240 pp. CPTI, 1999. Working Group Catalogo Parametrico Terremoti Italiani, ING, GNDT, SGA e SSN. Editrice Compositori, Bologna, 88 pp. Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in Central Apennines. Tectonophysics 308, 143–170. Galadini, F., Galli, P., 2000. Active tectonics in the central Apennines (Italy) — input data for seismic hazard assessment. Natural Hazards, in press. Galadini, F., Galli, P., Leschiutta, I., Monachesi, G., Stucchi, M., 1999. Active tectonics and seismicity in the area of the 1997 earthquake sequence in Central Italy: a short review. J. Seismol. 2, 1–9. Galli, P., Ferreli, L., 1995. A methodological approach for historical liquefaction research. In: Serva, L., Slemmons, B. ( Eds.), Perspectives in Paleoseismology. Association of Engineering Geologists Special Publication 6., 36–48. Galli, P., Meloni, F., 1993. Liquefazione Storica. Un catalogo nazionale. Quat. Ital. J. Quat. Sci. 6, 271–292. Galli, P., Meloni, F., Rossi, A., 1999. Historical liquefaction in Italy: relationship between epicentral distance and seismic parameters. European Geophysical Society XXIIII General Assembly Natural Hazards NH3, The Hague, Netherlands, 19–23 April. Gasperini, P., Bernardini, F., Valensise, G., Boschi, E., 1999. Defining seimogenic sources from historical earthquake felt report. Bull. Seismol. Soc. Am. 89, 94–110. Keefer, D.K., 1984. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95, 406–421. Kuribayashi, E., Tatsuoka, F., 1975. Brief review of liquefaction during earthquakes in Japan. Soil and Foundations 15, 81–92. Monachesi, G., Stucchi, M., 1998. DOM 4.1 an intensity database of damaging earthquakes in the Italian area. http:// emidius.itim.mi.cnr.it/DOM/home.html Obermeier, S.F., 1996. Using liquefaction-induced features for paleoseismic analysis. In: McCalpin, J. (Ed.), Paleoseismology. Academic Press, San Diego, 588 pp. Papadopoulos, G.A., 1993. The 20 March 1992 South Aegean, Greece, earthquake (M =5.3): possible anomalous effect. s Terra Nova 5, 399–404. Papadopulos, G.A., Lefkopulos, G., 1993. Magnitude–distance relations for liquefaction in soil from earthquakes. Bull. Seism. Soc. Am. 83, 925–938. Sarconi, M., 1784. Historia de Fenomeni del Tremuoto avvenuto nella Calabria e nel Valdemone nell’anno: Posti in Luce alla Reale. Acc. Delle Scienze e delle Belle Lettere di Napoli, Napoli. Tinsley, J.C., Youd, T.L., Perkins, D.M., Chen, A.T.F., 1985. Evaluating liquefaction potential. In: Zijoni, J.I. (Ed.), Evaluating Earthquake Hazards in the Los Angeles Region — P. Galli / Tectonophysics 324 (2000) 169–187 An Earth-Science Perspective, U.S. Geol. Surv. Prof. Paper 1360, 263–316. Troften, E., 1997. Neotectonics and paleoseismicity in southern Sweden. Ph.D. Thesis, Stockolm University, Akademitryck AB, Edsbruck, 124 pp. Youd, T.L., 1977. Discussion of ‘Brief review of liquefaction 187 during earthquakes in Japan’ by E. Kuribayashi and F. Tatsuoka, 1975, in Soil and Foundations 15, 81–92. Soil and Foundations 17, 82–85. Youd, T.L., Perkins, D.M., 1978. Mapping liquefactioninduced ground failure potential. J. Geotechnol. Div. ASCE GT4, 433–446.
© Copyright 2026 Paperzz