CHAPTER 2 SOLVENT EFFECTS ON ORGANIC RATES AND EQUILIBRIA References 1. Carey and Sundberg, 5th ed section 3.8 2. Carroll, p. 329 3. L & R pp. 177-189; 335-340 4. Isaacs Chapter 5 5. E. Buncel and H. Wilson, J. Chem. Ed., 57, 629(1980). Importance a) Changes in solvent can produce changes in reaction rate of up to 1010 or more. Some understanding of solvent effects is therefore useful in minimizing reaction times, or maximizing yields where two or more products are formed by competing pathways b) Solvent effects on reaction rate can yield information about the reaction mechanism (specifically, information about the TS structure). I SOLVENTS AND SOLVATION Classification of solvents: a) b) polar dielectric constant (ε) greater than about 15 nonpolar ε < about 15 protic contain a proton attached to N or O that is usually rapidlyexchangeable in D2O and that can form a hydrogen bond with an electron pair donor. aprotic no rapidly-exchangeable proton ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-1 Some common solvents are classified in this way in the Table. Classification of Solvents Dipolar Protic ε Nonpolar Protic ε H2O 78.5 CH3CO2H 6.2 HCO2H 58.5 (CH3)3COH 12.5 CH3OH 32.7 cyclohexanol 15.0 CH3CH2OH 24.6 phenol 9.8 HC(O)NH2 111.0 Dipolar Aprotic Nonpolar Aprotic acetone 20.7 CCl4 2.2 HC(O)N(CH3)2 (DMF) 36.7 pyridine 2.4 CH3S(O)CH3 46.7 n-hexane 1.9 CH3CN 37.5 cyclohexane 2.0 CH3NO2 35.9 ethyl ether 4.3 [(CH3)2N]3PO (HMPA) 30 dioxane 2.2 CH3OCH2CH2OCH3 (DME) 7.2 benzene 2.3 THF 7.6 Solvation involves the same forces as are involved in all intermolecular interactions, namely dispersion (London), dipole-dipole, and ion-dipole forces. In general, solutes and solvents in which the intermolecular forces are of the same kind and similar in magnitude are mutually-miscible (i.e., "like dissolves like"). ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-2 Two generalizations: a) Uncharged solutes are usually more soluble in organic solvents than in water, while ionic solutes are usually more soluble in water. b) Salts (at least at lower concentrations) tend to make ionic solutes more soluble and uncharged solutes less soluble. Ions are solvated by ion-dipole interactions. Consider, for example, a solvent such as methanol or water: + + - - + + - - M - - + - + X R + O - H + - + + - Solvation of ions is stronger the more concentrated the charge. Ionic or dipolar solutes are stabilized by ion-dipole or dipole-dipole attractions in dipolar solvents. With anions, particularly small anions, hydrogen bonding is particularly important. The hydrogen bond is a dipole-dipole attraction but is stronger than other dipole-dipole attractions because the positive end of the bond dipole (the proton) is very exposed and permits very close approach. Dipolar aprotic solvents such as dimethyl sulfoxide (DMSO) are not nearly as effective at solvating anions because the positive end of the dipole is less exposed. - CH3 Oδ + Sδ CH3 ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-3 II QUALITATIVE ELECTROSTATIC MODEL OF SOLVENT EFFECTS ON RATES (Hughes & Ingold) The largest solvent effects are seen where reactant and transition state differ greatly in polarity, i.e., when charges are developed or neutralized in going from reactants to the transition state. Hughes and Ingold reasoned that reactions leading to increased charge separation in the transition state should be increased in rate by increased "solvent polarity" (increased ion-solvating ability) while those leading to decreased charge separation should respond in the opposite way. These ideas were developed for nucleophilic substitution reactions and are summarized in the Table. Solvent Effects in Nucleophilic Substitutions (Hughes & Ingold) Reactants T.S. + δ R R X X + R X δ R + R X δ Y + R X δ - Y + - Y + R X+ - Y + C O X change in charge distribution effect of increased “solvent polarity” (ion solvating ability) - increased charge separation large increase + charge dispersal small decrease − charge dispersal small decrease − increased charge separation large increase + decreased charge separation large decrease charge dispersal small decrease δ δ − Y R X + δ Y R X − Y δ δ R X C δ O − δ Y δ − These rules very often lead to a correct qualitative prediction of a change in solvent polarity on the rate. The reason they work is that they usually correctly predict the solvent effect on the difference G‡ - G reactants (ΔG‡) even though both may increase ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-4 or decrease. For example, in the solvolysis of benzyl chloride in methanol-water mixtures, the rate increases by a factor of 200 in going from 100% methanol to 100% water. Increasing the % H2O actually increases both γR-Cl and γT.S., but γT.S. is increased less than γR-Cl. More examples of kinetic solvent effects follow. Me3S+ + OH- → MeOH + Me2S (Et)3N + EtI → (Et)4N+ + I- % EtOH (v/v) in H2O/EtOH system rel. rate (100 °C) solvent ε rel. rate (100 °C) 0 1.00 hexane 1.9 1 60 4.01 X 10 benzene 2.3 8.1 X 10 80 4.82 X 102 acetone 20.5 8.4 X 102 100 1.96 x 10 4 nitrobenzene 34.6 2.8 X 103 Acetyl Peroxide Decomposition nBu-I + *I-→ nBu-I* + I- medium rel. rate (85 °C) solvent ε rel. rate (25 °C) gas 1.0 methanol 32.7 0.20 cyclohexane 0.57 ethanol 24.2 1.00 isooctane 0.67 n-butanol 17.3 5.1 benzene 0.72 n-hexanol 12.8 5.7 acetic acid 0.58 n-dodecanol 6.15 6.8 propionic acid 0.74 carbon tetrachloride 0.54 ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-5 tBuCl → tBuOS + HCl MeI + Cl- → MeCl + I- (solvolysis in SOH) SOH rel. rate (25 °C) solvent rel. rate (25 °C) EtOH 1 methanol 1.0 MeOH 9.3 formamide 1.6 X 10 EtOH/H2O = 80/20 (v/v) 1.08 x 102 N-methyl formamide 4.5 X 10 EtOH/H2O = 60/40 (v/v) 1.43 x 103 N,N-dimethyl formamide 7.9 X 105 EtOH/H2O = 40/60 (v/v) 2.02 x 104 N,N-dimethyl acetamide 2.5 X 106 H2O 5.5 x 105 N-methylpyrrolidine 7.9 X 106 acetonitrile 4.0 x 104 acetone 1.6 X 106 nitromethane 1.6 X 104 The qualitative rules do not correctly predict the large differences between aprotic and protic solvents in reaction involving anions (see CH3I + Cl- example). The term "solvent polarity" is not precisely defined. Several solvent properties, particularly the ability of the solvent to solvate anions and cations, must be considered. The origin of the dramatic increase in reactivity of anions in changing from a protic to an aprotic solvent is the poor solvation of anions in aprotic solvents. The qualitative rules can also lead to an incorrect prediction for reactions of ionic nucleophiles Y- unless the reactions compared actually involve free Y-. In very poorly ion-solvating media the nucleophile may be present entirely as ion pairs, M+Y-, or higher aggregates. In such situations reaction of Y- with a substrate RX can be strongly ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-6 increased in rate by an increase in solvent ion-solvating ability by increasing the concentration of much more reactive Y- ions. III EMPIRICAL SCALES OF ION-SOLVATING ABILITY The solvent dielectric constant is in general a very poor indicator of ion-solvating ability unless the solvents are very similar in structure. H Br H OS SOH + HBr - Br H δ + via this T.S.: δ SOH = H2O, EtOH, CH3CO2H, etc. Nitrobenzene (ε = 35) added to ethanol (ε = 25) decreases the rate. Acetic acid (ε = 6.1) solvent reacts faster than ethanol (ε = 25). The reason for these seemingly anomalous observations is that solvation of the anion and cation are both important. Ethanol (protic solvent) solvates the incipient Cl- better than nitrobenzene, while acetic acid is a better anion-solvating solvent than ethanol. There are several quantitative scales of ion-solvating ability based on model reactions or physical processes (analogous to σ values for substituent effects). These ion- solvating power or "polarity" scales can be used to develop linear free energy relationships for solvent effects. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-7 A GRUNWALD-WINSTEIN Y VALUES model reaction: H3C H3C C Cl H3C H3C + δC SOH 25 °C Cl δ H3C H3C C OS H3C + HCl - H3C CH3 T.S. Y = log (k/ko)t-BuCl, 25° where k = rate constant in the solvent whose Y value is to be measured. ko = rate constant in the standard solvent, 80% aqueous ethanol, i.e., 80/20 (v/v) ethanol/water. Y = 0 (by definition) for 80% ethanol-water, positive for solvents of greater ionizing power, and negative for solvents of lower ionizing power. The Y scale is limited to solvolyzing (i.e., protic) solvents. It therefore cannot be used to correlate or predict rate constants in aprotic solvents. Y values for some common solvents are listed in the table on p. 2-11. B KOSOWOR Z VALUES O C OMe O + - I + N CH2CH3 C OMe - I + N CH2CH3 charge-transfer complex N-ethyl-4-carbomethoxypyridinium iodide ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-8 The spectrum of N-ethyl-4-carbomethoxypyridinium iodide (and also some other quaternary pyridinium and related halides) shows a strong maximum in the UV-visible which is very sensitive to solvent (examples: λmax = 342 nm in methanol, 450 nm in CHCl3). The new maximum is absent in the chloride or bromide and the absorbance does not follow Beer's law. The absorption corresponds to a charge-transfer transition corresponding approximately to - Excited State Py.I. hν Py+I Py+I . minor Py.I. major hν (charge transfer Ground State Py+I . major Py.I. minor Since the ground state is stabilized by solvation of ions, the energy of the transition increases with increasing ion-solvating ability. Z = ΔE = Nhν = Nhc λ in kcal/mol hνct hνct CHCl3 MeOH Some values are listed in the Table on p. 2-11. (reference: E.M. Kosowor, J. Am. Chem. Soc. 80, 3253(1958).) ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2-9 C DIMROTH ET VALUES reference: C. Reichardt, Angew. Chem. Intl. Ed. Engl., 4, 29(1965) (a review of solvent "polarity" scales) Ph - O N+ Ph Again, the long wavelength maximum is very Ph sensitive to solvent because there is less Ph Ph charge separation in the excited state than in the ground state. ET is the transition energy in kcal mol-1 (as with Z values). For reactions of unknown mechanism a plot of log k vs Y, Z, or ET gives some idea of the sensitivity of reaction rate to ion-solvating ability and therefore some indication of the difference in charge separation between the reactant(s) and transition state. Interpretation of the slopes of such plots requires a comparison with slopes for reactions of "established" mechanisms or well-characterized transition states. The slopes are analogous to ρ values, which measure sensitivity to substituent effects. Again, we are comparing the reaction to some model reaction or model process. If the correlation is good, the model is a good one. The original Dimroth solvent parameters are called ET(30) values in more recent papers. Several new betaine dyes having different substituents on the pyridinium and phenoxide rings (compared to the structure noted above) have been synthesized and the new compounds have permitted considerable extension of the original scale. Reichardt & Harbusch-Görnet Liebigs (Ann., 721 (1983)) have defined a scale called ETN values based on all of these compounds. In the ETN scale, tetramethylsilane is assigned a value of 0.00 and water a value of 1.00, so that all other values fall between 0 and 1.0. ETN values for 243 solvents are listed. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 10 Selected Solvent Polarity Parameters ET Z Y 63.1 94.6 3.49 formic acid - - 2.05 trifluoroacetic acid - - 1.84 trifluoroethanol - - 1.06 80/20 (v/v) EtOH/H2O 53.6 84.8 0.00 methanol 55.5 83.6 -1.09 ethanol 51.9 79.6 -2.03 acetic acid 51.2 79.2 -1.64 1-propanol 50.7 78.3 -2.73 nitromethane 46.3 71.3 - acetonitrile 46.0 71.2 - DMSO 45.0 71.1 - DMF 43.8 68.4 -3.5 acetone 42.2 65.5 - chloroform 39.1 63.2 - ethyl acetate 38.1 59.4 - THF 37.4 58.8 - ethyl ether 34.6 - - benzene 34.5 54 - carbon tetrachloride 32.5 - - n-hexane 30.9 - - Solvent water Y values: Fainberg & Winstein, JACS 78, 2770(1956) ET values: Reichardt Angew. Chem. Int. Ed. Engl. 4, 29(1965) Z values: Kosower JACS 78, 3253(1956) ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 11 IV PHASE TRANSFER CATALYSIS references: W.P. Weber and G.W. Gokel, Phase Transfer Catalysis in Organic Synthesis, Springer-Verlag, Berlin, 1977. C.M. Starks and C. Liotta, Phase Transfer Catalysis, Principles and Techniques, Academic Press, N.Y. 1978. Phase transfer catalysis is a way of carrying out reactions between an organic compound, soluble in an organic solvent, and an ionic compound not appreciably soluble in the organic solvent. The reaction is carried out in a two-phase organic/aqueous system using a large quaternary ammonium or related salt (phase transfer catalyst) which carries the ionic reactant into the organic phase as an ion pair. Using this method it is possible to carry out reactions ordinarily requiring a scrupulously anhydrous medium. example: + - Na OH in H2O aqueous phase organic phase PhCH2CN + CH3I in CH2Cl2 No reaction occurs until PhCH2N+Et3 Cl- is added. After addition of the phase transfer catalyst the reaction is over in a few minutes. Procedure: product: Ph CH(CH3)CN Add aqueous Na+OH- + R4N+OH- to a solution of PhCH2CN + CH3I in CH2Cl2 and stir. General Mechanism: + aqueous phase organic phase - - Q Cl + OH + Q PhCHCN + H2O + Q PhCHCN + CH3I + - + - - [Q OH ] + Cl [Q OH ] + PhCH2CN +- PhCHCN + [Q I ] CH3 ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 12 The method depends on the fact that R4N+OH- is much more soluble in organic solvents than Na+OH-. another example: aqueous phase + - Cl Cl + Na OH , PhCH2N Et3, in H2O organic phase C C C C in CHCl3 Crown ethers and cryptands can also be used a phase transfer catalysts: + - Na OH + crown [crown.Na ] OH + - (soluble in organic phase V SOLVENT EFFECTS ON PRODUCT COMPOSITION The solvent can have a large effect on the product composition in reactions where two or more products are produced by competing pathways that respond differently to changes in solvent. One familiar example is competition between concerted nucleophilic substitution (SN2) and nucleophilic substitution by a stepwise ionization (SN1) mechanism. Depending on the substrate and nucleophile, the solvent can effect the % rearrangement or % racemization, both of which require a carbocation intermediate. Two other examples are shown: (i) Concerted vs Ionic Cycloaddition ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 13 CN + Cl Cl C C Cl + + CN CN NC Cl 2 1 in: benzene acetonitrile 3 50% 9% 38% 26% 2% 64% Adduct 1 is produced by a thermally-allowed π2s + π2s + π2s cycloaddition, while 2 and 3 are presumed to arise from the + accompanying C zwitterionic intermediate. - C CN Cl (ii) Reactions of Ambident Anions Ambident anions have two or more nucleophilic sites and can react with alkyl halides, acyl halides, etc. at two or more positions. examples: - - O O N CN - O O R - O - O - C H O R R etc. O C H R etc. enolate anions General rule: the more free the anion the greater the tendency to react at the most electronegative atom ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 14 For enolate anions, protic solvents strongly solvate the oxygen site favouring Calkylation. Polar aprotic solvents, by leaving the anion relatively unsolvated, favour Oalkylation. Examples: O Ph in C O Ph + CH3I C - Ph tBuOH Ph C OCH3 Ph C Ph C Ph + Ph C CH3 Ph 96% DME/DMSO 4% 50% 50% CH2Ph - O in: OCH2Ph PhCH2Br OH + DMF 97% 0% methanol 57% 24% CF3CH2OH 7% 85% ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 15 PRACTICE PROBLEMS 3 1. Predict the effect on the rate accompanying a change to a more polar solvent. Is the rate change considered to be large or small? a) Et2S + EtBr Et3S+Brb) - OH + Et4N+ H2O + CH2 CH2 + Et3N c) CH2 CH2 + Br2 BrCH2 CH2Br via rate determining bromonium ion formation 2. Account for the trends in Keq for the following equilibrium. O O Keq O OH solvent Keq % enol n-hexane 19 95 1,4-dioxane 4.6 82 methanol 2.8 74 3. Consider the accompanying substitution reaction, which follows the additionelimination mechanism introduced in CHEM*3750. Br Br N3 + NO2 Na+N3- N3 + - NO2 Na+Br- NO2 When the reaction is done in DMF, the rate of disappearance of the starting material is rapid. If increasing incremental amounts of water are added to the mixture, the reaction slows down. Please explain. 4. Rank the following compounds for their propensity to solvolyze under the conditions indicated (fastest to slowest). Give reasons for your rankings. The temperature is the same in each instance. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 16 Situation A Situation B Situation C Situation D CH3O CH3 Cl CH3 CH3O 80% EtOH/20% H2O CH3 Cl CH3 80% EtOH/20% H2O CH3O CH3O CH3 Cl CH3 CH3 Cl CH3 50% EtOH/50% H2O Situation E CH3 Cl CH3 80% EtOH/20% H2O 90% iPrOH/10% H2O 5. For the following reaction that proceeds by way of a dipolar (or zwitterionic) intermediate, a) Match the relative rate with the appropriate solvent. ClSO2 ClSO2 CH3 N C O C CH2 + CH3 C CH2 CH3 CH3 measured relative rates 1, 31, 5000 N C O reaction solvents diethyl ether, n-hexane, nitrobenzene a) Draw the structure of the probable intermediate. 6. You have been introduced to the Hughes-Ingold model for predicting solvent polarity effects on reaction rates. Consider the following reaction: Et3N + Et-I Et4N+ + I- which is for the 2nd table of page 2-5 of the course notes. Draw a potential energy level diagram (as on course notes p. 3-10 at the top) demonstrating the reaction path when this reaction proceeds in benzene vs. nitrobenzene. Place both curves on one diagram and be sure to label each curve. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 17 7. Although it was only briefly mentioned in class, the solvent susceptibility parameter m can assume a negative value, as shown in the two similar reactions below. Me3S + Et3S + + - OH MeOH + Me2S m = -0.78 + - OH EtOH + Et2S m = -0.84 a) Briefly explain, in general, what kinds of chemical reactions give a positive m value and hence the kinds of chemical reactions that give provide a negative m value. b) Briefly justify the negative m value in the particular instance of the reactions above. 8. As indicated by the symbolic drawing below, benzyltrimethyl ammonium chloride is complexed by a crown ether (18-crown-6) and the equilibrium constant (K) for the complexation is solvent dependent (298 K). The interaction of the ether oxygens with the ammonium ion is through hydrogen bonding. The table showing the data also shows the entropy change for the reaction, ΔSr, which is presented as TΔS; that is, the temperature component has been incorporated. O O O O O K + PhCH2NH3 O + O + H3N O O O CH2 Ph O O solvent log K TΔS (kJ/mol) H2O 1.44 -- iPrOH 4.14 -26.4 DMSO 1.34 -23.7 You are required to: a) Explain why the entropy for the complexation equilibrium is negative. b) Explain why the log K for iPrOH is much larger than that for water. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 18 Explain why water and DMSO have comparable equilibrium values despite being solvents of such different structure. SOLUTIONS TO PRACTICE PROBLEMS 3 1. a) Et2S + EtBr Et3S+Br- -an example of decreased charge separation -large decrease in rate b) - OH + Et4N+ H2O + CH2 CH2 + Et3N -another example of decreased charge separation -large decrease in rate c) CH2 CH2 + Br2 BrCH2 CH2Br via rate determining bromonium ion formation -an example of increased charge separation -large increase in rate 2. solvent Keq % enol n-hexane 19 95 1,4-dioxane 4.6 82 methanol 2.8 74 O O O Keq OH H O O Much like one of the labs in CHEM*3750, we see a dependence of internal H-bonding on solvent. With the least polar solvent, there in no opportunity for solvent participation through H- H-bonding arrangemen bonding or dipole alignment, so the molecule satisfies itself somewhat by tautomerizing to the enol and doing the internal H-bonding. With 1,4-dioxane, increased stabilization of ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 19 the polar carbonyl form is possible through interaction with the solvent, (but not Hbonding). With MeOH there is good chance to H-bond to the carbonyl and to solvate it well through polar interaction. Hence self-stabilization by enol formation is reduced. 3. When sodium (or K+) azide is added to DMF, the sodium is solvated due to the direction of the dipole moment of the solvent. The azide is poorly solvated and readily does chemistry; hence the efficient addition elimination reaction. The addition of water creates a new solvent system that can assist in the stabilization of the positive sodium ion, but will probably have a greater effect on the azide which is poorly solvated in DMF alone. Water can perform H-bonding to the azide, which stabilizes it and reduces its reactivity. 4. Situation A Situation B Situation C Situation D CH3O CH3 Cl CH3 CH3O CH3 Cl CH3 CH3O CH3O CH3 Cl CH3 CH3 Cl CH3 80% EtOH/20% H2O 80% EtOH/20% H2O 50% EtOH/50% H2O ranks third, boring substituent and common solvent system 2nd fastest case, is in common solvent system and bears +R group for through resonance stabilization in the TS for Cl loss fastest case, is in most ionizing solvent and bears +R group for through resonance stabilization in the TS for Cl loss Situation E CH3 Cl CH3 80% EtOH/20% H2O 90% iPrOH/10% H2O 2nd slowest case, bears -I group and is in common solvent system slowest case, bears -I group and is in least ionizing solvent 5. a) A dipolar intermediate would suggest that more polar solvents would accelerate the reaction. The accompanying molecule is the proposed intermediate. Note that the tertiary carbon bears the cation while the collection of electronegative atoms bears the anion. ClSO2 -N C O CH2 + CH3 C CH3 Measured relative rates reaction solvents 1 n-hexane, 31 diethyl ether, 5000 nitrobenzene ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 20 6. Here is my thought. The important issues are that the starting materials should be close, the overall ΔG‡ should be less for nitrobenzene and the ionic products in nitrobenzene should be of lower energy that in benzene. I also believe the energy difference between the products in the different solvents should be greater than the energy difference between the two transitions states in the different solvents 7. Me3S + Et3S + + - OH MeOH + Me2S m = -0.78 + - OH EtOH + Et2S m = -0.84 a) The concept of m arises from solvolysis reactions. One can take the rate of solvolysis of a standard reaction, determine its’ rate in a number of solvents and then establish a solvent parameter, m. Since in a solvolysis, there is creation of charge, so more polar solvents create a large m and anything that creates charge will have a positive m based on how m was established in the first place. So when m is measured for a reaction that destroys charge, then m comes out to be negative. b) In the case of the reactions at hand, the negative m value is applicable since charged ion are reacting to create neutral compounds. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 21 8. a) Two reasons: Two molecules come together to form one. The flexibility of the ring is lost when it closes to complex with the ammonium ion. b) iPrOH is not as good of an H-bonding solvent as water because of steric reasons, polarity and the number OH bonds per molecule. Note that for the ammonium ion to bind with the crown ether, it must give up its interaction with the solvent. In water more so than iPrOH, that interaction is through H-bonding and hence it is more difficult to leave that H-bonding interaction behind in favour of the crown ether. The weaker interaction of the ion with iPrOH therefore will more readily concede the ammonium to the crown ether. Both water and DMSO have oxygens capable of offering electron density towards cations. When that cation is something like an ammonium ion, then both can participate in H-bonding. Despite their structural differences, both can H-bond very well. ORGANIC REACTIVITY - CHEM*4720 - COURSE NOTES W2010 2 - 22
© Copyright 2026 Paperzz