New empirical relationships between magnitude and distance

Tectonophysics 324 (2000) 169–187
www.elsevier.com/locate/tecto
New empirical relationships between magnitude
and distance for liquefaction
Paolo Galli *
Servizio Sismico Nazionale, Via Curtatone 3, I-00185 Rome, Italy
Received 1 November 1999; accepted for publication 22 April 2000
Abstract
Historical research performed in the 1990s has updated previous compilations of liquefaction-induced phenomena
that occurred during the last millenium in Italy. Liquefaction indications are reported in Italy for earthquakes with
I >5–6 (MCS ) and M ≥4.2, 90% of the cases falling within 50 km of the epicenter. The recently re-evaluated seismic
o
s
parameters of the Italian historical earthquakes, together with the location of 317 indications of liquefaction features,
provide a relatively complete database, permitting the author to highlight the distribution of intensity/magnitude
values versus epicentral distance. In paleoseismic analyses these relationships may be considered a tool in evaluating
the minimum energy of an earthquake that induced liquefaction features. © 2000 Elsevier Science B.V. All
rights reserved.
Keywords: coseismic processes; engineering geology; geologic hazard; Italy; liquefaction; paleoseismicity
1. Introduction
Although the systematic study of liquefaction
features is a young discipline, it is widely accepted
that the recognition of this phenomenon (e.g. by
means of paleoseismological studies) can be
assumed as an indicator of strong past earthquakes
(i.e. Tinsley et al., 1985). However, since other
natural causes can produce or mimic liquefaction
features (e.g. structures of syndepositional origin,
due to artesian condition, formed by weathering
or in periglacial environment), the non-seismic
causes should always be investigated (see
Obermeier, 1996) in order to avoid hazardous
statements about the seismicity of an area.
* Tel.: +39-06-4444-2276. fax: +39-06-4466-579.
E-mail address: [email protected] (P. Galli)
Liquefaction is the transformation of a granular
deposit from a solid state into a liquefied state as
a consequence of the increased pore-water pressure
determined by cyclic shaking ( Youd, 1977).
Liquefaction features may vary from place to place
in geometry, type, and dimension, due to the
anomalous propagation and amplification of the
seismic waves at the surface and to the differing
site conditions (grain size and density of deposits,
position of the ground-water level ). It is therefore
sometimes difficult to recognize liquefaction in the
field, and particularly difficult through the historical description of earthquake-induced effects (Galli
and Meloni, 1993).
The most common and conclusive surficial features induced by liquefaction are sand blows that
occur both isolated (sand volcanoes; Figs. 1 and
2) or along fissures. Other clear liquefactioninduced phenomena are the lateral spreads of huge
0040-1951/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0 0 4 0- 1 9 51 ( 0 0 ) 0 01 1 8 -9
170
P. Galli / Tectonophysics 324 (2000) 169–187
Fig. 1. 1783 Calabrian earthquake. The banks of the Mesima River affected by hundreds of sand volcanoes (from an original etching
in Sarconi, 1784).
masses of soil overlying a liquefied layer or the
geometrical settlement of surficial deposits (i.e.
craters; Figs. 3–5). A typical effect on anthropic
structures is the differential settlement and tilting
of buildings, bridges and quays, the swelling of
pavement of the ground-floors of buildings or
swimming-pools, and the apparent extrusion of
pillars or wells above the ground surface, due to
the sinking of the surrounding soil (Fig. 6).
All these effects are easily detectable during
earthquake field surveys, but some of them are
difficult to recognize and/or identify univocally as
due to liquefaction in the historical description of
earthquakes. This is mainly due to the convergence
of forms with other collapse features and damage
caused by seismic shaking.
Although the most impressive liquefaction features occur during strong earthquakes (M ≥6.5),
s
whose epicentral areas are located close to regions
highly susceptible to liquefaction (e.g. the alluvial
plains of South Carolina during the earthquakes
of 1886; the plains of Alaska, 1964; Nijgata, 1964;
Kobe, 1995; Izmit, 1999), the database of historical
liquefaction in Italy (Galli and Meloni, 1993; Galli
et al., 1999) also accounts for a large number of
moderate earthquakes (M ≥4.2) producing liques
faction (as for liquefaction cases induced by moderate earthquakes, see also Papadopoulos, 1993).
In fact, the Italian territory shows a remarkable
mismatching between high seismicity areas (mainly
located inside the Apennine chain) and broad
liquefaction-prone areas (the Adriatic and
Tyrrhenian coasts, and the Po River alluvial plain;
Galli and Ferreli, 1995). Among those last-mentioned regions, only Calabria, eastern Sicily, northern Apulia and, partly, the western Ligurian coast
experienced
strong
historic
earthquakes.
Nevertheless, the long tradition of historical written sources in Italy supplies data also concerning
areas characterized by moderate seismicity, allowing the recognition of 59 liquefaction features
resulting from earthquakes with M ≤5.9.
s
The liquefaction database presented here is a
completely reviewed and updated version of previous catalogs. It is the result of new systematic
historical research performed in archives and
P. Galli / Tectonophysics 324 (2000) 169–187
171
Fig. 2. 1783 Calabrian earthquake. Particular of the sand volcanoes observed in the Rosarno Plain (from an original etching in
Sarconi, 1784).
libraries utilizing only primary sources (Galli
et al., 1999).
The data suggest relationships between the epicentral distance of a liquefaction feature and the
magnitude (and intensity) of the earthquake. They
also suggest a relationship between epicentral distance and site intensity. The curves obtained
replace those reported by Galli and Meloni (1993)
172
P. Galli / Tectonophysics 324 (2000) 169–187
Fig. 3. 1783 Calabrian earthquake. Circular settlement of sandy deposits in the Rosarno Plain (from an original etching in Sarconi,
1784).
and Galli and Ferreli (1995), for which earthquakes were characterized only in terms of MCS
(Mercalli–Cancani–Sieberg) intensity, by using
different types of magnitude and re-evaluated
intensity values from Italian updated seismic catalogs (NT4.1, Camassi and Stucchi, 1997 and
CPTI, 1999).
With respect to Ambraseys (1991) and
Papadopulos and Lefkopulos (1993), the bounding equations of datapoints distribution presented
here account for a larger number of liquefaction
features (317) that occurred during 61 earthquakes
characterized by focal depths <20 km and mainly
related to normal faulting. Landslide descriptions
P. Galli / Tectonophysics 324 (2000) 169–187
173
Fig. 4. 1783 Calabrian earthquake. A crater, due to geometrical settlement of sands in the Rosarno Plain (from an original etching
in Sarconi, 1784).
174
P. Galli / Tectonophysics 324 (2000) 169–187
Fig. 5. 1783 Calabrian earthquake. Radiating fissures, probably due to local swelling in the Jerocarne area (from an original etching
in Sarconi, 1784).
have been a priori excluded from the database in
an attempt to reduce ‘contamination’ of the data
by liquefaction features of uncertain interpretation.
2. Previous studies
Kuribayashi and Tatsuoka (1975) proposed a
correlation between maximum epicentral distance
R (in kilometers) and earthquake magnitude M
e
for liquefaction cases observed in Japan. These
authors derived the equation
log R =0.77M−3.60.
(1)
e
Youd (1977) and Youd and Perkins (1978)
introduced the idea of measuring the distance from
the fault rather than from the epicenter for liquefaction that occurred during several earthquakes
in the USA. Keefer (1984) collected data from 40
historical earthquakes and presented new curves
of magnitude versus epicentral distance, showing
an exponential increase in distance at higher magnitude values.
Ambraseys (1991) used 137 liquefaction cases
from around the word, in a wide variation of
tectonic and sedimentary settings, and correlated
a uniform type of magnitude (moment magnitude,
M ) both with epicentral distance R (in centimew
e
ters; namely the farthest observed liquefaction
effect) and fault distance R (in centimeters):
f
M =−0.31+2.65×10−8R +0.99 log(R )
(2)
w
e
e
M =0.18+9.2×10−8R +0.90 log(R ).
(3)
w
f
f
According to Ambraseys (1991), for each value
of magnitude M , R and R are the maximum
w e
f
distance within which liquefaction is likely to occur
(with some exceptions).
Galli and Meloni (1993) and Galli and Ferreli
(1995) collected liquefaction data reported during
several historical earthquakes in Italy and placed
a limiting distance of liquefaction occurrence on
P. Galli / Tectonophysics 324 (2000) 169–187
175
Fig. 6. 1783 Calabrian earthquake. Apparent extrusion of the Santa Cristina well in the courtyard of the Celestini Friar’s Monastery,
close to the town of Terranova. This phenomenon is probably due to the sinking of the surrounding loose deposits (from an original
etching in Sarconi, 1784).
the basis of epicentral intensity (I , MCS scale)
o
versus epicentral distance (d, kilometers):
I =6.875+0.035(d ) (Galli and Meloni, 1993)
o
(4)
I =e2.04+0.003(d) (Galli and Ferreli, 1995).
(5)
o
Finally, Papadopulos and Lefkopulos (1993),
updating the data collected by Ambraseys (1991)
by means of new information from 30 Greek
earthquakes, two American (Loma Prieta and
Falcon State) and one from New Zealand
( Edgecumbe), provided the following equations
concerning maximum epicentral distance R (in
e
centimeters) and maximum fault distance R (in
f
centimeters):
M =−0.44+3×10−8R +0.98 log R
(6)
w
e
e
M =−2.5×10−3+9.25×10−8R +0.9 log R .
w
f
f
(7)
Considering only the Greek data they calculated
the relationships (R in kilometers):
M =3.686+1.584 log R (M >5.9)
s
e
s
(8)
M =5.647+0.181 log R (5.8≤M ≥5.9)
s
e
s
(9)
M =5.623+0.209 log R (5.8≤M ≥5.9).
s
f
s
(10)
Recently, Troften (1997) provided an example
of such studies using Eqs. (4) and (5) and similar
correlations presented by Tinsley et al. (1985) in
order to evaluate the intensity and magnitude of
the paloevents that strongly hit southern Sweden
at the beginning of the Holocene. This author
surveyed liquefaction phenomena in the varved
deposits of Vasterhanige, Olivelund and Turinge
regions by means of paleoseismic analysis and
considered the radius of the area of distribution
to be d in Eqs. (4) and (5). Analogously,
Papadopoulos (1993) calculated a minimum magnitude for the 373 BC earthquake (western Corinth
Gulf, Greece) by using the epicentral distance of
reported liquefaction features in Eq. (6).
176
P. Galli / Tectonophysics 324 (2000) 169–187
3. The database of liquefaction indication
The database used is an updated version of the
one revised by Galli et al. (1999) with the aim of
reducing the methodological problems that
affected the previous compilations (Berardi et al.,
1991; Galli and Meloni, 1993; Galli and Ferreli,
1995). Briefly, this goal was achieved by:
$ extending the historical research also to low
intensity events ( VI–VII MCS ) that were not
considered among those potentially capable of
inducing liquefaction and to seismic events
occurring far from liquefaction-prone areas
(Galli and Ferreli, 1995);
$ systematically checking the original sources that
concern liquefaction cases reported by previous
compilation (i.e. Berardi et al., 1991), thus
avoiding repetition or mistakes;
$ since seismic catalogs and compilations do not
always report environmental effects, descriptions of liquefaction features may have been left
out. The historical research has directly investigated the primary sources quoted by these
catalogs.
Original sources studied include: studies, reports
and tales concerning earthquakes, chronicles and
diaries, archivistic documentation and seismic
bulletins.
Earthquake parameters in the database include
the values of epicentral intensity (MCS ) and magnitude (M and M ) reported by Camassi and
e
s
Stucchi (1997) and CPTI (1999) and the site
intensities given by the existing database
(Monachesi and Stucchi, 1998) and Boschi et al.
(1995).
Liquefaction features have been subdivided into
several classes, depending on the type of described
effects. This classification was created on the basis
of the literary description of the phenomena
reported by historical sources and does not follow
the classification proposed by CEE–CETS–CNR
(1985) (e.g. ground oscillation, flow failure, lateral
spread). All possible lateral spread and flow failures have been a priori excluded because of the
difficulty in distinguishing between gravity driven
phenomena, triggered by the seismic shaking, and
liquefaction-induced landslide. For the same
reason we preferentially considered the descriptions concerning flat areas.
The adopted classification is:
$ A=ground fissuring and related phenomena
A1=only ground fissures
A2=water emission
A3=mud, sand and gravel venting
A4=mixed water and sand venting (sand boils)
A5=mud volcanoes
$ B=surface deformation
B1=local settlement
B2=local swelling
$ C=differential settlement of building
$ D=liquefaction
evidence s.l. or without
description.
The database (Appendix A) is divided into two
sections: epicentral parameters of the seismic
events and liquefaction site parameters.
Epicentral parameters reported include the date
(year, month, day), the geographic coordinates
( latitude and longitude), the intensity (MCS ), the
magnitude (M , derived from the intensity datae
points distribution and surface-wave magnitude
M ) and the epicentral area.
s
Site parameters include the site name, the geographic coordinates, the epicentral distance (km),
the site intensity and the type of failure. (Numbers
in the first column refer to the bibliography, which
is available from the author.)
4. Relationships between magnitude and distance
The database presented contains indication of
liquefaction related to earthquakes that occurred
in Italy from 1117 AD to 1990 ( Fig. 7). The
seismic event intensity ranged from 5.5 to 11, while
the magnitude ranged from 4.2 to 7.5 for M and
s
from 4.83 to 7.46 for M .
e
Table 1 summarizes the frequency occurrence
of liquefaction for intensity classes. The largest
number of liquefaction features come from earthquakes with epicentral intensity (MCS ) of 9–10,
10, and 11 (respectively, 57, 63, and 119 cases).
These classes account for 76% of the total number
of observed liquefaction features, while 22% are
related to intensity ranging from 7–8 to 9 and only
2% for intensity from 5–6 to 7.
If compared with the total number of earth-
P. Galli / Tectonophysics 324 (2000) 169–187
177
Fig. 7. Distribution map of liquefaction cases reported in Appendix A. Inset A is a particular concerning the 1783 Calabrian
earthquakes. Bold lines represent the possibly seismogenetic faults of the three main events ( large circles, from south to north:
February 5 and 7, and March 28).
quakes reported by the seismic catalog, indication
of liquefaction has been found for the 75% of
events of intensity 11, 25 and 30% for intensity 10
and 9–10, respectively.
Table 2 shows the relationship between M and
s
liquefaction for the period 1900–1992 (M values
s
for this period are instrumentally observed). All
the earthquakes with M ≥6.5 induced liquefaction
s
(101 cases), about 80% of all observed liquefaction
for this century.
178
P. Galli / Tectonophysics 324 (2000) 169–187
Table 1
Number of liquefaction cases per intensity class. Column 3 is
the number of earthquakes that induced liquefaction, to be compared with the total number of events existing in the CPTI
(1999; column 4) seismic catalog per intensity class
Intensity
class
No. of
liquefactions
No. of
events
Events in
CPTI
11
10
9–10
9
8–9
8
7–8
7
6–7
6
5–6
119
63
57
16
20
18
15
4
1
1
1
9
6
8
7
5
9
4
4
1
1
1
12
24
26
50
46
85
121
381
286
876
412
Table 2
Number of liquefaction cases per M interval. Column 3 is the
s
number of events that induced liquefaction, to be compared
with the total number of events existing in the CPTI (1999;
column 4) seismic catalog per magnitude interval class
M
s
interval
No. of
liquefactions
No. of
events
Events in
CPTI
7.5
7–7.3
6.5–6.9
6–6.4
5.5–5.9
5–5.4
4.7
15
19
67
11
11
3
1
1
2
3
3
4
2
–
1
2
3
8
32
123
–
All the data for which site parameters were
available have been considered for the correlation
of epicentral distance versus both epicentral intensity and magnitude (M and M ). Generally speaks
e
ing, 46% of liquefaction cases occurred within
10 km from the epicenter, 66% within 20 km, 79%
within 30 km, 86% within 40 km, and 90% within
50 km (see Fig. 8). The distance between liquefaction features and the fault that produced the
earthquake was not taken into account in this
work due to the difficulty of relating earthquakes
to seismogenetic faults in Italy (Galadini et al.,
1999; Galadini and Galli, 2000; e.g. inset A of
Fig. 8. Distribution of earthquake-induced liquefaction cases in
terms of epicentral intensity (MCS ) and epicentral distance.
The bounding equation is reported in the text as Eq. (11).
Fig. 7, which shows the three possibly seismogenetic faults for the 1783 Calabrian earthquakes).
Fig. 8 shows the relationship between epicentral
intensity I and distance R . The distribution of
o
e
data clearly indicates the limits of occurrence of
the phenomenon that decreases exponentially with
the distance. Only two cases fall out from the
general trend, one, which occurred in 1117, being of
not unequivocal interpretation. The bounding
equation determined from these data is:
I =1.6+4.3 log(R ).
(11)
o
e
Fig. 9A shows the relationship between magnitude and distance for liquefaction that occurred
between 1117 and 1990. This distribution is also
bounded by an exponential limit which is also
recognizable for the data concerning this last century (Fig. 9B). The bounding equation for this
dataset is:
M =1.0+3.0 log(R )
s
e
while considering only
(12)
the
(instrumentally)
P. Galli / Tectonophysics 324 (2000) 169–187
179
Fig. 9. Distribution of earthquake-induced liquefaction cases in terms of M and epicentral distance for the period 1117–1990 (A)
s
and 1900–1990 (B). M values in (B) are from instrumental measurements. The bounding equations are reported in the text as Eqs.
s
(12) and (13), respectively.
observed values of magnitude (period 1900–1990;
Fig. 9B) the bounding equation obtained is:
M =1.5+3.1 log(R ).
(13)
s
e
As mentioned above, a different magnitude
scale, M , has recently been introduced for historie
cal earthquakes in Italy (CPTI, 1999; Gasperini
et al., 1999). Fig. 10 shows the distribution of this
dataset, whose bounding equation is:
M =2.75+2.0 log(R ).
(14)
e
e
As for the use of these relationships, in
agreement with Obermeier (1996, p. 389), Eqs.
(11)–(14) offer the ability to place crude limits on
earthquakes intensity and magnitude, i.e. by evaluating the area (and consequently R ) interested by
e
liquefaction features, by means of paleoseismological analyses (e.g. Troften, 1997; Papadopoulos,
1993).
Table 3 presents the application of Eq. (13) to
some historical earthquakes in Italy that produced
a minimum of five observed liquefaction features.
Eq. (13) yields values of M (M in Table 3)
s
liq
Fig. 10. Distribution of earthquake-induced liquefaction cases
in terms of M and epicentral distance for the period 1117–
e
1990. The bounding equation is reported in the text as Eq. (14).
180
P. Galli / Tectonophysics 324 (2000) 169–187
Table 3
Comparison between magnitude values reported by seismic catalogs (CPTI, 1999; NT4.1, Camassi and Stucchi, 1997) and the
magnitude (M , minimum magnitude) evaluation by means of
liq
Eq. (13). Only earthquakes with more than five liquefaction
cases are reported
Event (y:m:d )
I , MCS
o
M , CPTI
e
M , NT4
s
M
liq
1627:07:30
1693:01:11
1783:02:05
1783:03:28
1846:08:14
1894:11:16
1905:09:08
1908:12:28
1915:01:13
1916:08:16
1968:01:15
1976:05:06
1980:11:23
10
11
11
10
8.5
8.5
11
11
11
8
10
9.5
10
6.78
7.46
6.88
6.98
5.45
6.1
6.88
7.18
6.98
5.59
6.45
6.34
6.88
7
7.3
7.3
6.7
5.9
5.9
7.5
7.3
7
6.1
5.9
6.5
6.9
6.47
7.24
7.51
6.68
5.05
6.08
7.38
4.85
7.08
5.6
5.89
4.3
6.98
similar to both those computed by means of
macroseismic evaluations (M and M before 1900)
e
s
and the instrumental ones (M after 1900). The
s
magnitude evaluated through Eq. (13) is considerably lower than the actual value for only two
strong earthquakes (1908 and 1976). In particular,
the 1908 event (which occurred in the marine area
between Sicily and Calabria) induced a destructive
tsunami along the surrounding Calabrian and
Sicilian coasts that probably erased many liquefaction features on the shores and monopolized the
attention of contemporary scientists and reporters.
The 1976 Friuli event was instead generated by a
blind thrust in the rocky mountains of the eastern
Alps and induced extensive liquefaction features
only in the epicentral area ( Tagliamento River
alluvial plain). Finally, it is worth noting that
M calculated are minimum values of magnitude,
liq
since Eqs. (11)–(14) are related to bounding curves
and not mean curves.
Fig. 11 compares the curves presented in this
paper [Eqs. (12)–(14)] with those provided by
Kuribayashi and Tatsuoka [1975; Eq. (1)],
Ambraseys [1988; Eq. (2)] and Papadopulos
and Lefkopulos [1993; Eq. (8)]. The most significant difference is that curves given by Eqs.
Fig. 11. Comparison among the different equations provided
by the previous authors [Eqs. (1), (2), (8)] and those presented
in this paper [Eqs. (12)–(14)].
(12) and (14), which account for the whole liquefaction dataset (years 1117–1990, using respectively M and M ), under 70–80 km of epicentral
s
e
distance are consistently below the curves given by
Eqs. (2) and (8). This implies that liquefaction
may occur in a wider magnitude/distance combination than that previously predicted by Eqs. (2)
and (8).
5. Conclusions
Galli et al. (1999) updated the Italian catalog
of liquefaction (Galli and Meloni, 1993) by means
of new systematic historical researches and by
using only primary sources. This database,
together with the recently revised values of the
parametric data from the Italian seismic catalog
(Camassi and Stucchi, 1997; CPTI, 1999), permitted the construction of empirical relationships
between the epicentral parameters of the earthquake (I , M , and M ) and the distance of the
o
s
e
observed liquefaction (R ) for 317 cases related to
e
61 different earthquakes in Italy since 1117. The
triggering events range from intensity (MCS ) 5.5
to 11, from magnitude (M ) 4.2 to 7.5, and magnis
P. Galli / Tectonophysics 324 (2000) 169–187
tude (M ) 4.83 to 7.46. Eqs. (11)–(14) are based
e
on the dataset presented in Appendix A and are
complementary to and/or update the previous
bounding Eqs. (1)–(8). As demonstrated by
Obermeier (1996), the use of these kinds of bounding equation (i.e. collecting paleoliquefaction evidence through detailed
and widespread
paleoseismic analysis; Fig. 12) can provide values
of intensity and magnitude not outrageously lower
than the actual value, and can be a comparative
tool for hazard assessment studies. This could be
particularly useful for regions characterized by
poor historical data or in evaluating earthquake
size occuring during pre-historic periods.
Finally, these empirical relationships could have
practical applications to geotechnical problems,
e.g. for designing foundations of buildings located
within a certain distance from known seismogenic
sources [R in Eqs. (11)–(14)] in liquefactione
prone regions.
181
Acknowledgements
F. Meloni and A. Rossi participated in the
construction and continuous updating of the liquefaction database. The insightful and constructive
criticism of H. Abramson and G. Papadopoulos
is gratefully acknowledged. I believe that their
revision process greatly improved this paper. I am
grateful to P. Lembo and R. De Marco who
encouraged this work.
Appendix A
The catalog of liquefaction features that have
occurred in Italy since 1117 AD revised after Galli
et al. (1999) is given in Table 4.
Fig. 12. An example of liquefaction features surveyed by means of paleoseismic analysis (in this case, a trench in the Fucino Plain,
Central Italy, 1915 Avezzano earthquake; Galadini and Galli, 1999).
182
P. Galli / Tectonophysics 324 (2000) 169–187
Table 4
Epicentral parameters of the seismic events
Sites with indication of liquefaction
Ref. Date
Latitude Longitude I
o
M
e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
45.330
44.480
44.000
37.230
44.498
40.520
44.820
44.820
44.820
44.820
44.820
44.820
44.820
44.820
44.820
44.650
41.730
41.730
41.730
4 1.730
41.730
41.730
39.030
39.030
39.030
41.280
41.280
37.130
37.130
37.130
37.130
37.130
37.130
37.130
42.470
42.470
44.930
44.235
44.235
44.235
44.235
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
6.56 6.4 Verona area
5.30 5 Bologna
5.85 6.2 Scarperia
6.4 Sortino
5.00 5.2 Borgo V. Taro
6.45 6.4 Vallo di Diano
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Ferrara
5.30 5.5 Argenta
6.78 7 Capitanata
6.78 7 Capitanata
6.78 7 Capitanata
6.78 7 Capitanata
6.78 7 Capitanata
6.78 7 Capitanata
6.98 7.3 Nicastro
6.98 7.3 Nicastro
6.98 7.3 Nicastro
6.67 7.3 Sannio-Matese
6.67 7.3 Sannio-Matese
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
7.46 7.3 Eastern Sicily
6.67 6.2 L’Aquila area
6.67 6.2 L’Aquila area
5.00 5.5 Cozie Alps
5.72 6.2 Faentino
5.72 6.2 Faentino
5.72 6.2 Faentino
5.72 6.2 Faentino
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
6.88 7.3 Southern Calabria
1117.01.03
1505.01.03
1542.06.13
1542.12.10
1545.06.09
1561.08.19
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1570.11.17
1624.03.18
1627.07.30
1627.07.30
1627.07.30
1627.07.30
1627.07.30
1627.07.30
1638.03.27
1638.03.27
1638.03.27
1688.06.05
1688.06.05
1693.01.11
1693.01.11
1693.01.11
1693.01.11
1693.01.11
1693.01.11
1693.01.11
1703.02.02
1703.02.02
1753.03.09
1781.04.04
178 1.04.04
1781.04.04
1781.04.04
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1 783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
11.200
11.250
11.380
14.920
9.844
15.480
11.630
11.630
11.630
11.630
11.630
11.630
11.630
11.630
11.630
11.850
15.350
15.350
15.350
15.350
15.350
15.350
16.280
16.280
16.280
14.570
14.570
15.020
15.020
15.020
15.020
15.020
15.020
15.020
13.200
13.200
7.180
11.797
11.797
11.797
11.797
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
1 5.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
9.5
7.0
9.0
9.5
7.5
9.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
10.0
10.0
10.0
10.0
10.0
10.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
10.0
10.0
6.5
9.0
9.0
9.0
9.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.00
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
M Area
s
Sitea
Latitude
Longitude
Venezia
Zola Predosa
Borgo S. Lorenzo
Siracusa and neighbour [2]
Pontremoli [1]
Muro Lucano
Boara
Ferrara (P.te S.Paolo, S.Pietro)
Ficarolo
Giara del Po
La Punta
Localita’ indefinite
Polesino di S.Giovanni Battista
Polesino di San Giorgio
Torre della Fossa
Argenta
Foci del Fortore
Lesina
Ripalta
Localita’ indefinita
Serra-S.Agata ( Valle d. Fortore)
Troia
San Nicola
Valle del R. Lamato [2]
Localita’ indefinite
Piedimonte d’Alife [2]
S. Giorgio la Molara
Cassaro [2]
Lentini [2]
Mascari [2]
Piana di Catania [2]
Siracusa
Sortino
Val di Noto
Montereale
Pizzoli-Arischia
Localita’ indefinite
Castel Bolognese
Localita’ indefinite
Pergola
Quartolo
Acquaro*
Bagnara Calabra* [1]
Borrello (Fondaco di)*
Calanna* (Loc. Sperone e Torre)
Caraffa del Bianco [1]
Castellace ( Vecchio) [1 ]
River S.Biase [Fiumara Boscaino]
Catanzaro [1]
Cinquefrondi
Cinquefrondi ( Ventriconi)
Casalnuovo [Cittanova]
Coccorino
Cosoleto Vecchio (P. di Cineti)
Dasa’*
Paracocio [Delianuova] [2]
Drosi*(C. del Crocifisso)
Fiumara Secca*
River Porcione*[R.Marepotamo] [1]
Galatoni *[1]
Marina di Gallico
Ganzirri (Pantano)*
Gerocarne- Soriano Calabro*
Gioia Tauro
Joppolo
Laganadi [1]
Laureana di Borrello (C. Vaticano)
Lubrichi (western slope of Lago R.)
Maida Marina
Maropati (Loc. Eja)
Maropati (Contrada Scigala’)
Messina
Nicotera (C. Ravello)
Oppido V. [Mamerto] (Torre)[1]
Oppido V. (Loc. Nicolella)
45
44
43
37
44
40
44
44
44
44
44
–
44
44
44
44
41
41
41
–
41
41
39
38
–
41
41
37
37
37
37
37
37
36
42
42
–
44
–
44
44
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
12
11
11
15
9
15
11
11
11
11
11
–
11
11
11
11
15
15
15
–
15
15
16
16
–
14
14
14
15
15
15
15
15
15
13
13
–
11
–
11
11
16
15
06
15
16
15
15
16
16
16
16
15
15
16
15
15
16
16
16
15
15
16
15
15
15
16
15
16
16
16
15
15
15
15
26
30
57
04
23
45
52
49
57
48
49
00
40
30
00
50 30
49 20
47 40
37
55
52
51
50
22
11
54
21
16
06
19
45
25
04
09
53
31
26
19
17
15
33
17
30
11
05
18
19
55
25
24
21
36
17
34
14
26
20
37
20
10
15
35
25
35
10
29
16
52
25
26
11
32
17
18
20
00
40
00
45
30
15
00
35
30
30
15
15
20
13
23
16
53
29
41
37
26
41
40
00
00
30
00
38 20
37 30
37 00
50
17
21
17
14
19
18
15
22
54
57
03
12
02
16
02
04
15
18
48
48
49
11
48
04
43
05
56
56
35
06
05
05
52
55
12
55
57
03
11
02
39
37
13
54
54
44
03
57
13
06
06
33
56
58
57
25
15
10
25
50
40
40
10
00
40
40
40
00
d
I
s
(km)
89
3
6
36
13
26
7
1
21
5
3
–
3
0
3
4
21
15
14
–
15
40
17
15
–
19
28
7
21
71
32
23
3
28
7
9
–
9
–
5
2
34
15
25
25
26
2
4
87
17
16
11
34
5
36
9
16
8
40
7
32
31
39
14
32
25
23
4
66
18
19
39
26
1
2
7.0
7.0
8.0
8.0
6.0
9.0
7.5
8.0
7.0
7.0
7.5
–
8.0
8.0
7.5
9.0
8.5
10.0
10.0
–
9.5
7.5
10.5
8.5
–
9.0
8.5
11.0
11.0
9.5
10.0
10.0
11.0
10.0
9.0
9.0
–
7.0
–
7.5
8.5
10.5
11.0
[9.5]
9.0
8.0
11.0
11.0
6.0
10.5
10.5
10.5
8.0
11.0
[8.0]
11.0
[10.0]
11.0
8.0
[11.0]
9.0
7.5
8.0
10.0
8.0
9.0
9.5
11.0
6.5
10.0
10.0
7.5
9.0
11.0
11.0
Type
A2
A1 A3–5
A2
A1–2
A1–2
A1 A3 D
A3–5
A1–5 B C D
A1 A4–5
A1
A1 A4
A1 A3 A4
A1 A4 B
A1 A4 B
A1 A4 B
A1–4 C D
A1 A4–5 D
C
C
A4
A1 A4
A5
A1–2 B
A1–2 A5
A1–2 B
A1–2
BC
A1 A3 D
A1 A4–5 D
A1 A4 D
A1–2 A4–5 D
A1–2 A4–5
A1 A3 B D
B
A2
A1–2 A4–5
A1–2
A1 A3
A1 A3
A1 A3
A1 A3
A1 A4–5
B
A1–2 A4–5 B
A1–2 A4–5
A1 A4–5
A1 A4–5 B
A4–5
B
A1–2 A4–5
A5
A1 A4–5 B
A1 A4–5
A1–2 A5 B
A1 A4–5
A1 A4 A3 A5
B
A1–2 A3 A5 B
A1 B E
A1 A4–5
A1–2 A4–5 C
A1
A1 A4–5
A2 B
A1 A4–5
B
A1 A4–5
A1 A3–5 B
A1 A4
A1 A4–5
A1–2 A4–5
A1–2 A5 B C E
A1–5
C
A1–2 A4–5 B C
183
P. Galli / Tectonophysics 324 (2000) 169–187
Table 4 (continued ).
Epicentral parameters of the seismic events
Sites with indication of liquefaction
Ref. Date
Latitude Longitude I
o
M
e
M Area
s
Sitea
Latitude
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.300
38.580
38.580
38.580
38.900
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
38.780
–
–
42.564
42.564
42.580
43.980
43.505
45.420
45.420
41.500
41.500
41.500
41.500
41.500
41.500
37.600
37.600
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
15.970
16.200
16.200
16.200
16.600
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
16.470
–
–
12.777
12.777
12.660
12.580
12.208
9.850
9.850
14.470
14.470
14.470
14.470
14.470
14.470
15.130
15.130
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
7.00
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
–
–
8.0
8.0
8.0
8.0
8.5
8.0
8.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.98
6.98
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.56
6.56
6.56
–
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.96
6.98
6.98
6.98
6.98
6.98
6.98
6.98
–
–
5.15
5.15
–
5.59
5.59
5.59
5.59
6.56
6.56
6.56
6.56
6.56
6.56
6.22
6.22
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7
7
7
5
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
–
–
5.5
5.5
5.5
5.5
5.9
5.5
5.5
6.7
6.7
6.7
6.7
6.7
6.7
6.2
6.2
38
38
38
38
38
38
38
39
38
38
38
39
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
39
38
38
38
38
38
38
38
42
42
42
44
43
45
–
41
40
41
41
41
41
37
37
37.600
40.520
15.130
15.730
9.0
8.0
Oppido V. ( Tricuccio R. landslide)
Pedavoli [2]
Polistena Vecchia
Polistena V. (C. Giuseppina)
Radicena (T. Razza)
Reggio Calabria (I Giunchi)
Rise del R. Mesima*
Rosarno (C. di Simeone-Mesima)
Rosarno (Mesima Bridge)
San Fili*
San Floro* [1]
S.Lucido (Lago di M.S.Giovanni)
San Procopio (La Conturella)
San Procopio (C. Ruffino)
San Procopio (La Goletta)
San Procopio (Bombardara)
Sant’Anna di Seminara
Santa Crist. Aspromonte
Santa Giorgia
Scido [2]
Scrofario*
Seminara
Serra S. Bruno [1]
Soriano Calabro [1]
Sitizano
Terranova ( Vecchia)
Torre Faro
Tresilico
Trodi [1]
Verapodio [ Varapodio]
Monteleone [ Vibo Valentia] [1]
Laureana - Vallelonga
Reggio Calabria (I Giunchi)
Soriano Calabro
Catanzaro (Quart. S. Giuseppe)
Acconia
Borgia
Cortale
Curinga
Fondaco del Fico
Gizzeria*
Iacurso
Laureana di Borrello
Maida Plain
Montauro
Monterosso Calabro
Pantano di Tremola
Pogliolo
Roccelletta
Sant’Eufemia Vetere*
S. Pietro a Maida
Squillace (River Palagoria)*
Squillace (Podere Teti)*
Vena di Maida
Monteleone [ Vibo Valentia] [1]
Cortale
Curinga-Cortale (La Con.) [2]
Piediluco (S.Antonio church)
S.Nicolo’
Il Canale
Rimini
Selci
Ticengo
Localita’ indefinita
Boiano
Calitri ( Vallone dei monaci) [2]
Cantalupo nel Sannio
Montac[g]ano
Bosso [Busso]
Morcone
Ramondetta
Paterno neighbour
(Cav.Alessi prop.) [2]
Paraspolo (near R.Simeto)
Tito
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.05
1783.02.07
1783.02.07
1783.02.07
1783.02.27*
1783.03.28
1783.03.28
1783.03.28
1783.03.29
1783.03.28
1783.02.05
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.03.28
1783.06.30
1783.106.30
1785.10.09
1785.10.09
1785.10.13**
1786.12.25
1789.09.30
1802.05.12
1802.05.12
1805.07.26
1805.07.26
1805.07.26
1805.07.26
1805.07.26
1805.07.26
1818.02.20
1818.02.20
148 1818.02.20
149 1826.02.01
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Southern Calabria
Soriano Seem
Soriano Serre
Soriano Serre
Catanzaro
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Central Calabria
Callabria
Callabria
Piediluco
Piediluco
Rieti Plain
Rimini
Val Tiberina
Soncino
Soncino
Molise
Molise
Molise
Molise
Molise
Molise
Catanese
Catanese
6.22 6.2 Catanese
5.72 5.2 Tito
17
14
24
24
20
06
37
30
29
28
50
17
17
17
17
16
19
15
15
15
20
20
35
36
17
19
16
18
17
19
40
39
06
36
54
50
50
50
49
50
59
51
29
51
45
44
50
45
49
57
51
48
48
53
40
50
50
32
31
30
04
31
22
29
54
31
38
33
20
35
34
Longitude
15 15
15
15 16
05 16
35 16
50 15
16
15
55 15
16
16
50 16
10 15
15
30 15
40 15
15
10 15
15
15
16
15
16
16
15
20 16
15
15
15
15
16
16
50 15
16
51 16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
10 12
50 12
50 12
12
12
9
–
14
15
14
14
14
14
42 15
14 54
58
55
04
05
01
38
09
59
59
02
31
04
54
53
54
53
53
57
56
56
01
52
20
14
56
00
39
59
55
59
06
17
38
14
35
16
31
25
19
15
12
23
05
04
31
16
35
19
36
14
22
32
32
25
06
25
19
45
44
44
34
12
50
20
20
00
10
45
20
05
0
10
20
35
35
45
09
10
50
30
d
I
s
(km)
Type
1
9
15
15
6
35
38
22
22
19
76
111
6
8
6
7
8
5
6
6
5
10
45
40
4
4
28
1
5
2
42
11
71
4
2
19
7
8
14
20
32
11
47
22
5
18
11
14
12
28
12
6
6
12
34
–
–
4
4
10
10
1
6
–
11.0
11.0
10.5
10.5
11.0
8.5
8.0
10.0
10.0
[10.0]
[6.0]
7.0
10.5
10.5
10.5
10.5
10.0
11.0
11.0
11.0
[11.0]
10.0
7.0
8.0
11.0
11.0
8.0
11.0
11.0
11.0
7.5
8.5
6.5
10.5
6.0
9.5
11.0
10.5
9.5
8.0
6.5
9.5
7.5
9.5
9.5
8.5
10.5
8.5
8.5
7.0
9.5
10.0
10.0
9.5
8.0
–
–
9.0
9.0
–
8.0
9.0
8.0
–
A1–2 A4–5 B
A1 A3–5
A1–2 A4 B
A1–2 A4–5
A2 A4–5 B
A1–2 A4–5 B
A2 A5
A1–2 A4–5
A1
A1–2 A4–5
B
A3 B
A3 A5
A1 A4
A5
A5
A2 B
A3
A1 A3–5
A3 B
A1 A3–5
A1–5 B
B
C
A1 A3–5 B
A2 A3 B C
A1 A4–5
A1–2 B
A2 E
A1–2 A4–5
A1 A4–5
A2
A2 B
A2
B
A1 A4–5
A1–2 A4–5
A1 A4–5 B
A1 A4–5
A2
A1–2
A1 A4–5
A1 A4–5
A1 A4–5
A2
A1–2 A4–5 B
A1 A4
A1 A4–5
A1–2 A4–5
A1–2 A4–5
A1 A4–5
A5
A2
A1 A4–5
A1 A4–5
A4–5
A1 A4
A1 A4–5
A1 A4–5
A1 A3
A1 E
A1–2 A5 C
A1–2 A3
A1 A5
9.0
6.0
10.0
7.0
10.0
8.0
A1 A4
A1 A4
A1 A3–5 ED
A1–2 A5
A1–2 A5
A1–2 A3 A5
28
26
24
2
39
105
34
6
40
20
07 03
10
20 7.5 25
37 24 15 15 05 22
40 35 00 15 40 40
22
8
6.5
9.0
A1–4
A1–2 D
184
P. Galli / Tectonophysics 324 (2000) 169–187
Table 4 (continued ).
Epicentral parameters of the seismic events
Sites with indication of liquefaction
Ref. Date
Latitude Longitude I
o
M
e
M Area
s
Sitea
Latitude
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
219
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
42.967
42.967
42.967
42.967
39.070
39.070
39.070
44.770
39.570
43.53 1
43.531
43.531
43.531
43.531
43.531
43.531
39.250
39.250
39.250
40.350
40.350
40.350
40.350
40.350
39.220
39.220
46.150
44.070
44.070
41.689
43.920
43.920
43.920
43.920
46.400
41.720
41.867
38.280
38.280
38.280
38.280
38.280
37.216
45.580
44.093
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.670
38.150
38.150
38.150
38.150
38.150
38.150
43.150
41.976
40.976
41.976
41.976
41.976
41.976
41.976
41.976
5.59
5.59
5.59
5.59
6.56
6.56
6.56
5.45
6.22
5.45
5.45
5.45
5.45
5.45
5.45
5.45
6.10
6.10
6.10
6.98
6.98
6.98
6.98
6.98
6.10
6.10
6.34
5.72
5.72
6.22
6.34
6.34
6.34
6.34
–
5.15
–
6.10
6.10
6.10
6.10
6.10
–
5.59
–
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
7.18
7.18
7.18
7.18
7.18
7.18
5.30
6.98
6.98
6.98
6.98
6.98
6.98
6.98
6.98
5.9
5.9
5.9
5.9
6.4
6.4
6.4
5.2
6.4
5.9
5.9
5.9
5.9
5.9
5.9
5.9
6.4
6.4
6.4
7
7
7
7
7
6.4
6.4
6.4
5.2
5.2
5.2
6.4
6.4
6.4
6.4
5
5.2
5
5.9
5.9
5.9
5.9
5.9
4.2
5.5
5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.3
7.3
7.3
7.3
7.3
7.3
5.1
7
7
7
7
7
7
7
7
Budine
Corvia
Cantagalli
Loc. Indef.
Crocchio River (Giardino di C.)
Targine River
Steccato plain
San Leonardo (Parma)
S. AngeloFondi
Lorenzana-P.no T.Tora [2]
Lorenzana (Casini Serughi)
Luciana (Podere Acciaioli)
Luciana (Podere Fondo alla Grotta)
Luciana (Podere Le Querce)
Torrente Fine (Podere SS. Marie)
Podere Stagno
Cerisano
Valle del Drago
Cocchiano (C.da Miceli)
Marsico [2]
Saponara (Agri river banks)
Atena (riverbanks)
Viggiano [2]
Loc. Indef.
Tore del Ponte
Valle del Drago
Paludi del Lago S. Croce
Cervia
Cesenatico
Manfredonia
Albenga
Pietra Ligate
Ceriale
Vado Ligure
But river
Monte Saraceno
Punta delle Pietre Nere
Cosoleto (Contrada Filesi)
Cosoleto (Contrada Sal[r]mata)
Ganzirri (Pantano)
Messina Forms
Reggio Calabria (Acciarello)
Contrada Racineri
Salò
Pieve Fosciana (Pradilana)
Amantea-Tropea
Amaroni (Loc. Cafio) [2)
Curinga (near the shore) [2]
Feroleto Antics [2]
Maierato (Contrada Angitola) [2]
Marcellinara
Valle del Drago
Piana di Rosarno [2]
Sambiase
Seminara (Contrada Lago)
Bivona [2]
S. Sisti [S.Sisto dei Valdesi ] [2]
Martirano (River Sa(v)uto) [2]
Sova(e)reto (Ponds Nunziante)
Vallelonga
Ganzirri (Pantano)
Messina (Cittadella)
Messina (P.ta S. Raineri)
Messina (Cso Garibaldi, B.d.S)
Reggio Calabria
Rumboli
Macereto
Concerviann
Fucino Strada 11
Fucino Strada 12 [2]
Fucino Strada 24
Pescina
S.Benedetto
Molino di Venere
Bacinetto canal
42
42
42
–
38
38
38
44
39
–
43
43
43
43
43
43
39
39
39
40
40
40
40
–
39
39
46
44
44
41
44
44
44
44
46
41
41
38
38
38
38
38
37
45
44
–
38
38
38
38
38
39
38
38
38
38
39
39
38
38
38
38
38
38
38
–
43
42
42
42
41
42
42
41
41
1832.01.13
1832.01.13
1832.01.13
1832.01.13
1832.03.08
1832.03.08
1832.03.08
1832.03.13
1836.04.25
1846.08.14
1846.08.14
1846.08.14
1846.08.14
1846.08.14
1846.08.14
1846.08.14
1854.02.12
1854.02.12
1854.02.12
1857.12.16
1857.12.16
1857.12.16
1857.12.16
1857.12.16
1870.10.04
1870.10.04
1873.06.29
1875.03.17
1875.03.17
1875.12.06
1887.02.23
1887.02.23
1887.02.23
1887.02.23
1889.10.13
1893.08.10
1894.03.25
1894.11.16
1894.11.16
1894.11.16
1894.11.16
1894.11.16
1898.11.02
1901.10.30
1902.03.05
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1915.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1905.09.08
1908.12.28
1908.12.28
1908.12.28
1908.12.28
1908.12.28
1908.12.28
1909.08.25
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1915.01.13
12.659
12.659
12.659
12.659
16.900
16.900
16.900
10.470
16.730
10.500
10.500
10.500
10.500
10.500
10.500
10.500
16.300
16.300
16.300
15.850
15.850
15.850
15.850
15.850
16.330
16.330
12.380
12.550
12.550
15.677
8.070
8.070
8.070
8.070
13.000
16.080
15.323
15.870
15.870
15.870
15.870
15.870
14.495
10.500
10.463
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
16.070
15.680
15.680
15.680
15.680
15.680
15.680
11.403
13.602
13.602
13.602
13.602
13.602
13.602
13.602
13.602
8.5
8.5
8.5
8.5
9.5
9.5
9.5
7.5
9.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
9.5
9.5
9.5
11.0
11.0
11.0
11.0
11.0
9.5
9.5
9.5
8.0
8.0
7.5
9.0
9.0
9.0
9.0
6.0
8.0
7.0
8.5
8.5
8.5
8.5
8.5
5.5
8.0
7.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
7.5
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
Foligno
Foligno
Foligno
Foligno
Crotone area
Crotone area
Crotone area
Reggiano
Rossano
Orciano Pisano
Orciano Pisano
Orciano Pisano
Orciano Pisano
Orciano Pisano
Orciano Pisano
Orciano Pisano
Cosentino
Cosentino
Cosentino
Basilicata
Basilicata
Basilicata
Basilicata
Basilicata
Cosentino
Cosentino
Bellunese
Rimini
Rimini
S. Marco in Lamis
Western Liguria
Western Liguria
Western Liguria
Western Liguria
Tolmezzo
Gargano
Lesina
Bagnara Calabra
Bagnara Calabra
Bagnara Calabra
Bagnara Calabra
Bagnara Calabra
Val di Noto
Salò
Garfagnana
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
G.S.Eufemia
Messina Strait
Messina Strait
Messina Strait
Messina Strait
Messina Strait
Messina Strait
Murlo
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Longitude
57
12
56 23 12
56 00 12
–
57 40 16
59
16
56 30 16
48
10
37
16
–
32 30 10
33 02 10
32 54 10
32 52 10
29 05 10
35 56 10
16
16
22 15 16
20 40 16
21
15
17 30 15
27
15
20
15
–
12 20 16
22 15 16
08 30 12
16
12
12
12
37
15
03
8
09
8
06
8
16
8
24 30 13
42
16
54
15
15 20 15
17 20 15
15 20 15
11
15
05
15
13
14
36
10
07 46 10
–
48
16
50
16
58
16
42
16
56
16
22 15 16
29
15
58
16
20 25 15
42 34 16
22 37 16
05 00 16
30 41 15
39
16
15
15
11 10 15
11 30 15
11 20 15
06
15
–
09
11
19
12
03
13
02
13
59
13
01
13
00
13
59 24 13
59 39 13
38
40 06
38 21
48 13
55
55 15
20
38
31
30
29
30
32
21
11
11
09
48
54
31
54
30
18
36
56
56
10
36
11
20
21
24
54
13
17
14
27
00
03
21
56
55
36
33
39
24
31
25
38
30
00
27
16
23
13
30
11
59
16
52
06
08
12
57
17
37
34
34
33
39
30
55
20
40
10
30
13
30
30
11
59
55
40
10
30
30
17
59
29
31
38
39
37
38 19
33 03
d
I
s
(km)
3
4
4
–
15
10
14
11
10
–
2
2
2
2
6
14
10
16
16
4
8
30
5
–
24
21
4
27
19
20
19
30
24
49
1
3
4
7
4
23
30
29
8
3
5
–
36
25
43
13
47
78
22
37
40
5
79
48
20
19
12
10
10
11
6
–
10
63
13
9
3
6
3
3
5
8.5
8.5
8.5
–
8.5
9.0
9.0
7.0
9.5
8.0
8.0
8.0
8.0
8.0
8.0
6.0
8.5
8.5
8.5
9.0
11.0
10.0
10.0
–
7.0
6.5
8.0
7.0
8.0
7.0
6.5
7.0
7.0
6.0
5.0
9.0
7.0
8.5
8.5
7.5
7.0
7.5
6.5
8.5
–
7.0
9.0
8.0
9.0
7.0
8.5
8.0
8.0
8.0
8.5
7.5
9.5
8.0
7.0
11.0
11.0
11.0
11.0
11.0
–
8.0
8.0
11.0
11.0
11.0
10.0
11.0
10.0
8.0
Type
A1 A4
A4–5
A1 A4 D
A1 A4
A1 A3
A1 A4
A1 A4–5 D
A2
A1–2 A3 A5 D
A1–5
A2 A3 A4
A3 A5
A2 A5
A2 A4
A1 A3
A1 A3 A5
A1–2
A4
A1 A4
A5
B
A1
A1–2
A3 A5 B
A5
A4–5
A2
A1
A1–2
A1–2
A4
A1–2
A1 A4–5
A1 A4–5 B
A1
A1
A1
A1 A3
A1 A3
A1 A4
BC
B
A3
A1 B
A4
A1 A4 D
A1 A3
A1 A4
A1 A4
A1 A4
A1 A4
A1 A4–5 D
A1 A4–5
A1–2
A1 A3
A1 A4
A1 A4
A1 A4
A1–2
A1–2
A1 A4
A1 A4–5
A1 A4–5
A1 A4–5 BC
A1 A4–5
A1–2
C
A1 A3–5
A1 A4–5 B
C
A4–5
A4–5 B
A1–2
A1–4
A1–4
185
P. Galli / Tectonophysics 324 (2000) 169–187
Table 4 (continued ).
Epicentral parameters of the seismic events
Sites with indication of liquefaction
Ref. Date
Latitude Longitude I
o
M
e
M Area
s
Sitea
Latitude
Longitude
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1915.01.13
1916.05.17
1916.08.16
1916.08.16
1916.08.16
1916.08.16
1916.08.16
1917.04.26
1919.06.29
19 19.06.29
1919.09.10
1930.07.23
1930.07.23
1968.01.15
1968.01.15
1968.01.15
41.976
40.976
40.976
40.976
41.976
44.000
43.970
43.970
43.970
43.970
43.970
43.465
43.950
43.950
42.793
41.050
41.050
37.770
37.770
37.770
13.602
13.602
13.602
13.602
13.602
12.630
12.670
12.670
12.670
12.670
12.670
12.125
11.480
11.480
11.788
15.370
15.370
12.980
12.980
12.980
11.0
11.0
11.0
11.0
11.0
8.0
8.0
8.0
8.0
8.0
8.0
9.0
9.0
9.0
8.0
10.0
10.0
10.0
10.0
10.0
6.98
6.98
6.98
6.98
6.98
5.72
5.59
5.59
5.59
5.59
5.59
5.85
5.98
5.98
4.83
6.78
6.78
6.45
6.45
6.45
7
7
7
7
7
6
6.1
6.0
6.0
6.0
6.0
5.6
6.3
6.3
5.2
6.7
6.7
5.9
5.9
5.9
Fucino Plain
Fucino Plain
Fucino Plain
Fucino Plain
Fucino
Rimini area
Rimini urea
Rimini area
Rimini urea
Rimini urea
Rimini area
Monterchi
Mugello
Mugello
M. Amiata
Irpinia
Irpinia
Belice Valley
Belice Valley
Belice Valley
42
41
41
–
–
44
43
43
43
44
44
43
43
43
42
41
41
37
37
37
00 40 13 31
58 12 13 36
43
13 37
–
–
03
12 34
58
12 44
59
12 40
55
12 55
01
12 39
04
12 34
30
12 08
55 30 11 26
56 30 11 24
50
11 47
02
15 17
12
15 02
42
13 16
54
13 06
44 28 13 00
53
38
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
1968.01.15
1968.01.15
1968.01.15
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.16
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.05.06
1976.09.15
1976.09.15
1976.09.15
1980.11.23
1980.11.23
1980.11.23
37.770
37.770
37.770
46.241
46.241
46.241
46.240
46.241
46.240
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.240
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.241
46.250
46.250
46.250
40.850
40.850
40.850
12.980
12.980
12.980
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.1 19
13.119
13.119
13.119
13.119
13.119
13.1 19
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.119
13.1 19
13.119
13.119
13.119
13.119
13.119
13.119
13.120
13.120
13.120
15.280
15.280
15.280
10.0
10.0
10.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
8.5
8.5
8.5
10.0
10.0
10.0
6.45
6.45
6.45
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.34
6.22
6.22
6.22
6.88
6.88
6.88
5.9
5.9
5.9
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
5.9
5.9
5.9
6.9
6.9
6.9
Belice Valley
Belice Valley
Belice Valley
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Friuli
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Fosso 13
Trasacco plain
Sora
Undef. loc 1
Undef. loc. 2
Rimini
Cattolica
Ghetto delle Fontanelle
Pesaro
Riccione
Rimini
Monterchi-Citerna
River Sieve (Piano di Cistio)
River Sieve (Piano di Rabatta)
Ponte a Rigs
Carosina
Montecalvo Irpino [2]
Bisacquino
Camporeale
C.da Mulimo Nuovo
(Bridge on R.Belice)
C.da Mulino Nuovo [2]
Contessa Entellina
Timpone Perollo
Avasinis (Rio Mazzolar)
Avasinis
Avasinis
Avasinis
Avasinis
Avasinis
Avasinis
Bordano (I Salez)
Bordano (I Salez)
Bordano (I Salez)
Bordano (alveo del R. Tagliamento)
C. Cucchiaro
C.le Baracchino
C.le Baracchino (C.Toful-Segheria)
C.le Baracchino (C. Toful )
C.le Baracchino
C.le Baracchino
Campo Buia (C. Ledra-Tagliamento)
Campo Buia (Rio Rampo)
Campo Buia (C. Garzolino)
Campo Buia (Campo)
Campo Buia (Sorg. Rio Gelato)
Godo sud
La Roggia
Laghetti Parar
Lessi
Lessi
Lessi (Campo Lessi)
Lessi (River Ledra)
Maiano nord
Mels (C.sa Benedetti))
Mels
Mels (Masseria di q. 170)
Molino del Cucco
Molino del Cucco
Tomba est
Tomba di sotto
Pers
Pers
Rivoli di Osoppo
San Floreano (M.no Pevar)
Trasaghis (C. Artificiale)
Tomba di Buia (R. Tagliamentuzzo)
Tomba di Buia (Rio Gelato)
Tomba di sotto - Presa
Avasinis
C.le Baracchino
Lago di Ragogna
Alta Valle Agri
Alto Sele
Buccino
37
37
37
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
–
40
40
44
44
42
17
17
07
17
17
17
17
18
18
18
18
14
12
12
12
11
11
14
14
03
13
13
16
06
13
15
14
14
14
11
11
10
10
13
13
02
13
10
10
13
13
07
02
12
12
17
12
10
08
18 13
13
12
47 13
50 13
33 13
30 13
22 13
20 13
35 13
20 13
22 13
13 13
12 13
52 13
23 13
07 13
00 13
49 13
40 13
22 13
10 13
50 13
43 13
30 13
13 13
08 13
03 13
03 13
55 13
43 13
33 13
07 13
00 13
48 13
54 13
28 13
17 13
55 13
40 13
50 13
40 13
05 13
45 13
07 13
50 13
45 13
36 13
13
13
13
–
47
15
40
15
00
11
56
03
03
03
03
03
03
03
06
06
06
06
05
02
03
03
04
04
05
06
06
05
05
08
08
00
07
07
06
07
04
06
06
06
02
02
05
04
05
05
04
06
03
04
05
04
03
04
00
14
20
30
30
42
36
12
31
08
25
38
04
03
35
31
54
54
36
36
59
08
08
43
03
17
47
45
36
26
58
22
26
50
35
26
20
40
35
56
47
00
40
17
25
20
55
59
17
27
58
Type
d
I
s
(km)
7
1
29
–
–
8
5
2
20
5
14
4
4
6
4
7
33
26
18
4
8.0
8.0
9.5
–
–
8.0
8.0
8.0
8.0
8.0
8.0
9.0
9.0
8.5
8.5
9.5
9.0
7.5
8.0
9.0
4
18
9
8
8
7
8
7
7
9
7
7
7
7
2
7
6
6
6
6
2
1
2
2
3
4
4
8
1
1
1
1
7
6
7
7
6
6
4
3
7
7
4
1
6
5
4
4
7
7
13
–
8
20
9.0
8.0
9.0
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.0
9.0
9.0
9.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
10.0
10.0
9.0
10.0
10.0
10.0
10.0
8.0
8.5
8.5
8.5
9.0
9.0
9.0
9.0
8.0
8.0
9.0
9.0
9.5
9.0
9.0
9.0
8.0
8.0
8.0
6.5
10.0
8.0
A1–4
A1–4
A4–5
C
C
A1
A1–2 A4–5
A4–5
A1
A1 A4
C
A1–2 A4–5
A1 A4–5
A1 A4–5
A2
A1
A1
A1 A4–5
A1 A4–5
A1 A5
A1 D
A1 A4–5
A1 A4–5 D
A1 A4–5 B D
A1 A4–5 B D
A1 A4–5 B D
A1 A4–5 B D
A1 A4–5 B D
A1 A4–5 B D
C
A1 A4–5 D
A1 A4–5 D
A1 A4–5 D
A1 A4–5 D
D
A1 A3–5 C D
A1 A3–5 C D
A1 A3–5 C D
A1 A3–5 C D
A1 A3–5 C D
A3 D
A3 D
A3 D
A3 D
D
A1 A4–5 C D
A3–5 B D
D
A3 A4 D
A3 A4 D
A3 A4 D
A3 A4 D
A3 D
A1 A4–5 D
A1 A4–5 D
A3 C
A2 A3 A5 C D
A2 A3 A5 C D
A4 D
D
A1 D
CD
D
D
A4 D
D
D
D
C
A1 A4–5 D
A1–2
D
A1 A4 D
A1 A4 B
186
P. Galli / Tectonophysics 324 (2000) 169–187
Table 4 (continued ).
Epicentral parameters of the seismic events
Sites with indication of liquefaction
Ref. Date
Latitude Longitude I
o
M
e
M Area
s
Sitea
Latitude
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
40.850
37.270
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
6.88
5.30
6.9
6.9
8.9
6.9
6.9
6.9
6.9
8.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
4.7
Calitri
Lago Laceno
Lioni (Affl. sin. V.ne Acqua.Bianca)
Montecalvo Irpino
Muro Lucano
Muro Lucano
Muro Lucano
Senerchia
Pontecagnano (Torre Picentina)
Ruvo deI Monte
S. Giorgio La Molara
S. Marzano del Sarno
S. Michele di Serino
S. Michele di Serino (R. Sabato)
S. Michele di Serino (R. Sabato)
Scafati
Sturno
Volturara Irpina (P. del Dragone)
Augusta
40
40
40
41
40
40
40
40
40
40
41
40
40
41
40
41
41
40
37
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1980.11.23
1990.12.13
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.280
15.070
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
7.5
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Irpinia- Basilicata
Augusta
54
49
53
02
44
44
46
43
37
51
16
46
52
52
52
45
01
52
14
Longitude
15
15
58 15
15
18 15
40 15
03 15
15
46 14
15
14
14
35 14
35 14
25 14
36 14
15
52 14
15
26
06
09
02
29
29
27
11
51
32
55
35
51
51
51
56
07
56
13
08
27
32
55
50
21
32
42
55
55
d
I
s
(km)
14
16
12
44
22
20
18
17
43
21
55
59
36
35
35
30
23
28
14
8.0
8.0
10.0
7.0
8.0
8.0
8.0
9.0
7.0
8.0
7.0
6.5
9.0
9.0
9.0
6.0
8.0
8.0
8.0
Type
D
D
A1
A1
A1
A1
A1
D
A1
A1
A1
D
A1
A4
A4
A1
D
A1
A5
A4–5 B D
A5
A4–5
A4–5
A4–5
A4–5
A5
A5
A4–5 C D
A3 B D
A4–5 CD
D
a * Uncertain indication between February 5 and March 28, 1783. [1] Doubtful indication. [2] Indication relative to a wide or
undefined area. The coordinates indicate a central point in the possible area.
References
Ambraseys, N.N., 1991. Engineering seismology. Int. J. Earthquake Eng. Struct. Dyn. 17, 1–105.
Berardi, R., Margottini, C., Molin, D., Parisi, A., 1991. Soil
liquefaction: case histories in Italy. Tectonophysics 193,
141–164.
Boschi, E., Ferrari, G.Gasperini, P., Guidoboni, E., Smriglio,
G., Valensise, G. ( Eds.), 1995. Catalogo dei forti terremoti
in Italia dal 461 a.C. al 1980 ING–SGA, Bologna, 973 pp.
Camassi, R., Stucchi, M., 1997. NT4.1 a parametric catalog of
damaging earthquakes in the Italian area. Gruppo Nazionale per la Difesa dai Terremoti, Milano.
CEE–CETS–CNR, 1985. Liquefaction of Soils During
Earthquakes. National Academic Press, Washington, DC,
240 pp.
CPTI, 1999. Working Group Catalogo Parametrico Terremoti
Italiani, ING, GNDT, SGA e SSN. Editrice Compositori,
Bologna, 88 pp.
Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes
on the 1915 Avezzano earthquake faults (central Italy):
implications for active tectonics in Central Apennines. Tectonophysics 308, 143–170.
Galadini, F., Galli, P., 2000. Active tectonics in the central
Apennines (Italy) — input data for seismic hazard assessment. Natural Hazards, in press.
Galadini, F., Galli, P., Leschiutta, I., Monachesi, G., Stucchi,
M., 1999. Active tectonics and seismicity in the area of the
1997 earthquake sequence in Central Italy: a short review.
J. Seismol. 2, 1–9.
Galli, P., Ferreli, L., 1995. A methodological approach for historical liquefaction research. In: Serva, L., Slemmons, B.
( Eds.), Perspectives in Paleoseismology. Association of
Engineering Geologists Special Publication 6., 36–48.
Galli, P., Meloni, F., 1993. Liquefazione Storica. Un catalogo
nazionale. Quat. Ital. J. Quat. Sci. 6, 271–292.
Galli, P., Meloni, F., Rossi, A., 1999. Historical liquefaction in
Italy: relationship between epicentral distance and seismic
parameters. European Geophysical Society XXIIII General
Assembly Natural Hazards NH3, The Hague, Netherlands,
19–23 April.
Gasperini, P., Bernardini, F., Valensise, G., Boschi, E., 1999.
Defining seimogenic sources from historical earthquake felt
report. Bull. Seismol. Soc. Am. 89, 94–110.
Keefer, D.K., 1984. Landslides caused by earthquakes. Geol.
Soc. Am. Bull. 95, 406–421.
Kuribayashi, E., Tatsuoka, F., 1975. Brief review of liquefaction
during earthquakes in Japan. Soil and Foundations 15,
81–92.
Monachesi, G., Stucchi, M., 1998. DOM 4.1 an intensity database of damaging earthquakes in the Italian area. http://
emidius.itim.mi.cnr.it/DOM/home.html
Obermeier, S.F., 1996. Using liquefaction-induced features for
paleoseismic analysis. In: McCalpin, J. (Ed.), Paleoseismology. Academic Press, San Diego, 588 pp.
Papadopoulos, G.A., 1993. The 20 March 1992 South Aegean,
Greece, earthquake (M =5.3): possible anomalous effect.
s
Terra Nova 5, 399–404.
Papadopulos, G.A., Lefkopulos, G., 1993. Magnitude–distance
relations for liquefaction in soil from earthquakes. Bull.
Seism. Soc. Am. 83, 925–938.
Sarconi, M., 1784. Historia de Fenomeni del Tremuoto avvenuto nella Calabria e nel Valdemone nell’anno: Posti in Luce
alla Reale. Acc. Delle Scienze e delle Belle Lettere di
Napoli, Napoli.
Tinsley, J.C., Youd, T.L., Perkins, D.M., Chen, A.T.F., 1985.
Evaluating liquefaction potential. In: Zijoni, J.I. (Ed.), Evaluating Earthquake Hazards in the Los Angeles Region —
P. Galli / Tectonophysics 324 (2000) 169–187
An Earth-Science Perspective, U.S. Geol. Surv. Prof. Paper
1360, 263–316.
Troften, E., 1997. Neotectonics and paleoseismicity in southern
Sweden. Ph.D. Thesis, Stockolm University, Akademitryck
AB, Edsbruck, 124 pp.
Youd, T.L., 1977. Discussion of ‘Brief review of liquefaction
187
during earthquakes in Japan’ by E. Kuribayashi and F. Tatsuoka, 1975, in Soil and Foundations 15, 81–92. Soil and
Foundations 17, 82–85.
Youd, T.L., Perkins, D.M., 1978. Mapping liquefactioninduced ground failure potential. J. Geotechnol. Div. ASCE
GT4, 433–446.