Chemistry & CHEMICAL REACTIVITY SIXTH EDITION John C. Kotz SUNY Distinguished Teaching Professor State University of New York College at Oneonta Paul M. Treichel Professor of Chemistry University of Wisconsin–Madison Gabriela C. Weaver Associate Professor of Chemistry Purdue University Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States Publisher/Executive Editor: David Harris Development Editor: Peter McGahey Assistant Editor: Annie Mac Editorial Assistant: Candace Lum Technology Project Manager: Donna Kelley Executive Marketing Manager: Julie Conover Senior Marketing Manager: Amee Mosley Marketing Communications Manager: Nathaniel Bergson-Michelson Project Manager, Editorial Production: Lisa Weber Creative Director: Rob Hugel Print Buyers: Rebecca Cross and Judy Inouye Permissions Editor: Kiely Sexton Production Service: Thompson Steele, Inc. Text Designers: Rob Hugel and John Walker Design Photo Researcher: Jane Sanders Miller Copy Editor: Thompson Steele, Inc. Developmental Artist: Patrick A. Harman Illustrators: Rolin Graphics and Thompson Steele, Inc. Cover Designer: John Walker Design Cover Images: Motohiko Murakami Cover Printer: Transcontinental Printing/Interglobe Compositor: Thompson Steele, Inc. Printer: Transcontinental Printing/Interglobe COPYRIGHT © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Thomson LearningTM is a trademark used herein under license. Thomson Brooks/Cole 10 Davis Drive Belmont, CA 94002-3098 USA ALL RIGHTS RESERVED. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including but not limited to photocopying, recording, taping, Web distribution, information networks, or information storage and retrieval systems— without the written permission of the publisher. Printed in Canada 2 3 4 5 6 7 08 07 06 05 04 For more information about our products, contact us at: Thomson Learning Academic Resource Center 1-800-423-0563 For permission to use material from this text or product, submit a request online at: http://www.thomsonrights.com Any additional questions about permissions can be submitted by email to: [email protected] COPYRIGHT © 2006 Thomson Learning, Inc. All Rights Reserved. Thomson Learning WebTutorTM is a trademark of Thomson Learning, Inc. Library of Congress Control Number: 2004109955 Student Edition: ISBN 0-534-99766-X Volume 1: ISBN 0-495-01013-8 Volume 2: ISBN 0-495-01014-6 Two-volume set: ISBN 0-534-40800-1 Instructor’s Edition: ISBN 0-534-99848-8 International Student Edition: ISBN 0-495-01035-9 (Not for sale in the United States) Asia Thomson Learning 5 Shenton Way #01-01 UIC Building Singapore 068808 Canada Nelson 1120 Birchmount Road Toronto, Ontario M1K 5G4 Canada Australia/New Zealand Thomson Learning 102 Dodds Street Southbank, Victoria 3006 Australia Europe/Middle East/Africa Thomson Learning High Holborn House 50/51 Bedford Row London WC1R 4LR United Kingdom About the Cover What lies beneath the Earth’s surface? The mantle of the Earth consists largely of silicon-oxygen based minerals. But about 2900 km below the surface the solid silicate rock of the mantle gives way to the liquid iron alloy core of the planet. To explore the nature of the rocks at the core-mantle boundary, scientists in Japan examined magnesium silicate (MgSiO3) at a high pressure (125 gigapascals) and high temperature (2500 K). The cover image is what they saw. The solid consists of SiO6 octahedra (blue) and magnesium ions (Mg2+; yellow spheres). Each SiO6 octahedron shares the four O atoms in opposite edges with two neighboring octahedra, thus forming a chain of octahedra. These chains are interlinked by sharing the O atoms at the “top” and “bottom” of SiO6 octahedra in neighboring chains. The magnesium ions lie between the layers of interlinked SiO6 chains. For more information see M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Science, Volume 304, page 855, May 7, 2004. The Chemistry of Fuels and Energy Sources Charles D. Winters Gabriela C. Weaver Supply and Demand: The Balance Sheet on Energy E nergy is necessary for everything we do. Look around you— energy is involved in anything that is moving or is emitting light, sound, or heat (Figure 1). Heating and lighting your home, propelling your automobile, powering your portable CD player—all are commonplace examples in which energy is consumed and all are, at their origin, based on chemical processes. In this part of the text, we will examine how chemistry is fundamental to understanding and addressing current energy issues. 283 • With only 4.6% of the world’s population, the United States consumes 25% of all the energy used in the world. This usage is equivalent to the consumption of 7 gallons of oil or 70 pounds of coal per person per day. Two basic issues, energy consumption and energy resources, instantly leap out from these statistics. They form the basis for this discussion of energy. Charles D. Winters Energy Consumption Figure 1 Energy-consuming devices. Our lives would not be the same without the heat and light in our homes and without our automobiles, computers, cell phones, music players, stoves, and refrigerators. Supply and Demand: The Balance Sheet on Energy We take for granted that energy is available and that it will always be there to use. But will it? Recently, chemist and Nobel Prize winner Richard Smalley stated that among the top 10 problems humanity will face over the next 50 years, the energy supply ranks as number one. What is the source of this dire prediction? Information such as the following is often quoted in the popular press: • Global demand for energy has tripled in the past 50 years and may triple again in the next 50 years. Most of the demand comes from industrialized nations. • Fossil fuels account for 85% of the total energy used on our planet. Nuclear and hydroelectric power each contribute about 6% of the total energy budget. The remaining 3% derives from biomass, solar, wind, and geothermal energygenerating facilities. Methane hydrate, a potential fuel source. Methane, CH4, can be trapped in a lattice of water molecules, but the methane is released when the pressure is reduced. See Figure 6 on page 287. Data indicate that energy consumption is related to the degree to which a country has industrialized. The more industrialized a country, the more energy is consumed on a per capita basis. Although some people express worries about the disproportionate use of energy by developed nations, an equally serious concern is the rate of growth of consumption worldwide. As a higher degree of industrialization occurs in developing nations, energy consumption worldwide will increase proportionally. The rapid growth in energy usage over the last half-century is strong evidence in support of predictions of similar growth in the next halfcentury. One way to alter consumption is through energy conservation. Energy conservation is a small part of today’s energy equation, although it has drawn greater attention recently (Figure 2). Some examples where energy conservation is already important are described here: • Aluminum is recycled because recycling requires only one third of the energy needed to produce aluminum from its ore. • Light-emitting diodes (LEDs) are being used in streetlights and compact fluorescent lights are finding wider use in the home. Both use a fraction of the energy required for incandescent bulbs (in which only 5% of the energy used is returned in the form of light; the remaining 95% is wasted as heat). • Hybrid cars offer twice the gas mileage available with conventional cars. We can be sure that energy conservation will continue to contribute to the world’s energy balance sheet. Science and technology can be expected to introduce a variety of new energysaving devices in coming years. One of the exciting areas of current research in chemistry relating to energy conservation focuses on superconductivity. Superconductors are materials that, at temperatures of 90–150 K, offer virtually no resistance to electrical conductivity (see “The Chemistry of Modern Materials,” page 642). When an electric current passes through a typical conductor such as a copper wire, some of the energy is inevitably lost as heat. As a result, there is substantial energy loss in power transmission lines. Substituting a superconducting wire for copper has the potential to greatly decrease this loss, so the search is on for materials that act as superconductors at moderate temperatures. 284 The Chemistry of Fuels and Energy Sources Charles D. Winters In addition, we have become accustomed to an energy system based on fossil fuels. The internal combustion engine is the result of years of engineering. It is now well understood and can be produced in large quantities quickly and for a relatively low cost. The electric grid is well established to supply our buildings and roads. Natural gas supply to our homes is nearly invisible. The system works well. But here is the root of the problem alluded to by Richard Smalley: Fossil fuels are nonrenewable energy sources. Nonrenewable resources are those in which the energy source is used and not concurrently replenished. Fossil fuels are the obvious example. Nuclear energy is also in this category (although the supply of nuclear fuels appears, for the moment, not likely to be used up in the conceivable future and breeder reactors can use other, even more abundant sources to create Figure 2 Energy-conserving devices. Energy efficient home appliances, nuclear fuel). Conversely, energy sources that involve the sun’s hybrid automobiles, and compact fluorescent bulbs all provide alternatives that consume less energy than their conventional counterparts. energy are renewable resources. These include solar energy and energy derived from winds, biomass, and moving water. Likewise, geothermal energy is a renewable resource. Energy Resources There is a limited supply of fossil fuels. No more sources are being created. As a consequence, we must ask how long our fossil On the other side of the energy balance sheet are energy resources, fuels will last. Regrettably, there is not an exact answer to this quesof which many exist. The data cited earlier make it obvious that we tion. One current estimate suggests that the world’s oil reserves are hugely dependent on fossil fuels as a source of energy. The will be depleted in 30–80 years. Natural gas and coal supplies are percentage of energy obtained and used from all other sources is projected to last longer. The estimated life of natural gas reserves small relative to that obtained from fossil fuels. We rely almost enis 80–200 years, whereas coal reserves are projected to last from tirely on gasoline and diesel fuel in transportation. Fuel oil and 150 to several hundred years. These numbers are highly uncertain, natural gas are the standards for heating, and approximately 70% however. In part, this is because the estimates are of the electricity in the United States is generbased on guesses regarding fuel reserves not yet ated using fossil fuels, mostly coal (Table 1). Table 1 Producing Electricity discovered; in part, it is because assumptions Why is there such a dominance of fossil in the United States must be made about the rate of consumption in fuels on the resource side of the equation? An Coal 52% future years. obvious reason is that fossil fuels are cheap raw Nuclear 21% Despite our current state of comfort with materials compared to other energy sources. In Natural gas 12% our energy system, we cannot ignore the fact that addition, humans have made an immense inRenewable sources 7% a change away from fossil fuels must occur somevestment in the infrastructure needed to distribPetroleum 3% day. As supply diminishes and demand increases, ute and use this energy. Power plants using coal it will become necessary to expand the use of or natural gas cannot be converted readily to acCombining heat and power* 5% other fuel types. The technologies for doing so, commodate another fuel. The infrastructure for *Cogeneration facilities using fossil and the answers regarding which alternative fuel distribution of energy—gas pipelines, gasoline fuels that yield both electricity and types will be the most efficient and cost-effective, dispensing for cars, and the grid distributing heat. See Chemical and Engineering can be provided by chemistry research. electricity to users—is already set in place. Much News, p. 21, February 23, 2004. of this infrastructure may have to change if the source of energy changes. Some countries already have energy distribution systems that do not depend nearly as much as the U.S. system on fossil fuels. For example, countries in Europe Fossil fuels originate from organic matter that was trapped under (such as France) make much greater use of nuclear power, and the earth’s surface for many millennia. Due to the particular certain regions on the planet (such as Iceland and New Zealand) combination of temperature, pressure, and available oxygen, the are able to exploit geothermal power as an energy source. Fossil Fuels 285 Fossil Fuels decomposition process from the basic compounds that constito 95%, with variable amounts of hydrogen, oxygen, sulfur, and nitrogen being bound up in the coal in various forms. tute organic matter resulted in the hydrocarbons that we extract and use today: coal, crude oil, and natural gas—the solid, liquid, Sulfur is a common constituent in some coals. The element and gaseous forms of fossil fuels, respectively. These hydrowas incorporated into the mixture partly from decaying plants carbons have varying ratios of carbon to and partly from hydrogen sulfide, H2S, which hydrogen. is the waste product from certain bacteria. In Fossil fuels are simple to use and relaaddition, coal is likely to contain traces of Table 2 Energy Released by Combustion tively inexpensive to extract, compared with many other elements, including some that of Fossil Fuels the current cost requirements of other are hazardous (such as arsenic, mercury, cadEnergy sources for the equivalent amount of energy. mium, and lead) and some that are not (such Substance Released (kJ/g) To use the energy stored in fossil fuels, these as iron). Coal 29–37 materials are burned. The combustion When coal is burned, some of the impuCrude petroleum 43 process, when it goes to completion, converts rities are dispersed into the air and some end Gasoline hydrocarbons to CO2 and H2O (Section 4.2). up in the ash that is formed. In the United (refined petroleum) 47 States, coal-fired power plants are responsiThe heat evolved is then converted to meNatural gas ble for 60% of the emissions of SO2 and 25% chanical and electrical energy (Chapter 6). (methane) 50 Energy output from burning fossil fuels of mercury emissions into the environment. varies among these fuels (Table 2). The heat SO2 reacts with water and O2 in the atmoevolved on burning is related to the carbonsphere to form sulfuric acid, which conto-hydrogen ratio. We can analyze this relationship by considertributes (along with nitric acid) to the phenomenon known as ing data on heats of formation and by looking at an example that acid rain. is 100% carbon and another that is 100% hydrogen. The oxidation of 1.0 mol (12.01 g) of pure carbon produces 393.5 kJ of 2 SO2(g) O2(g) ¡ 2 SO3(g) heat or 32.8 kJ per gram. SO3(g) H2O(/) ¡ H2SO4(aq) C(s) O2(g) ¡ CO2(g) ¢ H° 393.5 kJ/mol C or 32.8 kJ/g C Burning hydrogen to form water is much more exothermic, with about 120 kJ evolved per gram of hydrogen consumed. H2(g) 12 O2(g) ¡ H2O(g) ¢ H° 241.8 kJ/mol H2 or 119.9 kJ/g H2 Coal is mostly carbon, so its heat output is similar to that of pure carbon. In contrast, methane is 25% hydrogen (by weight) and the higher-molecular-weight hydrocarbons in petroleum and products refined from petroleum average 16–17% hydrogen content. Therefore, their heat output on a per-gram basis is greater than that of pure carbon, but less than that of hydrogen itself. While the basic chemical principles for extracting energy from fossil fuels are simple, complications arise in practice. Let us look at each of these fuels in turn. Because these acids are harmful to the environment, legislation limits the extent of sulfur oxide emissions from coal-fired plants. Chemical scrubbers have been developed that can be attached to the smokestacks of power plants to reduce sulfur-based emissions. However, these devices are expensive and can increase the cost of the energy produced from these facilities. Coal is classified into three categories (Table 3). Anthracite, or hard coal, is the highest-quality coal. Among the forms of coal, anthracite has the highest heat content per gram and a low sulfur content. Unfortunately, anthracite coal is fairly uncommon, with only 2% of the U.S. coal reserves occurring in this form (Figure 3). Bituminous coal, also referred to as soft coal, accounts for about 45% of the U.S. coal reserves and is the coal most widely used in electric power generation. Soft coal typically has the highest sulfur content. Lignite, also called brown coal because of its paler color, is geologically the “youngest” form of coal. It has a lower heat content than the other forms of coal, often contains a significant amount of water, and is the least popular as a fuel. Coal The solid rock-like substance that we call coal began to form almost 290 million years ago, when swamp plants died. Decomposition occurred to a sufficient extent that the primary component of coal is carbon. Describing coal simply as carbon is a simplification, however. Samples of coal vary considerably in their composition and characteristics. Carbon content may range from 60% Table 3 Types of Coal Type Consistency Sulfur Content Heat Content (kJ/g) Lignite Very soft Very low 28–30 Bituminous coal Soft High 29–37 Anthracite Hard Low 36–37 The Chemistry of Fuels and Energy Sources © Tim Wright/Corbis 286 Figure 3 Anthracite coal. This form of coal has the highest energy content of the various forms of coal. Coal can be converted to coke by heating in the absence of air. Coke is almost pure carbon and an excellent fuel. In the process of coke formation, a variety of organic compounds are driven off. These compounds are used as raw materials in the chemical industry for the production of polymers, pharmaceuticals, synthetic fabrics, waxes, tar, and numerous other products. Technology to convert coal into gaseous fuels (coal gasification) (Figure 4) or liquid fuels (liquefaction) has also been developed. These processes provide fuels that will burn more cleanly than coal, albeit with a loss of 30–40% of the net energy content per gram of coal along the way. As petroleum and natural gas reserves dwindle, and the costs of these fuels increase, liquid and gaseous fuels derived from coal are likely to become more important. carbons may have anywhere from one carbon atom to 20 or more such atoms in their structures, and compounds containing sulfur, nitrogen, and oxygen may also be present in small amounts. Petroleum goes through extensive processing at refineries to separate the various components and convert less valuable compounds into more valuable components. Nearly 85% of the crude petroleum pumped from the ground ends up being used as a fuel, either for transportation (gasoline and diesel fuel) or for heating (fuel oils). The high temperature and pressure used in the combustion process in automobile engines have the unfortunate consequence of also causing a reaction between atmospheric nitrogen and oxygen that results in some NO formation. In a series of exothermic reactions, the NO can then react further with oxygen to produce nitrogen dioxide. This poisonous, brown gas is further oxidized to form nitric acid, HNO3, in the presence of water. N2(g) O2 (g) ¡ 2 NO(g) 2 NO(g) O2 (g) ¡ 2 NO2 (g) 3 NO2 (g) H2O(/) ¡ 2 HNO3(/) NO(g) ¢ H°rxn 180.58 kJ ¢ H°rxn 114.4 kJ ¢ H°rxn 71.4 kJ To some extent, the amounts of pollutants released can be limited by use of catalytic converters. Catalytic converters are high-surface-area metal grids that are coated with platinum or palladium. These very expensive metals can catalyze a complete combustion reaction, helping to combine oxygen in the air with unburned hydrocarbons or other byproducts in the vehicle exhaust. As a result, the combustion products can be converted to Natural Gas Petroleum Petroleum is a complicated mixture of hydrocarbons, whose molar masses range from low to very high (page 495). The hydro- © Courtesy of Oak Ridge National Laboratory Natural gas is found deep under the earth’s surface, where it was formed by bacteria working on organic matter in an anaerobic environment (in which no oxygen is present). The major component of natural gas (70–95%) is methane (CH4). Lesser quantities of other gases such as ethane (C2H6), propane (C3H8), and butane (C4H10) are also present, along with other gases including N2, He, CO2, and H2S. The impurities and higher-molecularweight components of natural gas are separated out during the refining process, so that the gas piped through gas mains into our homes is primarily methane. Natural gas is an increasingly popular choice as a fuel. It burns more cleanly than the other fossil fuels, emits fewer pollutants, and produces relatively more energy than the other fossil fuels. Natural gas can be transported by pipelines over land and piped into buildings such as your home to be used directly to heat ambient air, to heat water for washing and bathing, or for cooking. Figure 4 Coal gasification plant. Advanced coal-fired power plants, such as this 2544-ton-per-day coal gasification demonstration pilot plant, will have energy conversion efficiencies 20% to 35% higher than those of conventional pulverized-coal steam power plants. water and carbon dioxide (or other oxides), provided they land on the grid of the catalytic converter before exiting the vehicle’s tailpipe. Some nitric acid and NO2 inevitably remain in automobile exhaust, however, and they are major contributors to environmental pollution in the form of acid rain and smog. The brown, acidic atmospheres in highly congested cities such as Los Angeles, Mexico City, and Houston largely result from the emissions from automobiles (Figure 5). The pollution problems have led to stricter emission standards for automobiles, and a high priority in the automobile industry is the development of lowemission or emission-free vehicles. Another approach is provided by the increasing popularity of hybrid vehicles, which use a combination of gasoline and electricity to run, thereby reducing the gasoline consumption per mile. Other Fossil Fuel Sources 287 ©Reuters/Corbis Fossil Fuels Figure 5 Smog. The brown cloud that hangs over Santiago, Chile contains nitrogen oxides emitted by millions of automobiles in that city. Other compounds are also present, such as ozone (O3), nitric oxide (NO2), carbon monoxide (CO), and water. normal pressure and temperature) is about 165 times larger than the volume of the hydrate. If methane hydrate forms in a pipeline, is it found in nature as well? In May 1970, oceanographers drilling into the seabed off the coast of South Carolina pulled up samples of a whitish solid that fizzed and oozed when it was removed from the drill casing. They quickly realized it was methane hydrate. Since this original a, John Pinkston and Laura Stern/U.S. Geological Survey/Science News, 11-9-96; c, Charles Fisher, The Pennsylvania State University When natural gas pipelines were laid across the United States and Canada, pipeline operators soon found that, unless water was carefully kept out of the line, chunks of methane hydrate would form and clog the pipes. Methane hydrate was a completely unexpected substance because it is made up of methane and water, two chemicals that would appear to have little affinity for each other. In methane hydrate, methane becomes trapped in cavities in the molecular structure of ice (Figure 6). Methane hydrate is stable only at temperatures below the freezing point of water. If a sample of methane hydrate is warmed above 0° C, it melts and methane is released. The volume of gas released (at (a) Methane hydrate burns as methane gas escapes from the solid hydrate. (b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity. (c) A colony of worms on an outcropping of methane hydrate in the Gulf of Mexico. Figure 6 Methane hydrate. (a) This interesting substance is found in huge deposits hundreds of feet down on the floor of the ocean. When a sample is brought to the surface, the methane oozes out of the solid, and the gas readily burns. (b) The structure of the solid hydrate consists of methane molecules trapped within a lattice of water molecules. Each point of the lattice shown here is an oxygen atom of a water molecule. The edges are O ¬ H ¬ O bonds. Such structures are often called “clathrates” and are mined for substances other than methane. (c) An outcropping of methane hydrate on the floor of the Gulf of Mexico. See E. Suess, G. Bohrmann, J. Greinert, and E. Lausch: Scientific American, pp. 76–83, November 1999. 288 The Chemistry of Fuels and Energy Sources discovery, methane hydrate has been found in many parts of the oceans as well as under permafrost in the Arctic. It is estimated that 1.5 1013 tons of methane hydrate is buried under the sea floor around the world. In fact, the energy content of this gas may surpass that of all the other known fossil fuel reserves by as much as a factor of 2! Clearly, this is a potential source of an important fuel in the future. Today, however, the technology to extract methane from these hydrate deposits is very expensive, especially in comparison to the well-developed technologies used to extract crude oil, coal, and gaseous methane. There are other sources of methane in our environment. For example, methane is generated in swamps, where it is called swamp gas or marsh gas. Here, methane is formed by bacteria working on organic matter in an anaerobic environment— namely, sedimentary layers of coastal waters and in marshes. The process of formation is similar to the processes occurring eons ago that generated the natural gas deposits that we currently use for fuel. In a marsh, the gas can escape if the sediment layer is thin. You see it as bubbles rising to the surface. Unfortunately, because of the relatively small amounts generated, it is impractical to collect and use this gas as a fuel. In a striking analogy to what occurs in nature, the formation of methane also occurs in human-made landfill sites. A great deal of organic matter is buried in landfills. Because it remains out of contact with oxygen in the air, this material is degraded by bacteria. In the past, landfill gases have been deemed a nuisance. Today, it is possible to collect this methane and use it as a fuel. In a pilot plant at the Rodefeld Landfill site near Madison, Wisconsin, a collection system for the methane produced in the landfill has been set up. The gas is used to generate electricity that is sold back to the local electric utility. In 2002, the methane gas collected at this facility was used to produce approximately 12 million kilowatt-hours of electricity, enough to power about 1700 homes for a year. bustion-based energy production, with up to 60% energy conversion efficiency compared to 20–25% for electricity generation from combustion. Fuel cells are not a new discovery. In fact, the first fuel cell was demonstrated in 1839, and fuel cells have been used in the Space Shuttle. Fuel cells are currently under investigation for use in homes and in automobiles. The basic design of fuel cells is quite simple. Oxidation and reduction take place in two separate compartments. [Recall the definitions of oxidation and reduction (page 197): Oxidation is the loss of electrons from a species, whereas reduction occurs when a species gains electrons.] These compartments are connected in a way that allows electrons to flow from the oxidation compartment to the reduction compartment through a conductor such as a wire. In one compartment, a fuel is oxidized, producing positive ions and electrons. The electrons move to the other compartment, where they react with an oxidizing agent, typically O2. The spontaneous flow of electrons in the electrical circuit constitutes the electric current. While electrons flow through the external circuit, ions move between the two compartments so that the charges in each compartment remain in balance. The net reaction is the oxidation of the fuel and the consumption of the oxidizing agent. Because the fuel and the oxidant never come directly in contact with each other, there is no combustion and no loss of energy as heat. The energy of the reaction is converted directly into electricity. Hydrogen is the fuel employed in the fuel cells on board the Space Shuttle. The overall reaction in these fuel cells involves the combination of hydrogen and oxygen to form water (Figure 7). Hydrocarbon-based fuels such as methane (CH4) and methanol e Energy in the Future: Choices and Alternatives Fuel Cells To generate electricity from the combustion of fossil fuels, the energy is used to create high-pressure steam, which spins a turbine in a generator. Unfortunately, not all of the energy from combustion can be converted to usable work. Some of the energy stored in the chemical bonds of a fuel is lost as heat to the surroundings, making this an inherently inefficient process. A much more efficient process would be possible if mobile electrons, the carriers of electricity, could be generated directly from the chemical bonds themselves, rather than going through an energy conversion process from heat to mechanical work to electricity. Fuel cell technology makes direct conversion of chemical potential energy to electricity possible. Fuel cells are similar to batteries, except that fuel is supplied from an external source (Figure 7 and Section 20.3). They are more efficient than com- Electrical energy output e e Hydrogen fuel e H2 H H2 H H H Oxygen from air O2 H2O H2O Unused fuel ANODE PROTON EXCHANGE MEMBRANE 2 H2 88n 4 H 4 e Water CATHODE O2 + 4 H 4 e 88n 2 H2O Figure 7 Hydrogen-oxygen fuel cell. The cell uses hydrogen gas, which is converted to hydrogen ions and produces electrons. The electrons flow through the external circuit and are consumed by the oxygen, which, along with H+ ions, produces water. 289 Energy in the Future: Choices and Alternatives (CH3OH) are also candidates for use as the fuel in fuel cells; for these compounds the reaction products are CO2 and H2O. When methanol is used in fuel cells, for example, the net reaction in the cell is 2 CH3OH(/) 3 O2(g) ¡ 2 CO2(g) 4 H2O(/) ¢ H°rxn 727 kJ/mol CH3OH or 23 kJ/g CH3OH Using heat of formation data (Section 6.8), we can calculate that the energy generated is 727 kJ/mol (or 23 kJ/g) of liquid methanol. That is equivalent to 200 watt-hours (W-h) of energy per mol of methanol (1 W 1 J/s), or 5.0 kW-h per liter of methanol. This means that oxidation of one liter of methanol in a fuel cell could theoretically provide more than 5000 W of power over a 24-hour period, enough to keep about 70 standard desk lamps lit. Prototypes of phones and laptop computers powered by fuel cells have been developed recently. Small methanol cartridges are used to fuel them. These devices are no bigger than a standard AA battery, yet they last up to 10 times longer than standard rechargeable batteries. Note, however, that fuel cells do not provide a new source of energy. They require fuel to produce energy and are constructed to use currently available fuels. The merits of fuel cells derive from their greater efficiency of use and from their environmentally friendly nature. Of course, there are many practical problems, including the following as-yet-unmet needs: • An inexpensive method of producing hydrogen • A practical means of storing hydrogen • A distribution system (hydrogen refueling stations) Perhaps the most serious problem in the hydrogen economy is the task of producing hydrogen. Hydrogen is abundant on earth, but not as the free element. Thus, elemental hydrogen has to be obtained from its compounds. Currently, most hydrogen is produced industrially from the reaction of natural gas and water by steam-reforming at high temperature (Figure 8). Steam re-forming CH4(g) H2O(g) ¡ 3H2(g) CO(g) ¢ H°rxn 206.2 kJ/mol CH4 Hydrogen can also be obtained from the reaction of coal and water at high temperature (water gas reaction). Water gas reaction C(s) H2O(g) ¡ H2(g) CO(g) ¢ H°rxn 131.3 kJ/mol C Both reactions are highly endothermic, however, and both rely on use of a fossil fuel as a raw material. This, of course, makes no sense if the overriding goal is to replace fossil fuels. Fuel enters A Hydrogen Economy Predictions about the diminished supply of fossil fuels have led some people to speculate about other alternative fuels. In particular, hydrogen, H2, has been suggested as a possible choice. The term hydrogen economy has been coined to describe the overall strategy using this fuel. As was the case with fuel cells, the hydrogen economy does not rely on a new energy resource; it merely provides a different scheme for use of existing resources. There are reasons to consider hydrogen an attractive option, however. Oxidation of hydrogen yields almost three times as much energy per gram as the oxidation of fossil fuels. Comparing hydrogen combustion with combustion of propane, a fuel used in some cars, we find that H2 produces about 2.6 times more heat per gram than propane. Exhaust Ambient air Combustion chamber Impurities Hydrogen to fuel cell H2(g) 12 O2 (g) ¡ H2O(g) ¢ H°rxn 241.83 kJ/mol H2 or 119.95 kJ/g H2 C3H8(g) 5 O2 (g) ¡ 3 CO2 (g) 4 H2O(g) ¢ H°rxn 2043.15 kJ/mol C3H8 or 46.37 kJ/g C3H8 Another advantage of using hydrogen instead of a hydrocarbon fuel is that the only product of H2 oxidation is H2O, which is environmentally benign. Thus, for several reasons it is relatively easy to imagine hydrogen replacing gasoline in automobiles and replacing natural gas in heating homes. It is similarly easy to imagine using hydrogen to generate electricity or as a fuel for industry. Steam re-former Hydrogen purification chamber Figure 8 Steam re-forming. A fuel such as methanol (CH3OH) or a hydrocarbon and water are heated and then passed into a steam re-former chamber. There a catalyst promotes their decomposition to hydrogen and other compounds such as CO. The hydrogen gas passes out to a fuel cell, and the CO and unused carbon-based compounds are burned in a combustion chamber. A small unit may be suitable for a car or light truck. 290 The Chemistry of Fuels and Energy Sources If the hydrogen economy is ever to take hold, the logical source of hydrogen is water. H2O(/) ¡ H2(g) 12 O2(g) ¢ H°rxn 285.83 kJ/mol H2O(/) H2 gas Metal hydride Electrolyte Metal adsorbed hydrogen The electrolysis of water provides hydrogen but also requires considerable energy. The first law of thermodynamics tells us that we can get no more energy from the oxidation of hydrogen than we expended to obtain H2 from H2O. Hence, the only way to obtain hydrogen in the amounts that would be needed is to use a cheap and abundant source of energy to drive this process. A logical candidate is solar energy. Unfortunately, the technology to use solar energy in this way has yet to become practical. Here is a problem for chemists and engineers of the future to solve. Hydrogen storage represents another problem to be solved. A number of ways to accomplish this storage in a vehicle, in your home, or at a distribution point have been proposed. An obvious way to store hydrogen is as the gas under moderate conditions, but this approach would be impractical because the volumes occupied would be too large (Figure 9). In addition, storing hydrogen at high pressure or as a liquid (bp 252.87 ° C) would require special equipment, and safety is a key issue. One possibility known to chemists relies on the fact that certain metals will absorb hydrogen reversibly (Figure 10). When a metal absorbs hydrogen, H atoms fill the holes, called interstices, between metal atoms in a metallic crystal lattice. Palladium, for example, will absorb up to 935 times its volume of hydrogen. This hydrogen can be released upon heating, and the process of absorption and release can be repeated. Another reversible system under study involves hydrogen storage in carbon nanotubes (page 31). Researchers have found that the carbon tubes absorb 4.2 weight percent of H2; that is, they achieve an H : C atom ratio of 0.52 under a moderately high Solid solution a-phase Hydride phase b-phase Figure 10 Hydrogen adsorbed onto a metal or metal alloy. Many metals and metal alloys reversibly absorb large quantities of hydrogen. On the left side of the diagram, H2 molecules are adsorbed onto the surface of a metal. The H2 molecules can dissociate into H atoms, which form a solid solution with the metal (a-phase). Under higher hydrogen pressures, a true hydride forms in which H atoms become H ions (b-phase). On the right side, H atoms can also be adsorbed from solution if the metal is used as an electrode in an electrochemical device. pressure. Just as importantly, 78.3% of the hydrogen can be released under ambient pressure at room temperature, and the remainder can be released with heating. There are several chemical methods of reversible hydrogen storage as well. For example, heating NaAlH4, doped with titanium dioxide, releases hydrogen and the NaAlH4 can be rejuvenated by adding hydrogen under pressure. 2 NaAlH4(s) ¡ 2 NaH 2 Al(s) 3 H2(g) 4 kg 4 kg Mg2NiH4 4 kg LaNi5H6 Metal hydrides No matter how hydrogen is used, it has to be delivered to vehicles and homes in a safe and practical manner. Work has also been done in this area (Figure 11), but many problems remain to be solved. European researchers have found that a tanker truck that can deliver 2400 kg of compressed natural gas (mostly methane) can deliver only 288 kg of H2 at the same pressure. Although hydrogen oxidation delivers about 2.4 times more energy per gram (119.95 kJ/g) than methane, 4 kg CH4(g) 2 O2(g) ¡ CO2(g) 2 H2O(g) ¢ H°rxn 802.30 kJ/mol or 50.14 kJ/g Liquefied hydrogen (below 250 °C) Pressurized hydrogen gas (at 200 bar) Figure 9 Comparison of the volumes required to store 4 kg of hydrogen relative to the size of a typical car. (L. Schlapbach and A. Züttel: Nature, Vol. 414, pp. 353–358, 2001.) the tanker can carry about 8 times more methane than H2. That is, it will take more tanker trucks to deliver the hydrogen needed to power the same number of cars or homes running on hydrogen than those running on methane. How close are we to the realization of a hydrogen economy? Not very near, and it is not clear whether it will ever come to pass. Energy in the Future: Choices and Alternatives 291 Martin Bond/Science Photo Library/Photo Researchers, Inc. Biosources of Energy Figure 11 A prototype hydrogen-powered BMW. The car is being refueled with hydrogen at a distribution center in Germany. Note the solar panels in the background. C2H5OH(g) 2 H2O(g) 12 O2(g) ¡ 2 CO2(g) 5 H2(g) The heat of this reaction is approximately 70 kJ per mole of ethanol (or about 1.5 kJ/g). © 2002 Corbis G.A. DeLuga, J.R. Salge, L.D. Schmidt, and X.E. Verykios, Science, vol. 303, 2/13/2004, pp. 942 and 993 There is one interesting example in which the hydrogen economy has gained a real toehold. In 2001, Iceland announced that the country would become a “carbon-free economy.” Icelanders plan to rely on hydrogen-powered electric fuel cells to run vehicles and fishing boats. Iceland is fortunate in that two thirds of its energy already comes from renewable sources—hydroelectric and geothermal energy (Figure 12). The country has decided to use the electricity produced by geothermal heat or hydroelectric power to separate water into hydrogen and oxygen. The hydrogen will then be used in fuel cells or combined with CO2 to make methanol, CH3OH, a liquid fuel that can either be burned or be used in different types of fuel cells. Gasoline sold today often contains ethanol, C2H5OH. In addition to being a fuel, ethanol serves to improve the burning characteristics of gasoline. Ethanol is readily made by fermentation of glucose from renewable resources such as corn or sugar cane. While it may not emerge as the sole fuel of the future, this material is likely to contribute to the phasing-out process of fossil fuels and may be one of multiple fuel sources in the future. There are several interesting points to make about ethanol as a fuel. Green plants use the sun’s energy to create biomass from CO2 and H2O by photosynthesis. The sun is a renewable resource, as, in principle, is the ethanol derived from biomass. In addition, the process recycles CO2. Plants use CO2 to create biomass, which is in turn used to make ethanol. In the final step in this cycle, oxidation of ethanol returns CO2 to the atmosphere. Recent research on ethanol has taken this topic in a new direction. Namely, ethanol can be used as a source of hydrogen. It is possible to create hydrogen gas from ethanol by using a steam re-forming process like the methane-related process. The recently developed method involves the partial oxidation of ethanol mixed with water in a small fuel injector, like those used in cars to deliver gasoline, along with rhodium and cerium catalysts to create hydrogen gas exothermically (Figure 13). The net reaction is Figure 12 Iceland, a “carbon-free,” hydrogen-based economy. A geothermal field in Iceland. The country plans to use such renewable resources to produce hydrogen from water and then to use the hydrogen to produce electricity in fuel cells. Figure 13 Hydrogen from ethanol. Ethanol can be obtained by fermentation from corn. In a prototype reactor (right), ethanol, water, and oxygen are converted by a catalyst (glowing white solid) to hydrogen (and CO2). 292 The Chemistry of Fuels and Energy Sources 2 CO2 2 C2H5OH 4 H2O 20 kJ/mol C6H12O6 4 H2O(6 O2) 140 kJ/mol O2 Energy input from sun for photosynthesis 6 CO2 10 H2 2540 kJ/mol 2420 kJ/mol 5 O2 6 CO2 10 H2O Figure 14 An energy-level diagram for the reactions leading from the production of biomass (glucose) to CO2 and H2. (Based on a Figure in G. A. DeLuga, J. R. Salge, L. D. Schmidt, and X. E. Verykios: Science, Vol. 303, pp. 942 and 993, 2004). To examine the efficiency of this process, we must analyze the overall energy cycle, starting with the photosynthesis of CO2 and water to generate glucose (Figure 14). The sun provides the initial 2540 kJ input of energy for this cycle to produce 1 mol of glucose (C6H12O6). The sugar is then converted 2 mol of ethanol per 1 mol of sugar. This conversion process requires a small energy input, 20 kJ. At this point, hydrogen can be generated exothermically using the catalytic fuel-injector method described earlier. Once the hydrogen is generated, it can be used in a hydrogen fuel cell to produce energy and water. Solar Energy Every year the earth’s surface receives about 10 times as much energy from sunlight as is contained in all the known reserves of coal, oil, natural gas, and uranium combined! The amount of solar energy incident on the earth’s surface is equivalent to about 15,000 times the world’s annual consumption of energy. Although solar energy is a renewable resource, today we are making very inefficient use of the sun’s energy. Less than 2% of the electricity produced in the United States is generated using solar energy. How might the sun’s energy be exploited more efficiently? One strategy is to produce electricity using solar radiation. We already know how to do this. The direct conversion of solar energy to electricity can be carried out using photovoltaic cells (see “The Chemistry of Modern Materials,” page 648). These devices are made from specific metal and metalloid combinations (often gallium and arsenic) that absorb light from the sun and produce an electric current. They are now used in applications as diverse as spacecraft and pocket calculators, and they have also been tested for large-scale commercial use. Before solar energy can be a viable alternative, a number of issues need to be addressed, including the collection, storage, and transmission of energy. Furthermore, electricity generated from solar power stations is intermittent. (The output fluctuation results from the normal cycles of daylight and changing weather conditions.) Our current power grid cannot handle intermittent energy, so solar energy would need to be stored in some way and then doled out at a steady rate. Likewise, we need to find ways to make solar cells cost-effective. Research has produced photovoltaic cells that can convert 20–30% of the energy that falls on them. However, even higher efficiency is necessary to offset the high cost of making the devices. Currently, 1 kW-h of energy generated from solar cells costs about 35 cents, compared to about 2 cents per kW-h generated from fossil fuels. What Does the Future Hold for Energy? Our society is at an energy crossroads. The modern world is increasingly reliant on energy, but we have built an energy infrastructure that depends primarily on a type of fuel that is limited. While fossil fuels provide an inexpensive and simple approach for providing power, they have several drawbacks, among them atmospheric contamination and diminishing supplies. Alternative fuels, especially from renewable sources, and new ways of generating energy do exist. A great deal more research and resources must be put into them to make them affordable and reliable, however. This is where the study of chemistry fits squarely into the picture. Chemists will have a great deal of work to do in coming years to develop new means of generating and delivering energy. Meanwhile, numerous ways exist to conserve the resources we have. Ultimately, it will be necessary to bear in mind the various benefits and drawbacks of each technology so that they can be combined in the most rational ways, rather than remaining in a system that is dependent on a single form of energy. Suggested Readings 1. R. A. Hinrichs and M. Kleinbach: Energy—Its Use and the Environment, 3rd ed. Orlando, Harcourt, 2002. 2. M. L. Wald: “Questions About a Hydrogen Economy,” Scientific American, pp. 67–73, May 2004. 3. U.S. Department of Energy: Energy Efficiency and Renewable Energy, www.eere.energy.gov/hydrogenandfuelcells. Accessed May 2004. 4. G. T. Miller: Living in the Environment, 12th ed. Philadelphia, Brooks/Cole, 2001. 5. L. D. Burns, J. B. McCormick, and C. E. Borroni-Bird: “Vehicle of Change,” Scientific American, pp. 64–73, October 2002. 6. M. S. Dresselhaus and I. L. Thomas: “Alternative Energy Technologies,” Nature, Vol. 414, pp. 332–337, November 15, 2001. Study Questions Study Questions Blue numbered questions have answers in Appendix P and fully worked solutions in the Student Solutions Manual. 1. Hydrogen can be produced using the reaction of steam (H2O) with various hydrocarbons. Compare the mass of H2 expected from the reaction of steam with 100. g each of methane, petroleum, and coal. (Assume complete reaction in each case. Use CH2 and C as the representative formulas for petroleum and coal, respectively.) 2. Use the value for “energy released” in kilojoules per gram from gasoline in Table 2. Estimate the percentage of carbon, by weight, by comparing this value to the ¢ H° values for burning pure C and H2. 3. Per capita energy consumption in the United States was equated to the energy obtained by burning 70. lb of coal per day. Use enthalpy of formation data to calculate the energy evolved, in kilojoules, when 70 lb of coal is burned. (Assume the heat of combustion of coal is 33 kJ/g.) 4. Some gasoline contains 10% (by volume) ethanol. Using enthalpy of formation data in Appendix L, calculate the heat evolved from the combustion of 1.00 g of ethanol to CO2(g) and H2O(g). Compare this value to the heat evolved from the combustion of ethane to the same products. Why should you expect that the energy evolved in the combustion of ethanol is less than the energy evolved in the combustion of ethane? 5. Energy consumption in the United States amounts to the equivalent of the energy obtained by burning 7.0 gal of oil or 70. lb of coal per day per person. Carry out calculations to show that these energy quantities are approximately equivalent using data in Table 2. The density of fuel oil is approximately 0.8 g/mL. 293 would have to be burned to provide this quantity of energy, assuming that the heat of combustion of coal is 33. kJ/g? [Electrical energy for home use is measured in kilowatthours (kW-h). One watt is defined as 1 J/s, so 1 kW-h is the quantity of energy involved when 1000 W is dispensed over a 1.0-h period.] 9. Major home appliances purchased in the United States are now labeled (with bright yellow “Energy Guide” tags) showing anticipated energy consumption. The tag on a recently purchased washing machine indicated the anticipated energy use would be 940 kW-h per year. Calculate the anticipated annual energy use in kilojoules. (See Question 8 for a definition of kilowatt-hour.) 10. Define the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power? 11. Confirm the statement in the text that oxidation of 1.0 L of methanol to form CO2(g) and H2O(/) in a fuel cell will provide at least 5.0 kW-h of energy. (The density of methanol is 0.787 g/mL.) 12. List the following substances in order of energy content per gram: C8H18, H2, C(s), CH4. (See Question 7 for the heat of combustion of C8H18.) 13. A parking lot in Los Angeles, California, receives an average of 2.6 107 J/m2 of solar energy per day in the summer. If the parking lot is 325 m long and 50.0 m wide, what is the total quantity of energy striking the area per day? 6. The energy required to recycle aluminum is one third of the energy required to prepare aluminum from Al2O3 (bauxite). Calculate the energy required to recycle 1.0 lb (= 454 g) of aluminum. 14. Your home loses heat in the winter through doors, windows, and any poorly insulated walls. A sliding glass door (6 ft 6.5 ft with 0.5 in. of insulating glass) allows 1.0 106 J/h to pass through the glass if the inside temperature is 22 ° C (72 ° F) and the outside temperature is 0 ° C (32 ° F). What quantity of heat, expressed in kilojoules, is lost per day? Assume that your house is heated by electricity. How many kilowatt-hours of energy are lost per day through the door? (See Question 8.) 7. The heat of combustion of isooctane (C8H18) is 5.45 103 kJ/mol. Calculate the heat evolved per gram of isooctane and per liter of isooctane (d 0.688 g/mL). (Isooctane is one of the many hydrocarbons in gasoline, and its heat of combustion will approximate the energy obtained when gasoline burns.) 15. Palladium metal can absorb up to 935 times its volume in hydrogen, H2. Assuming that 1.0 cm3 of Pd metal can absorb 0.084 g of the gas, what is the approximate formula of the substance? (The a-form of hydrogen-saturated palladium has about the same density as palladium metal, 12.0 g/cm3.) 16. Microwave ovens are highly efficient, compared to other means of cooking. A 1100 watt microwave oven, running at full power for 90 sec will raise the temperature of 1 cup of water (225 mL) from 20 ° C to 67 ° C. As a rough measure of the efficiency of the microwave oven, compare its energy consumption with the heat required to raise the water temperature. Isooctane C8H18 8. Calculate the energy used, in kilojoules, to power a 100-W lightbulb continuously over a 24-h period. How much coal 17. New fuel-efficient hybrid cars are rated at 55.0 miles per gallon of gasoline. Calculate the energy consumed to drive 1.00 mile if gasoline produces 48.0 kJ/g and the density of gasoline is 0.737 g/cm3.
© Copyright 2025 Paperzz