Chiral Anions in Asymmetric Catalysis Hannah Haley Burke Group Literature Seminar 13 April 2013 Key Ac2va2on Modes for Asymmetric Catalysis S L M N N H H X RX R2 R1 R2 R1 Coordinative interaction Double hydrogenbonding interaction 'Lewis acid catalysis' 'Hydrogen bonding catalysis' Lewis acidic metal (M) and Lewis basic ligand (L) form chiral net Lewis acidic species Directional H-bonds provide electrophilic activation and stereodefined environment O P O H -O + XR R1 R2 R1 P O XR2 R2 Single hydrogenbonding interaction Electrostatic interaction only 'Bronsted acid catalysis' 'Chiral anion catalysis' High acidity of chiral phosphoric acid and Bronsted basicity of phosphoryl O activate electrophile and nucleophile Ion pairing between fully protonated substrate and phosphate counterion Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. Chiral Anion Catalysis X+ YNeutral substrate Neutral product Reagent Modified substrate+ Y- § Combina+on of achiral but cataly+cally ac+ve species (transi+on metal complex, Lewis base, Lewis acid) with chiral counterion § In nonpolar media, species will exist as +ght ion pair and influence of counterion can be stereochemically significant § Generalizable strategy as many reac+ons are known to proceed through ca+onic intermediates § Most examples here: achiral ca2onic metal complex with chiral counterion Metal Catalysis with Chiral Counterions Generalized Strategy TsHN TsHN achiral cationic Au(I) • • chiral anion Au+ L AuL *AnionH H + N Ts H *Anionchiral anion, not ligand, provides asymmetric induction § Chiral ions interact with metal only through electrosta2c interac+ons § Tradi+onally chiral ligands which directly coordinate to metal center are used § Phosphoric acid ligands regarded as highly dissociated compared to conven+onal ligands (eg phosphines) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. NTs Gold (I)-‐Catalyzed Enan2oselec2ve Allene Hydroamina2on Original Methodology NOT a Chiral Anion Strategy Dinuclear Gold(I)-Phosphine Complexes Silver activates gold complexes through formation of cationic gold species via halide extraction P Au X * P Au Y * P Au 2+ X- Y* B catalytically inactive 3 mol% * • Y- P Au A NHTs + P Au X P Au C catalytically active P Au Cl Ts N P Au Cl PAr2AuCl PAr2AuCl 6 mol% AgBF4 0.3 M DCE, 23 ˚C Dicationic species assumed 82%, 1% ee Ar = xylyl Product formed with no stereoselectivity § Phosphinegold(I) complexes known to be chemoselec+ve for ac+va+on of C-‐C mul+ple bonds § Useful for addi+ons to allenes, alkenes, alkynes § § Few enan+oselec+ve Au(I) reac+ons known at the +me Silver ac+vates gold by forming ca+onic Au(I) via halide extrac+on LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. Gold (I)-‐Catalyzed Enan2oselec2ve Allene Hydroamina2on Original Methodology NOT a Chiral Anion Strategy 3 mol% * NHTs • P Au Cl Ts N P Au Cl PAr2AuCl PAr2AuCl AgBF4 0.3 M DCE, 23 ˚C 6 mol% AgBF4 (dication) 3 mol% AgBF4 (monocation) 82%, 1% ee 81%, 51% ee Ar = xylyl § Increase in enan+oselec+vity with assumed monoca+onic species indicated that remaining coordinated counterion (Cl-‐) was cri+cal for stereoinduc+on § Hypothesized that replacing chloride with larger coordina+ng counterion may further enhance enan+oselec+vity LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. Gold (I)-‐Catalyzed Enan2oselec2ve Allene Hydroamina2on Original Methodology NOT a Chiral Anion Strategy 3 mol% * NHTs • 3 mol% AgBF4 6 mol% AgOBz 6 mol% AgOPNB 6 mol% AgODNB P Au Cl Ts N P Au Cl AgX 0.3 M DCE, 23 ˚C 81%, 51% ee 27%, 98% ee low equilib concentration of active species 76%, 98% ee EWG improves conversion 82%, 95% ee EWG improves conversion OPNB = p-nitrobenzoate ODNB = 3,5-dinitrobenzoate § Electronic and steric tuning of coordinated counterion possible with benzoates § Must s+ll be able to form ac2ve ca2onic catalyst § Results indicate that anionic counterion likely involved in discrimina+ng between diastereomeric transi2on states LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. Asymmetric Catalysis with Gold (I) Complexes long distance *ligand Au+ long distance substrate ligand Au+ *counterion- Gold(I) adopts bicoordinate linear geometry Chiral information far from reaction center substrate short distance New Strategy TsHN TsHN achiral cationic Au(I) • chiral anion • Au+ L AuL *AnionH H + N Ts *Anion- § Asymmetric catalysis with gold(I) complexes is notoriously difficult § Chiral counterion rather than chiral ligand strategy may lead to higher stereoselec+vity H NTs Gold (I)-‐Catalyzed Enan2oselec2ve Allene Hydroalkoxyla2on Chiral Ligand Strategy Leads to Low Enan2oselec2vity Chiral phosphine ligand and achiral silver anion complex HO 3 mol% * • P Au Cl P Au Cl Chiral gold complex H O 3 mol% AgX CH2Cl2 AgBF4 AgOPNB PAr2AuCl PAr2AuCl 68%, 0% ee 89%, 8% ee Ar = m-xylene OPNB = p-nitrobenzoate Achiral phosphine ligand and chiral silver anion complex HO 2.5 mol% Ph2P Au Cl Chiral silver TRIP counterion H Ph2P Au Cl • O O P O O Ag+ Solvent effect 60%, 18% ee 72%, 37% ee THF benzene iPr iPr iPr 5 mol% (R)-AgTRIP solvent CH3NO2 acetone O 83%, 76% ee 90%, 97% ee iPr iPr iPr § At +me of publica+on, only gold(I) complexes had successfully promoted asymmetric allene hydroalkoxyla+on, but with limited scope Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. Gold (I)-‐Catalyzed Enan2oselec2ve Allene Hydroalkoxyla2on Use of Chiral Ligand and Chiral Counterion is Produc2ve Strategy (S,S) DIPAMP ligand OMe HO 2.5 mol% L(AuCl)2 5 mol% (R) or (S)-AgTRIP • H benzene H H H H challenging, unfunctionalized substrate O P Ph Ph P MeO (R)-AgTRIP counterion iPr iPr dppm(AuCl)2, (R)-AgTRIP 96%, 80% ee achiral gold ligand with chiral silver counteranion [(S,S)-DIPAMP(AuCl)2, (S)-AgTRIP 96%, 92% ee iPr O O P O O Ag+ iPr chiral gold ligand AND chiral silver counteranion iPr Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. iPr Chiral Anion Strategy for Asymmetric Tsuji-‐Trost Allyla2on Achiral Ca2onic π-‐Allyl Pd(II) Complex Ion Paris with Chiral Phosphoric Acid R1 R2 + CHO N H 1.5 mol% (R)-TRIP 3 mol% Pd(PPh3)4 5 A MS, MTBE, 40 ˚C R R1 R2 then 2N HCl, Et2O CHO Mechanistic hypothesis R1 CHO + H2NR R2 iminium hydrolysis O P O HO O * N H allylated quaternary center R1 + R2 CHO H2O H2O O R H N+ - O P O O * 2 R R1 R acid catalyzed allyl aminealdehyde condensation O R H N+ - O P O chiral O enammonium * phosphate salt 1 2 R R Pd0 * O O -O P O +Pd H R1 Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. R2 N R nucleophilic enamine and cationic π-allyl Pd with chiral counterion Chiral Anion Strategy for Asymmetric Tsuji-‐Trost Allyla2on Cataly2c Asymmetric Allyla2on of α-‐Branched Aldehydes R3 R1 R2 Ph + CHO Ph 1.5 mol% (R)-TRIP 3 mol% Pd(PPh3)4 5 A MS, MTBE, 40 ˚C N H then 2N HCl, Et2O R3 R1 R2 CHO H H Me Me H Me CHO CHO CHO F 85% 98.5:1.5 er 85% 98:2 er H Me Me iPr CHO 65% 85:15 er 40% 96:4 er reaction run at 110 ˚C reaction run at 60 ˚C Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (R)-TRIP counterion iPr Me CHO 45% 95:5 er iPr O O P O O iPr iPr iPr Chiral Anion Phase Transfer Catalysis Inversion of Tradi2onal PTC Uses Chiral Anionic Transfer Catalyst Halocyclization 5 mol% chiral TRIPderived catalyst 1.25 equiv Selectfluor 1.1 equiv Proton Sponge O O NH C6H5F, -20 ˚C Traditional PTC Organic phase Reagent Activated anionic substrate Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. B. Science 2011, 334, 1681. O O N 86% 92% ee Inverted PTC Organic phase Lipophilic chiral cation salt (mediates reactivity) Aqueous or solid phase F Substrate Lipophilic chiral anion salt (mediates reactivity) Aqueous or solid phase Activated cationic reagent Chiral Anion Phase Transfer Catalysis Chiral Anionic Phase Transfer Catalyst Solubilizes Electrophilic Fluorine Source Solid phase Cl 2 * NaHCO3 O O P N+ 2BF4N+ F Selectfluor O O- Na+ (insoluble) Cl Na2CO3 N+ N NaBF4 iPr iPr 2 NaBF4 BF4- C8H17 iPr Cl O P O * -O O iPr O P N+ N+ F O O- iPr antifluorocyclization F Organic liquid phase O chiral ion pair (soluble) C8H17 iPr * N+ N O O P O OH O Ar NH O Ar N Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. B. Science 2011, 334, 1681. Cl -O O P O O Chiral Anion Phase Transfer Catalysis Chiral Anionic Phase Transfer Catalyst Solubilizes Electrophilic Fluorine Source Dihydropyran substrates R O 5 mol% catalyst 1.25 equiv Selectfluor 1.1 equiv Proton Sponge NH O F R O O N C6H5F, -20 ˚C F F F O O O Br O t-Bu O N O N 84% 95% ee I N 95% 95% ee 73% 9:1 dr 87% ee Dihydronaphthalene and chromene substrates R O X NH 10 mol% catalyst 1.5 equiv Selectfluor 1.25 equiv Na2CO3 1:1 C6H5F/hexanes, 23 ˚C X F O R N (R)-TRIP derived catalyst F O O iPr iPr F C8H17 O iPr I N 71% 93% ee O O P O OH N 70% 92% ee iPr C8H17 Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. B. Science 2011, 334, 1681. iPr iPr
© Copyright 2026 Paperzz