volume 5 Number 7 July 1978 Nucleic Acids Research Alteration in nucleosome structure induced by thermal denaturation V.L.Seligy and N.H.Poon Molecular Genetics Group, Division of Biological Sciences, National Research Council, Ottawa, K1A0R6 Canada Received 19 May 1978 ABSTRACT Mononucl e o s o m e s prepared from goose e r y t h r o c y t e nuclei exhibited limited heterogeneity with respect to number o f e l e c t r o p h o r e t i c c o m p o n e n t s , h i s t o n e s and DNA c o m p o s i t i o n . T h e c o m p o n e n t s d i f f e r s l i g h t l y in i o n i c s t r e n g t h i n d u c e d s e l f a s s o c i a t i o n . T h e r m a l d e n a t u r a t i o n o f e a c h c o m p o n e n t g a v e only two d o m i n a n t , h i g h l y c o o p e r a t i v e , m e l t i n g t r a n s i t i o n s , T " and T " ' . U r e a and t r y p s i n w e r e used t o e s t a b l i s h the d i f f e r e n t i a l l a b i l i t y o f t h e s e two t r a n s i t i o n s . C o m p a r i s o n o f the m o r p h o l o g i e s of the m o n o n u c l e o s o m e s a t v a r i o u s s t a g e s t h r o u g h o u t the m e l t i n g p r o f i l e i n d i c a t e d t h a t the 13.3 ± 1.5 n m d i a m e t e r m o n o n u c l e o s o m e s s t a r t t o d i s r u p t o n l y in the l a t t e r h a l f o f t r a n s i t i o n T " and d o not u n f o l d until a f t e r r e a c h i n g T " ' . T h e r e s u l t a n t , o p e n ended ( 1 7 . 4 ± 2.2 n m d i a m e t e r ) t o r o i d s a r e s t i l l l a r g e l y n e g a t i v e l y s t a i n i n g and m u c h m o r e u n i f o r m in s h a p e i f f i x e d s i m u l t a n e o u s l y with gluteraldehyde. INTRODUCTION E l e c t r o n m i c r o s c o p y and t h e r m a l d e n a t u r a t i o n a r e two o f m a n y t e c h n i q u e s w h i c h h a v e been used e x t e n s i v e l y to p r o b e c h r o m a tin and its m a j o r s u b s t r u c t u r a l c o m p o n e n t , the n u c l e o s o m e (1) o r v - b o d y ( 2 ) . T h e l a t t e r has been e x t e n s i v e l y c h a r a c t e r i z e d by p h y s i c a l and b i o c h e m i c a l m e t h o d s (see c u r r e n t r e v i e w s 3 - 6 ) and by e l e c t r o n m i c r o s c o p y u s i n g b r i g h t a n d d a r k f i e l d m o d e s ( 1 , 2 , 6 - 1 5 ) . A large number of attempts have been made to interp r e t the s i g n i f i c a n c e o f the t h e r m a l m e l t i n g t r a n s i t i o n s o f c h r o m a t i n and n u c l e o s o m e s w i t h r e s p e c t t o s p e c i f i c i n t e r a c t i o n s of the DNA and p r o t e i n m o i e t i e s ( 1 6 - 3 5 ) . V i s u a l i z a t i o n o f an a l t e r e d n u c l e o s o m e s t r u c t u r e , such a s f o u n d in the c a s e for u r e a d e n a t u r e d n u c l e o s o m e s ( 2 7 , 3 6 ) , m a y b e v e r y u s e f u l for f i n a l interpretation. In the p r e s e n t s t u d y w e c o r r e l a t e d v i s u a l c h a n g e s in © Information Retrieval Limited 1 Falconberg Court London W1V5FG England Nucleic Acids Research n u c l e o s o m a l m o r p h o l o g y w i t h the v a r i o u s t h e r m a l t r a n s i t i o n s o f the DNA a s s o c i a t e d w i t h n u c l e o s o m e s . C o n t r o l l e d , t h e r m a l l y d e n a t u r e d m o n o n u c l e o s o m e s u n f o l d to y i e l d i m a g e s s i m i l a r to those described for urea denatured nucleosomes ( 2 7 , 3 6 ) . The d a t a a r e c o n s i s t e n t w i t h a n a r r a n g e m e n t o f D N A s i m i l a r to t h a t r e c e n t l y p r e d i c t e d from neutron scattering and X-ray d i f f r a c t i o n observations (3,6,15,37). MATERIALS AND METHODS Preparation of n u c l e o s o m e s : Digests of intact goose erythrocytes (14) or chromatin (38) were carried out with micrococcal nuclease (E.C. 3.1.4.7, code NFCP, Worthington Biochemical Corp., actual a s s a y 2 6 . 8 u n i t s p e r m i c r o g r a m ) at 2 3 ° . T h e e n z y m e w a s a s s a y e d f o r h i s t o n e p r o t e o l y t i c a c t i v i t y and f o u n d to be nil up to 24 hrs at 3 7 ° . Nuclear digests were terminated after about 1 5 % acid s o l u b i l i t y by a d d i t i o n o f t h r e e v o l u m e s o f i c e c o l d 2 m M E D T A pH 8 . 0 . T h e d i l u t e d d i g e s t s , a b o u t 0.05 in i o n i c s t r e n g t h f o r n u c l e i , w e r e g e n t l y s t i r r e d w i t h a m i c r o m a g n e t i c b a r f o r 5 m i n u t e s a t 0°C b e f o r e e n r i c h i n g f o r c h r o m a t i n f r a g m e n t s ( r a n g e 3s < 5 0 s ) by c e n t r i f u g a t i o n f o r 15 m i n u t e s a t 2 0 0 0 xg in a s w i n g i n g b u c k e t r o t o r . C h r o m a t i n f r a g m e n t s c o r r e s p o n d i n g to b r i g h t f i e l d e l e c t r o n microscopically defined nucleosomes (7-11,14) were further isol a t e d by u l t r a c e n t r i f u g a t i o n ( 3 9 ) and ul t r a f i 1 t r a t i o n ( 1 4 ) . T h e r e l a t i v e purity of the nucleoprotein preparations was assessed b y c o m p a r i s o n o f e l e c t r o p h o r e t i c m o b i l i t i e s w i t h nucl e o p r o t e i n s from the o r i g i n a l d i g e s t and DNA e x t r a c t e d from the p u r e m o n o n u c l e o s o m e f r a c t i o n s ( 1 4 , 4 0 , 4 1 ) . R e f e r e n c e DNA m a r k e r s w e r e from X p h a g e a n d P M 2 D N A d i g e s t e d w i t h Hpa II a n d H a e I I I , r e s p e c t i v e l y . P r o t e i n s w e r e a n a l y z e d on 1 2 % and 2 0 % p o l y a c r y l a m i d e gels ( 4 2 , 4 3 ) u s i n g p u r i f i e d h i s t o n e s and c r o s s - l i n k e d m a r k e r s , 1 4 , 3 0 0 t o 7 1 , 5 0 0 MW ( 8 D H B i o c h e m i c a l s L t d . , P o o l e E n g l a n d ) . Pure l y o p h i l i z e d h i s t o n e s consisting of H 2 A , H 2 B , H3 and H 4 ( 1 : 1 : 1 : 1 ) all f r o m m a t u r e g o o s e e r y t h r o c y t e s ( 4 4 ) w e r e w e i g h e d o u t , d i s s o l v e d in g l a s s d i s t i l l e d w a t e r a n d a d j u s t e d to pH 7.0 w i t h a d d i t i o n o f s o d i u m p h o s p h a t e to 5 m M . T h e p r o t e i n s t o c k w a s 2.5 m g / m l . Thermal denaturation: S a m p l e s w e r e a n a l y z e d by c o m p a r i n g the m e l t i n g c u r v e s a n d f i r s t d e r i v a t i v e p l o t s o b t a i n e d in 5 m M N a P O . pH 7 . 0 . T h e r m a l d e n a t u r a t i o n w a s d o n e in a m o d i f i e d G i l f o r d 2 4 0 2234 Nucleic Acids Research e q u i p p e d w i t h a 6 0 4 6 a n a l o g m u l t i p l e x e r and 2 5 2 7 t h e r m o p r o g r a m m e r . The t h e r m o c u v e t t e assembly was e l e c t r o n i c a l l y heated. The m e t h o d for d i g i t a l i z i n g the data and c o m p u t e r a n a l y s i s h a s been briefly described ( 2 4 ) . For thermal d e n a t u r a t i o n studies i n v o l v i n g e l e c t r o n m i c r o s c o p i c a n a l y s i s , the s a m p l e s w e r e h e a t e d in a m a n n e r e q u i v a l e n t t o t h e 2 5 2 7 p r o g r a m m e r s y s t e m . Specific e x p e r i m e n t a l d e t a i l s a r e g i v e n in f i g u r e d e s c r i p t i o n s . Electron microscopy: For routine e l e c t r o n m i c r o s c o p i c work aliquots o f unfixed o r g l u t e r a l d e h y d e fixed n u c l e o s o m e s , h i s tones o r DNA were placed o n Kodak P h o t o - f l o ( 0 . 1 % v/v) p r e w a s h e d o r UV (254 n m ) i r r a d i a t e d f o r m v a r coated grids (14) an e q u a l v o l u m e o f e i t h e r uranyl a c e t a t e s t a i n o r 4 % ( v / v ) g l u t a r a l d e h y d e . The sample grids were subsequently flushed with filtered d i s t i l l e d w a t e r , s t a i n e d (in t h e c a s e o f f i x e d s a m p l e s ) , a i r d r i e d , a n d sandwiched between the formvar with a c o a t i n g o f e v a p o r a t e d carbon (45) a t 5 x 1 0 m m Hg. The n e g a t i v e stain was u s u a l l y 1% (w/v) uranyl a c e t a t e - 5 % a c e t o n e ; v a r i a t i o n s over the range o f 0 . 0 0 5 % to 5 % a q u e o u s uranyl a c e t a t e w e r e examined. All images were recorded on Kodak Electron Image Plates using a Seimens Elmiskop 1A at 80KV. Optical e n l a r g e m e n t o f the original i m a g e s was d e s c r i b e d p r e v i o u s l y using t h e M a c r o s y s t e m and c o n v e n t i o n a l e n l a r g e r ( 1 4 ) . N o c h r o m a t i c a b b e r a tions o r image d i s t o r t i o n s were detected. The size o f an o b j e c t was determined from m e a s u r e m e n t s either from accurately enlarged p r i n t s , using neutral contrast p a p e r , o r as we p r e f e r r e d , from the original negatives viewed by an optical m i c r o s c o p e and an eye piece with a calibrated s c a l e . The latter method is considered more precise b e c a u s e the original plates c o n t a i n i n g t h e p r i m a r y e l e c t r o n i m a g e s a r e i m m u n e t o m e a s u r e m e n t l o s s in c o m p a r i s o n t o t h e e n l a r g e d p r i n t s w h i c h c a n r e s u l t in a s m u c h a s 1 0 % d e v i a t i o n a s the print c o n t r a s t is i n c r e a s e d . Determination o f temperature discrepancies between actual sample heating t e m p e r a t u r e and sample t e m p e r a t u r e a t i n c i p i e n t transfer to electron m i c r o s c o p e grids was facilitated b y use o f custom made microthermocouples which were geometrically fixed into five microlitre p i p e t t e s . The exact temperature and durat i o n in s e c o n d s w e r e r e c o r d e d s i m u l t a n e o u s l y u s i n g a M o d e l 7 0 0 1 AM M o s e l y A u t o g r a p h X - Y r e c o r d e r ( H e w l e t t - P a c k a r d ) e q u i p p e d with 2235 Nucleic Acids Research a Bio E 330 pen position adaptor; X-axis sweep was 0.25 seconds p e r c m ; Y - a x i s t e m p e r a t u r e of e x p a n s i o n w a s 2 . 1 3 ° C p e r c m . F o r grid temperature measurements, m i c r o t h e r m o c o u p l e probes were g e o m e t r i c a l l y f i x e d a t 0 . 5 mm a b o v e t h e c e n t e r o f e a c h g r i d . T h i s d i s t a n c e a l l o w e d f o r full c o n t a c t w i t h f i v e m i c r o l i t r e o r g r e a t e r b u b b l e s of f i x a t i v e , stain o r w a t e r placed on the g r i d s prior t o a p p l i c a t i o n of sample. T h e p r o c e d u r e w a s used to avoid d i r e c t c o n t a c t w i t h t h e p r o b e a n d g r i d a s s e m b l y . T h e g r i d s , in t u r n , w e r e r i g i d l y h e l d in p o s i t i o n by t h e i r r i m s ( = 0 . 5 m m f r o m o u t e r e d g e ) w i t h D u m o n t N o . 5, s u p e r - f i n e , l o c k i n g t w e e z e r s . Results C h a r a c t e r i z a t i o n o f n u c l e o s o m e s : M o n o n u c l e o s o m e s used f o r t h e r m a l a n d e l e c t r o n m i c r o s c o p y s t u d i e s a r e m o r e l i m i t e d in heterogeneity than recently reported (14,28,46-49). Densitom e t r i c scans gave only two major c o m p o n e n t s (Fig. l a ) equivalent in m o b i l i t y to a b o u t 1 9 4 , 7 0 0 t o 2 4 7 , 5 0 0 d a l t o n s o f D N A ( c a l i brated with H a e III PM2-DNA restriction fragments F to N (Fig.lc) as a s s i g n e d in r e f . 5 0 ) . A w e i g h t a v e r a g e m o l e c u l a r w e i g h t o f 9 8 , 3 4 0 daltons w a s computed for the DNA (Fig. l b ) . Each component contains histones H 2 A , H 2 B , H3 and H 4 . The dominant species, about 8 8 % of t h e s a m p l e , c o r r e s p o n d s to t h e "core p a r t i c l e " by d e f i n i t i o n o f DNA base pair number ( 3 , 4 , 6 ) . We earlier noted ( 1 4 ) t h a t m o n o n u c l e o s o m e s , o b t a i n e d by d i g e s t i o n o f n u c l e i h e l d i n t a c t by p h y s i o l o g i c a l s a l i n e b u f f e r , w e r e l e s s h e t e r o g e n e o u s t h a n f r o m n u c l e i o r c h r o m a t i n d i g e s t e d in l o w i o n i c s t r e n g t h b u f f e r . Since the DNA digestion patterns are about the same ( 2 3 , 3 8 , 5 1 ) t h e h e t e r o g e n e i t y w e o b s e r v e d m a y be r e l a t e d t o d i f f e r e n c e s in s e l f - a s s o c i a t i o n o f n u c l e o s o m e s i n d u c e d by i n creased ionic strength ( 4 6 ) . We examined this possibility using c h r o m a t i n d i g e s t e d at l o w ionic s t r e n g t h a n d purified by sucrose g r a d i e n t c e n t r i f u g a t i o n using l o w and high ionic strength ( 1 4 , 3 9 ) b u f f e r . Figure 2A shows t h e proportion of chromatin f r a g m e n t s o r p u r i f i e d n u c l e o s o m e s w h i c h d o n o t a g g r e g a t e at t h e v a r i o u s i o n i c s t r e n g t h s , r e l a t i v e t o 1 5 0 m M NaCl n u c l e o s o m e s . T h e s o l u b i l i t y o f t h e l o w i o n i c s t r e n g t h d e r i v e d n u c l e o s o m e s is s i m i l a r t o t h a t o b s e r v e d b y 01 ins et al ( 4 6 ) a n d W i t t i g a n d Wittig (32). Electrophoresis of the various precipitates and 2236 Nucleic Acids Research F i g u r e 1 . C h a r a c t e r i z a t i o n o f m o n o n u c l e o s o m e s used in c o m b i n e d t h e r m a l d e n a t u r a t i o n and e l e c t r o n m i c r o s c o p y s t u d i e s . D e n s i t o metric scans (580nm) of photographic negatives of ethidium bromide stained polyacrylamide slabs (0.3cm x 20cm) were made: ( a ) m o n o n u c l e o s o m e s (125 pg D N A ) , (b) DNA f r o m n o m o n u c l e o s o m e s (50 yg] and (c) Hae III r e s t r i c t i o n f r a g m e n t s o f PM2 DNA (15 p g , 3X c h a r t e x p a n s i o n ) . The 4 % ( w / v ) p o l y a c r y l a m i d e gel s l a b s w e r e e l e c t r o p h o r e s e d w i t h c o n t i n u o u s b u f f e r c i r c u l a t i o n . C a l i b r a t i o n o f res t r i c t i o n f r a g m e n t s w a s based upon p r e - d e s i g n a t e d s i z e s ( 5 0 ) . (d) disc p o l y a c r y l a m i d e gel (0.5 c m x 1 0 c m ) s h o w i n g a m i d o b l a c k s t a i n i n g p r o t e i n s (Top to b o t t o m , H 3 , H 2 B , H2A and H 4 ) from main n u c l e o s o m e b a n d ; the m i n o r c o m p o n e n t a l s o c o n t a i n s the same histones. s o l u b l e f r a c t i o n s , shown in F i g . 2 B , i n d i c a t e s a s ionic s t r e n g t h i n c r e a s e s t h e r e is a p r e f e r e n t i a l s e l e c t i o n o f m o n o n u c l e o s o m e s o v e r o l i g o m e r i c f o r m s and a r e d u c t i o n in h e r e r o g e n e i t y of m o n o n u c l e o s o m e s . T o f u r t h e r q u a l i f y the s i g n i f i c a n c e o f the i n d i vidual m o n o n u c l e o s o m e c o m p o n e n t s w i t h r e s p e c t t o p r o t e i n , DNA size and t h e r m a l m e l t i n g b e h a v i o u r , n u c l e o s o m e s w e r e p r e p a r a t i v e l y e l e c t r o p h o r e s e d and i n d i v i d u a l c o m p o n e n t s e l u t e d and e x a m i n e d . F i g u r e 3A s h o w s that the n u c l e o p r o t e i n from the v a r i o u s b a n d s r e t a i n t h e i r r e l a t i v e n o b i l i t y , w h i c h is a p p r o x i m a t e l y r e l a t e d t o the c o m p u t e d DNA b a s e p a i r n u m b e r . The v a r i a t i o n s are c o n s i s t e n t w i t h o t h e r r e p o r t s ( 1 4 , 2 8 , 4 6 , 4 9 ) . T h e c o n t e n t o f n o n h i s t o n e is very low (<2%). T h i s has been a l r e a d y noted ( 1 4 ) . A s shown in F i g u r e 3 B , the m a j o r v a r i a t i o n in p r o tein c o n t e n t c e n t e r s on w h e t h e r HI a n d / o r H 5 a r e p r e s e n t o r n o t ; the 125 base pair f r a g m e n t may h a v e m o r e H 3 and H 4 a s s o c i a t e d w i t h it. D i f f e r e n t i a l s o l u b i l i t y o f the m o n o n u c l e o s o m e p o p u l a t i o n is a p p a r e n t l y r e l a t e d t o HI and H 5 (Fig. 2 ) and some nonhistone proteins (54). 2237 Nucleic Acids Research Fi g u r e 2. E f f e c t of ionic strength on s e l f - a s s o c i a t i o n or a g g r e g a t i o n of n u c l e o s o m e s . A , low g r a v i t y (2000 x g, 20 m i n u t e s ) s e p a r a t i o n of a g g r e g a t e d n u c e l o p r o t e i n as a f u n c t i o n of salt concentration. (A) c h r o m a t i n d i g e s t e d with m i c r o c o c c a l n u c l e a s e (4 x 1 0 " u n i t s / y g D N A ) for 5 m i n u t e s at 2 3 ° ( 0 . 4 % acid s o l u b l e ( 3 8 ) , 8+ 3% i n s o l u b l e c h r o m a t i n in 1 mM EDTA pH 8.0 at 2 0 0 0 x g 20 m i n u t e s ) . C h r o m a t i n d i g e s t e d to 15 - 18% acid s o l u b i l i t y in low ( 3 8 , A ) and high ( 1 4 , A ) ionic strength b u f f e r . Nucleosomes a s s o c i a t e d with (#) and w i t h o u t (O) histones HI and H5 (see Fig. 3, c and d ) . N u c l e o s o m e s from 11.5 £ m o n o m e r peak from c h r o m a tin d i g e s t e d at low ionic strength (see A ) and f r a c t i o n a t e d by 5 - 2 0 % s u c r o s e g r a d i e n t s in 1 mM EDTA pH 8.0 (•) or 100 mM N a C l 50 mM T r i s - H C l - 1 mM E D T A , pH 8.0 ( D ) . B_. El e c t r o p h o r e t i c a n a l y s i s of DNA p r e p a r e d from c h r o m a t i n a g g r e g a t e s c o l l e c t e d in e x p e r i m e n t , & ; a to j r e f e r to p r e c i p i t a t e s in panel A_; h^ is the 150 mM NaCl s o l u b l e m o n o n u c l e o s o m e . P h o t o g r a p h is a r e v e r s e p r i n t of a 3 . 5 % p o l y a c r y l a m i d e slab g e l . Melti ng p r o f i 1 e s : The d e r i v a t i v e melting p r o f i l e s of m o n o n u c l e o somes treated or u n t r e a t e d with urea and/or t r y p s i n are shown in F i g u r e 4. T h e s e data show that the melting p r o f i l e of isolated m o n o n u c l e o s o m e s is c o m p o s e d of two c o m p o n e n t s , r e f e r r e d to here as T" and T 1 " . This a g r e e s with recent r e p o r t s ( 2 2 , 2 3 , 2 7 - 3 5 ) . Urea t r e a t m e n t , w h i c h has been shown to d i s r u p t c h r o m a t i n and n u c l e o s o m e s ( 1 6 , 2 3 , 2 7 ) , p r e f e r e n t i a l l y e l i m i n a t e s T" 1 o v e r T " ; a b o v e 6M urea a D N A - l i k e c o m p o n e n t (T°) o c c u r s (Fig. 4 ) , w h i c h r e p r e s e n t s a b o u t 8 to 1 2 % of the total h y p e r c h r o m i c i t y . In our e x p e r i m e n t s urea n e i t h e r caused a change in total h y p e r c h r o m i c i t y of the c o m p o n e n t s nor any n o t i c e a b l e increase in t u r b i d i t y ( 2 7 ) . T r e a t m e n t of m o n o n u c l e o s o m e s w i t h trypsin r e s u l t e d in the p r e f e r e n t i a l e l i m i n a t i o n of T"' over T". This is also shown in F i g u r e 4. The e x t e n t of e l i m i n a t i o n of T" could be e n h a n c e d if urea w a s i n c l u d e d ; urea added b e f o r e or d u r i n g p r o t e o l y t i c d i g e s tion w a s very e f f e c t i v e in this e l i m i n a t i o n . T r y p s i n and urea 2238 Nucleic Acids Research b 265 2F5 c d 210 165 165 e f 145 125 Figure 3. S u b f r a c t i o n a t i o n and protein c h a r a c t e r i z a t i o n o f mononucleosomes. A., p r e p a r a t i v e electrophoresis o f a low speed fraction of micrococcal nuclease digested chromatin (0.05 ionic strength soluble fraction in Fig. 2 (A) and ref. 1 4 , Fig. l a j . The 3.5% (1 cm x 2 0 c m ) polyacrylamide slab gel contained 2.5 to 3.0 mg of sample per 3 cm slot. Electrophoresis was for 1 4 hours at 3 0 mA. Ethidium bromide fluorescent bands were exercised and contents e l e c t r o p h o r e t i c a l l y eluted. The lower slab (0.3 cm x 20 cm) shows the purity o f the components. The base pair a s s i g n ments of the DNA from each component were from calibrated fragments (Fig. l c ) . J3, densitometric scans (575 n m ) of histones from each component. Electrophoresis was at pH 2.7 ( 4 3 , 4 4 ) . treatment generated two main types o f DNA m e l t i n g : one with melting properties e q u i v a l e n t to deproteinized DNA and a second, broad melting component o f value <T". The latter can only be completely removed by addition of sodium d o d e c y l s u l p h a t e and further DNA purification (Fig. 4 ) . In all e x p e r i m e n t s , using the same nucleosomal starting material and a p p r o p r i a t e blank c o n t r o l s , the difference in total hyperchromicity between n a t i v e , urea, and urea-trypsin treatments was less than 6.8%. Trypsin treatment alone was about 8.0%. The sharp c o - o p e r a t i v e character and near equivalent hyperchromic values suggest that no major single strand stacking has taken p l a c e , except possibly for trypsin treated m a t e r i a l . Figure 5 shows the results of a study using the e l e c t r o phoretically fractionated mononucleosomes of Figure 3 and o l i g o mers from the ionic strength precipitation experiments (Fig. 2 ) . Firstly, it is apparent from the thermal d e r i v a t i v e plots that 2239 Nucleic Acids Research 10.0 I 0 30 50 70 90 Temperature °C Fi gure 4. D e r i v a t i v e thermal d e n a t u r a t i o n p r o f i l e s of m o n o n u c l e o somes before and after treatment with urea a n d / o r t r y p s i n . T h e p l o t s (24) w e r e o b t a i n e d with 1.5 x 10' 1 * M DNA-P in 5 mM P d , a t pH 7.0. Mononucl e o s o m e s a r e from e x p e r i m e n t in Fig. 1. a_, u n t r e a t e d ; b_, urea 6 M f o r two hours and c_, 8 M ; d_, trypsin 0.003 w/w at 2 3 ° for 1 hour at pH 7.0 and e_ trypsin with 6 M urea added during d i g e s t i o n , and £ , D N A from n u c l e o s o m e s in 6 M u r e a . E x p e r i m e n t s w e r e in d u p l i c a t e ; d e t a i l s a r e in M e t h o d s . m e l t i n g of n u c l e o s o m e fragments are s i m i l a r . S e c o n d l y , as DNA f r a g m e n t size is i n c r e a s e d there is a slight shift of the T'" t r a n s i t i o n and an a p p e a r a n c e of minor low (<T") and high ( > T M I ) m e l t i n g t r a n s i t i o n s . T h i r d l y , c o m p o n e n t T" is slightly augmented and less c o - o p e r a ; i v e (measured by half peak h e i g h t ) in submonomer p a r t i c l e s (the; 1 2 5 base pair u n i t ) ; it b e c o m e s increasingly c o n t i g u o u s with T"' as D N A fragment size i n c r e a s e s . Since some f r a g m e n t s have e i t h e r HI or H5 a s s o c i a t e d with t h e m , the shift of T" and T" 1 may be d u e to these p r o t e i n s . H o w e v e r , T" broadens and both T" and T"' s h i f t to lower values when 1 mM P 0 4 buffer is used C o n t r o l s for c o r r e l a t i n g visual and thermal s t u d i e s : As major c o n t r o l s w e p r e v i o u s l y studied t h e patterns and images found in the a b s e n c e o f s a m p l e , stability of s a m p l e to uranyl salt conc e n t r a t i o n and c o n t a m i n a t i o n due to free histone ( 1 4 ) . T h e d r y i n g pattern w i t h b u f f e r alone p r e p a r e d and stained in the 2240 Nucleic Acids Research 10.0 - 30 50 70 90 Temperature °C F i g u r e 5. D e r i v a t i v e thermal d e n a t u r a t i o n p r o f i l e s o f m o n o n u c l e o s o m e s , d i n u c l e o s o m e s and o l i g o m e r i c f r a g m e n t s . Plots a_ and b^ c o r r e s p o n d to f r a g m e n t s o b t a i n e d f r o m e x p e r i m e n t s in Fig. 2 T n d i cated by s y m b o l s A and A ; c t o f p l o t s c o r r e s p o n d to b_, c_, d_, a n d f_ c o m p o n e n t s in Fig. 3. s a m e w a y as for s a m p l e s , is n e i t h e r r a n d o m nor the same as w h e n s a m p l e is i n c l u d e d . The d e p o s i t i o n p a t t e r n is a l t e r e d as the c o n c e n t r a t i o n o f sample per grid is i n c r e a s e d ( 1 4 ) . A t h i g h e r m a g n i f i c a t i o n s no images c o m p a r a b l e to the ones for n u c l e o s o m e s c o u l d b e d e t e c t e d w i t h b u f f e r a l o n e a t any t e m p e r a t u r e . T h i s possibility was extensively studied because transfer of heated s a m p l e from thermal c u v e t t e to i n d i v i d u a l e l e c t r o n m i c r o s c o p e grids could i n t r o d u c e a r t i f a c t s due to heat f l u c t u a t i o n s o f s a m p l e and g r i d . The v a r i a b l e s a s s o c i a t e d w i t h sample t r a n s f e r w e r e q u a l i f i e d for each i n c r e a s e in t e m p e r a t u r e by use o f m i c r o t h e r m o c o u p l e s i n s e r t e d a p p r o p r i a t e l y in the c a p i l l a r i e s o f the t e m p e r a t u r e e q u i l i b r a t e d m i c r o p i p e t t e s and o n t o the grid s u r f a c e s . A detail o f this d e s c r i p t i o n is p r e s e n t e d in the M e t h o d s and in the legend o f F i g u r e 6. From F i g u r e 6A and C it can be seen that the a v e r a g e time r e q u i r e d for s a m p l e t r a n s f e r and t r e a t m e n t on the grid is very s h o r t , 1.63 ± 0.3 s e c o n d s and 2.13 ± 0.2 s e c o n d s , r e s p e c t i v e l y . Loss o f heat d u r i n g t r a n s f e r is c h a r a c 2241 Nucleic Acids Research A 90 -. eo —» 70 70 90 50 Temperature Before Transfer (°C) 60 50 40 30 20 I 2 3 Time (seconds) I 2 Duration (seconds) Fi g u r e 6_. D e t e r m i n a t i o n o f t e m p e r a t u r e d i f f e r e n t i a l s d u r i n g s p e c i m e n h e a t i n g a n d t r a n s f e r t o e l e c t r o n m i c r o s c o p e g r i d s . A_. C h a n g e in s a m p l e t e m p e r a t u r e d u r i n g t r a n s f e r f r o m t h e r m a l c u v e t t e to i n d i v i d u a l g r i d s . V e r t i c a l s h a d e d bar i n d i c a t e s all p o i n t s w h e r e s a m p l e s w e r e r e l e a s e d from 5 m i c r o l i t r e p i p e t t e s e q u i p p e d w i t h m i c r o - t h e r m o c o u p l e p r o b e s i n the c a p i l l a r i e s . ]3. D i s c r e p e n c y in s a m p l e t e m p e r a t u r e b e f o r e t r a n s f e r and i n c i p i e n t r e l e a s e o f s a m p l e o n t o e l e c t r o n m i c r o s c o p e g r i d s . Data w a s o b t a i n e d f r o m g r a p h s in A u s i n g a n a v e r a g e d t r a n s f e r t i m e o f 1.63 +_ 0.30 s e c , w h e r e the n u m b e r o f r e p e t i t i o n s w a s 8 5 . C_. R e s u l t a n t increased grid t e m p e r a t u r e s following application o f samples a t v a r i o u s s a m p l e t r a n s f e r t e m p e r a t u r e s s h o w n in A and B_. V e r t i c a l t e m p e r a t u r e d r o p s i n d i c a t e p o i n t s in t i m e and T i n a l grid t e m p e r a tures when w a s h i n g o f grids with staining solutions o r w a t e r o c c u r r e d . Maximum grid t e m p e r a t u r e , which occurs at 95°C, w a s 32.4 + 0.8°C. t e r i s t i c for e a c h s t a r t i n g t e m p e r a t u r e ; it d o e s not b e c o m e s i g n i f i c a n t until a b o v e 7 0 ° C ( F i g . 6 A and B ) . A t 9 7 ° C the a v e r a g e h e a t l o s s d u r i n g t r a n s f e r w a s 2 . 8 ± 1 . 6 ° C . S i m i l a r l y it w a s f o u n d t h a t s a m p l e t r a n s f e r t e m p e r a t u r e b e l o w 5 0 ° C did n o t s i g n i f i c a n t l y a l t e r the o r i g i n a l g r i d t e m p e r a t u r e ; m a x i m u m g r i d t e m p e r a t u r e at 97°C was 8.4 + 0.8°C above ambient room t e m p e r a t u r e . E v e n a t t h i s t e m p e r a t u r e the e x p o s u r e w a s less t h a n 1.5 s e c o n d s after which the grids w e r e flushed with buffer (Fig. 6 C ) . By u s i n g the d a t a in F i g u r e 6 a n d j u d i c i o u s l y c o m p a r i n g g r i d s w i t h o u t sample, before and after h e a t i n g , we concluded that elevated temperatures alone cannot generate morphological staining a r t i f a c t s . C o o l i n g o f s a m p l e d u r i n g t r a n s f e r could r e s u l t in p o s s i b l e r e n a t u r a t i o n o f s o m e d e n a t u r e d m a t e r i a l . To d e t e r m i n e to w h a t e x t e n t this m i g h t o c c u r c h r o m i c i t y c h a n g e s a t 2 6 0 nm w e r e m o n i tored a s n u c l e o s o m e samples were program heated to various 2242 Nucleic Acids Research 100 - 80 = 60 S I 40 X 20 - if" f1 -_ J ^ | j 40 60 80 Temperature CO Figure 7. A n a l y s i s o f n u c l e o s o m a l - D N A d e n a t u r a t i o n a n d r e n a t u r a t i o n . S a m p l e s o f n u c l e o s o m e s (1.5 x 1 0 " 4 M D N A - P ) , in t r i p l i c a t e , w e r e m e l t e d to v a r i o u s e x t e n t s ( a , b a n d c ) , c o o l e d r a p i d l y to a m b i e n t t e m p e r a t u r e ( 2 3 ° ) a n d r e - h e a t e d by w a y o f a thermal p r o g r a m to 9 7 ° . H y p e r c h r o m i c i t y o f c o n t r o l s a m p l e , d e natured in o n e c o n t i n u o u s phase w a s 3 3 . 7 % ( ) . S y m b o l s (-<—) and (—>--) i n d i c a t e c o o l i n g a n d r e - h e a t i n g p h a s e s , r e s p e c t i v e l y . t e m p e r a t u r e s , c o o l e d to room t e m p e r a t u r e a n d p r o g r a m r e - h e a t e d to 97° ( m e l t i n g o f all D N A ) . T h e r e s u l t s , p r e s e n t e d in Figure 7 , are only f o r t h e b e g i n n i n g s a n d ends of t h e T " a n d T"' t r a n s i t i o n s . Each o f t h e t r a n s i t i o n s h a s some p o t e n t i a l f o r h y p o c h r o m i c i t y (after c o r r e c t i n g f o r w a t e r e x p a n s i o n ) ; the b e g i n n i n g of t h e T " t r a n s i t i o n is m o s t a f f e c t e d a n d T"' t h e l e a s t . H y p e r c h r o m i c i t y d u e to r e - h e a t i n g the n u c l e o s o m a l m a t e r i a l is almost totally recoverable for the former, b u t not for the l a t t e r . T h e r e f o r e c o m b i n i n g t h e r e s u l t s in F i g u r e 6 A , B a n d C with those o f F i g u r e 7 , it is likely that only t h e m a t e r i a l at the b e g i n n i n g o f t r a n s i t i o n T " m i g h t be a f f e c t e d by t r a n s f e r o f s a m p l e d u r i n g h e a t i n g . H o w e v e r , a t these t e m p e r a t u r e s s a m p l e heat l o s s , p r i o r to f i x a t i o n on t h e g r i d s , is very s m a l l . To d e t e r m i n e to w h a t e x t e n t the m o r p h o l o g i c a l a n d s p e c t r o scopic c h a n g e s , which occur during nucleosomal-DNA d e n a t u r a t i o n , may be a t t r i b u t a b l e to free h i s t o n e - h i s t o n e i n t e r a c t i o n s a l o n e , p u r e , n u c l e i c acid f r e e , h i s t o n e s were h e a t t r e a t e d and s i m u l taneously monitored for morphology. The results of these e x p e r i m e n t s c a n b e b r i e f l y s u m m a r i z e d as f o l l o w s : 1 ) a c o operative heat induced hyperchromic change can be clearly d e t e c t e d a t 2 7 5 n m ; 2 ) t h e m a j o r t r a n s i t i o n o c c u r s a b o u t 10°C 2243 Nucleic Acids Research Table 1. Form S t a t i s t i c a l measurements of native and denatured Mononucleosomes N O.D. I.D. (nm + s.d.) Native 550 13.3 + 1.5 Denatured 4 0 5 17.4 + 2.2 Contour Length a (nm + s.d.) Percent B-Form Length 1.68+0.8 9.8 + 2.0 42.9 + 6.3 86 + 4.8 C o m p u t e d b y d i r e c t l e n g t h m e a s u r e m e n t o f l i n e a r f o r m s o r by f o r m u l a , T T ( ( O . D . - I.D.)/2 + I . D . ) . C o m p u t e d f r o m w e i g h t a v e r a g e m o l e c u l a r w e i g h t 9 8 , 3 4 0 d +_ 3 % . a b o v e t h a t o f p u r i f i e d DNA from n u c l e o s o m e s ; a n d 3) the m o r p h o l o g y o f t h e h i s t o n e s , w h i c h h a v e been d e s c r i b e d ( 1 4 ) , c h a n g e , but the i m a g e s d o n o t r e s e m b l e t h o s e o b t a i n e d w i t h n u c l e o s o m e s a t any o f the elevated t e m p e r a t u r e s . Image and s t a i n i n g c h a r a c t e r i s t i c s o f native and d e n a t u r e d nucleosomes : Figure 8 shows the general n e g a t i v e s t a i n i n g properties of m o n o n u c l e o s o m e s at 2 3 ° C , prior to thermal d e n a t u r a t i o n . All images were p a r t i c u l a t e , either circular o r prolate e l i p s o i d s . A s i z e a n a l y s i s o f t h e i n s i d e and o u t s i d e d i a m e t e r s i s s u m m a r i z e d in T a b l e I. T h e d i m e n s i o n s of t h e p a r t i c l e s a r e i n g o o d a g r e e m e n t w i t h o u r e a r l i e r d e t a i l e d study ( 1 4 ) and t h o s e o b t a i n e d from c h i c k e r y t h r o c y t e s (1,2,11). T h e bulk o f t h e n u c l e o s o m a l i m a g e s c h a n g e d v e r y l i t t l e i n s h a p e o r s t a i n a b i l i t y a s t h e t e m p e r a t u r e is r a i s e d f r o m a m b i e n t ( 2 3 ° C ) t o 7 0 ° C . T h i s h o l d s w h e t h e r t h e s a m p l e is fixed in g l u t e r a l d e h y d e immediately prior to s t a i n i n g o r directly s t a i n e d w i t h o u t f i x a t i o n (Fig. 8 b , b ' ) . A s i g n i f i c a n t a m o u n t o f s w e l l i n g and tendency of the nucleosomes to aggregate was noticed at t h e l a t t e r p a r t o f t r a n s i t i o n T" ( F i g . 8 b , b ' ) . H o w e v e r , no f u r t h e r c h a n g e w a s n o t e d until T " ' w a s r e a c h e d ; a t t h i s p o i n t , t h e a v e r a g e n u c l e o s o m a l m o r p h o l o g y has d r a s t i c a l l y a l t e r e d and both inner and outer diameters have increased (Fig. 8c,c', Table I ) , The average fiber length from p e r i m e t e r measurements is l e s s t h a n t h e l e n g t h c o m p u t e d f r o m t h e w e i g h t a v e r a g e d b a s e pair number a s s u m i n g B-form duplex DNA (Fig. 1 ) ( 1 , 2 7 ) . A d e t a i l e d c o m p a r i s o n of the u n f i x e d a n d f i x e d m a t e r i a l i n d i c a t e s t h a t t h e u n f i x e d m a t e r i a l y i e l d s m o r e l i n e a r and U 2244 Nucleic Acids Research a Figure 8. Morphological changes in mononucleosomes at various stages of heat denaturation. Duplicate samples removed from thermal-regulated cuvette at 2°C intervals and transferred to grids. Procedures are described in methods and in Fig. 6. a_, a}, 2 3 ° ; b^ b} and c_, c_l correspond to end of T" and T"' transitions shown in Fig. 4., d, d' are high magnifications of c, c'. Gl uteral dehyde was omitted in a', b', c 1 and d_'. 2245 Nucleic Acids Research s h a p e d s t r u c t u r e s than o p e n ended c i r c l e s . This is s h o w n in the high m a g n i f i c a t i o n s o f F i g u r e 8 d , d ' . Close s c r u t i n i z a t i o n of g r i d s with s a m p l e s from each t e m p e r a t u r e interval i n d i c a t e d that a m i n o r c o m p o n e n t w i t h similar m o r p h o l o g i c a l f e a t u r e s seen in F i g u r e 8 b to c also o c c u r s a t the b e g i n n i n g o f T". H o w e v e r , t h e s e ringed s t r u c t u r e s may have d i s i n t e g r a t e d as the t e m p e r a t u r e w a s i n c r e a s e d , b e c a u s e they could not be detected a t h i g h e r temperatures. DISCUSSION The c o m p o s i t i o n o f m o n o n u c l e o s o m e s used here s p e c i f i c a l l y for c o m b i n e d m e l t i n g and v i s u a l i z a t i o n studies is in good a g r e e m e n t w i t h o t h e r r e p o r t s ( 3 - 6 ) . We have shown that m o n o n u c l e o some v a r i a t i o n ( 1 4 , 2 7 ) can arise through d i f f e r e n c e s in s e l f a s s o c i a t i o n o f m o n o m e r o r o l i g o m e r n u c l e o s o m e s by i n c r e a s e d ionic s t r e n g t h and p r e s e n c e o f HI and H5 a s s o c i a t e d p r o t e i n s . T h e h e t e r o g e n e i t y e s t a b l i s h e d by e l e c t r o p h o r e t i c a l l y s u b f r a c t i o n a t e d m o n o n u c l e o s o m e s is in a g r e e m e n t with those from c h i c k e n ( 2 7 ) . The e x t r e m e l y low n o n h i s t o n e p r o t e i n c o n t e n t o f the m o n o m e r s is not unusual b e c a u s e : 1) m a t u r e c h i c k e n or goose e r y t h r o c y t e nuclei c o n t a i n very low a m o u n t s o f n o n h i s t o n e in c o m p a r i s o n to nuclei from i m m a t u r e c e l l s or o t h e r tissues ( 5 2 , 5 3 ) ( e s p e c i a l l y in c l a s s e s b e l o w 6 8 , 0 0 0 d a l t o n s ) and 2) the bulk o f the high m o l e c u l a r w e i g h t r e s i d u a l p r o t e i n s , which a p p e a r to be m o s t l y a s s o c i a t e d w i t h n u c l e a r m e m b r a n e s o r m a t r i x , are r e l a t i v e l y i n s o l u b l e u n l e s s e x t e n s i v e l y d i g e s t e d with m i c r o c o c c a l n u c l e a s e ( 5 4 ) . Since the initial p r e p a r a t i o n o f this m a n u s c r i p t several r e l a t e d reports have been p u b l i s h e d which f u r t h e r d o c u m e n t the d i f f e r e n t i a l s e l f - a s s o c i a t i o n o f m o n o m e r s and o l i g o m e r s ( 3 2 , 5 5 - 3 7 ) T h e s e s t u d i e s p r o v i d e a basis for i n t e r p r e t i n g the e a r l i e r observed differential sensitivity o f erythrocyte chromatin ( h e t e r o c h r o m a t i c and e u c h r o m a t i c s t r u c t u r e ) to both m o n o and d i v a l e n t c a t i o n s ( 5 7 - 6 0 ) b e f o r e and a f t e r s e q u e n t i a l removal o f p r o t e i n s (.52,53,59). The m e l t i n g p r o f i l e s o f e l e c t r o p h o r e t i c a l l y d e f i n e d m o n o n u c l e o s o m e s and s e l e c t o l i g o m e r i c f r a g m e n t s o b t a i n e d by i o n i c s t r e n g t h p r e c i p i t a t i o n m e t h o d s c l e a r l y i n d i c a t e that o n l y two m a j o r t r a n s i t i o n s (T" and T"') are a s s o c i a t e d with m o n o n u c l e o s o m e s . As s h o w n here and in p a r t e l s e w h e r e ( 2 2 , 2 3 , 2 7 , 2 8 , 3 0 - 3 4 ) , 2246 Nucleic Acids Research t h e r m a l t r a n s i t i o n s £ T " a n d > T " ' a r e p e c u l i a r to n u c l e o p r o t e i n s of l a r g e D N A l e n g t h (>_ 2 6 5 b a s e p a i r s ) a n d i n c r e a s e d p r o t e i n c o m p l e x i t y . H o w e v e r they a r e n o t n e c e s s a r i l y d u e to p r e v i o u s d e g r a d a t i o n ( 2 1 , 2 5 , 2 8 , 3 0 , 3 2 ) . Allowing for solvent d i f f e r e n c e s , o u r results a r e very s i m i l a r t o t h o s e o b t a i n e d by M a n d e l a n d F a s m a n ( 2 2 ) , L e w i s ( 2 8 ) , W i t t i g a n d W i t t i g ( 3 2 ) . T h e y a r e a l s o in e x c e l l e n t a g r e e m e n t w i t h t h e h i g h l y c o m p l e m e n t a r y p h y s i c a l s t u d i e s by W e i c h e t a n d co-workers (68) that appeared on submission date o f our original manuscript. The combined studies clearly indicate that the presence of t r a n s i t i o n s T " a n d T " ' c a n n o t b e d i r e c t l y a c c o u n t e d f o r by v a r i a t i o n s in D N A l e n g t h , p r e s e n c e o r a b s e n c e o f l y s i n e - r i c h histones (HI, H5) or nonhistone proteins; but, co-operativity and r e s o l u t i o n o f t h e s e t r a n s i t i o n s p a r t i c u l a r l y T " , c a n be i n f l u e n c e d by t h e p r e c e d i n g p a r a m e t e r s a s well as by d i f f e r e n c e s in i o n i c s t r e n g t h o f the m e l t i n g b u f f e r . W e r o u t i n e l y u s e d 5 mM N a P O . a t pH 7 . 0 , b e c a u s e m u c h less v i s u a l u n f o l d i n g o f t h e m o n o n u c l e o s o m e s ( 1 4 ) t a k e s p l a c e t h a n a t l o w e r i o n i c s t r e n g t h s s u c h a s w i t h 0.1 m M E D T A , a n d T " a n d T " ' a r e s t i l l d i s t i n c t . W e i c h e t e t a l ( 6 8 ) have also recently observed t h e latter effect using sodium cacodylate buffer. T h e thermal reversibility o f T" and differential sensitivity of T"' with urea and trypsin treatment o f n u c l e o s o m e s will be d i s c u s s e d f u r t h e r in r e f e r e n c e to n u c l e o s o m e u n f o l d i n g . Olins a n d c o - w o r k e r s (27) have skillfully shown by electron microscopy that urea induces unfolding of n u c l e o s o m e s . A s i m i l a r c l a i m has b e e n m a d e by W o o d c o c k a n d F r a d o ( 3 6 ) . S i m p l e s t o r a g e o f n u c l e o s o m e s in l o w i o n i c s t r e n g t h b u f f e r can a l s o p r o m o t e d e n a t u r a tion ( 1 4 , 6 6 ) ; t h e n u c l e o s o m e s u n f o l d into two m a j o r h a l v e s in t h e a b s e n c e o f any m a j o r D N A o r p r o t e i n d e g r a d a t i o n . In t h i s s t u d y w e s h o w for t h e f i r s t t i m e t h a t d u r i n g t h e r m a l d e n a t u r a t i o n p u r i f i e d mononucleosomes undergo reproducible morphological changes which are g e n e r a l l y n o n r e v e r s i b l e . F i r s t , the m o r p h o l o g i c a l c h a n g e s o c c u r w h e t h e r o r n o t t h e n u c l e o s o m e s a r e f i x e d in g l u t e r a l d e h y d e p r i o r to u r a n y l a c e t a t e s t a i n i n g . S e c o n d , t h e m a j o r c h a n g e is f r o m t h e typical compact toroid shape (Fig. 8 , Table I and ref. 2 , 7 , 1 0 , 1 1 - 1 5 ) to t h e l a r g e c i r c u l a r , U - s h a p e d , c r e s c e n t - s h a p e d , o r e x t e n d e d structure o f length about 9 0 % o f a weight average native D N A B-form equivalent. T h i r d , the major portion o f these morphological c h a n g e s is seen o n l y a f t e r r e a c h i n g t r a n s i t i o n T " ' . U n l i k e f o r m a i - 2247 Nucleic Acids Research d e h y d e (.67), w h i c h w a s p u r p o s e l y a v o i d e d h e r e , w e do n o t feel t h e highly regular ring structures obtained with gluteraldehyde fixation a r e a r t i f a c t s ; b a s i c a l l y t h e s a m e i m a g e s w e r e o b t a i n e d by t w o independent methods of staining. H o w e v e r , the presence of l i n e a r , e x t e n d e d f o r m s in u n f i x e d s a m p l e s s u p p o r t s o u r i n i t i a l c o n t e n t i o n that fixation would help stabilize the delicate denatured nucleosome structures from mechanical disruption during staining, washing and drying of g r i d s . The inherent r i g i d i t y of small DNA segments o f t h i s o r d e r ( 5 0 ) , p a r t i c u l a r l y in t h e d e n a t u r e d s t a t e , w o u l d t e n d to g e n e r a t e l i n e a r s t r u c t u r e s s u c h a s a l r e a d y s e e n f o r l o w i o n i c s t r e n g t h (14,66) and urea (27,36) d e n a t u r e d n u c l e o s o m e s . A d e t a i l e d s t u d y o f t h e u n f o l d e d s t r u c t u r e s a t h i g h r e s o l u t i o n , a n d an a n a l y s i s of the p e r i o d i c , n e g a t i v e l y s t a i n i n g e l e m e n t s , which are s e e n a l o n g t h e o p e n r i n g e d i m a g e s , is b e i n g c a r r i e d o u t u s i n g i m a g e r e c o n s t r u c t i o n m e t h o d s . The ringed structures are highly compatible with recent X-ray diffraction data (15) and corresponding subunit models (37,64). Several studies (21,22,26-30,61,68, this study) indicate t h a t t h e m a j o r m e l t i n g c o m p o n e n t of c h r o m a t i n is l i k e l y r e l a t e d to t h e p r i n c i p a l t r a n s i t i o n ( T " ' ) o f t h e s i m p l e m o n o n u c l e o s o m e . H o w e v e r , t h e s h e a r c o m p l e x i t y o f D N A - h e l i x s t a b i l i t y in c h r o m a t i n p r o h i b i t s d e f i n i t i v e a s s i g n m e n t o f o t h e r m e l t i n g t r a n s i t i o n s at t h i s t i m e . N e v e r t h e l e s s , an e a r l i e r m o d e l , d e r i v e d f r o m c h r o m a t i n w o r k ( 1 8 ) , h a s c o n s i d e r a b l e a p p e a l in t h a t t h e t w o m a j o r t r a n s i t i o n s a r e p o s t u l a t e d to o r i g i n a t e f r o m t h e d i s r u p t i o n o f p r o t e i n p r o t e i n i n t e r a c t i o n s a n d m e l t i n g of p r o t e i n - f r e e D N A (Tm ) a n d f r o m t h e d e s t r u c t i o n o f t h e s u p e r c o i l and D N A s t r a n d s e p a r a t i o n (Tm ) . O u r visual and h y p e r c h r o m i c studies and the r e c e n t l y r e p o r t e d h y p e r c h r o m i c , c i r c u l a r d i c h r o i c and c a l o r i m e t r i c s t u d i e s on c h i c k e n e r y t h r o c y t e n u c l e o s o m e s by W e i c h e t £jt aj_ ( 6 8 ) p r o v i d e n e w i n s i g h t into the thermal denaturation process of chromatin subunits. O v e r a l l , t h e b i - p h a s i c m e l t i n g o f c o r e p a r t i c l e s is i n t e r p r e t e d a s a d e n a t u r a t i o n o f a b o u t 4 0 b a s e p a i r s in t h e f i r s t p h a s e , f o l l o w e d by a m a s s i v e u n f o l d i n g o f t h e . n a t i v e s t r u c t u r e of a t i g h t h i s t o n e - D N A c o m p l e x , which frees the remaining 100 base p a i r s in s t a c k i n g ( t h e s e c o n d p h a s e ) . O u r s t u d y c l e a r l y s h o w s t h a t n u c l e o s o m e s b e g i n to alter original t o r o i d s h a p e only d u r i n g t h e l a t t e r t h i r d o f T " a n d do n o t a c t u a l l y c o - o p e r a t i v e l y u n f o l d u n t i l T " 1 is r e a c h e d . T h e u n f o l d i n g p a t t e r n is h i g h l y c o n s i s t e n t 2248 Nucleic Acids Research with the predicted 1 3/4 loop or supercoil arrangement of nucleosomal DNA ( 1 5 , 3 7 ) . From the circular dichroic data (68) it is further apparent that no change in secondary structure of the protein core takes place at T". Since the core is s t a b l e , it therefore may serve to lock the major part of the DNA into a rigid complex thus allowing only certain regions to gain limited mobility at £ T". This would explain the reversibility of T" that we both o b s e r v e , albeit in our case complete hypochromicity occurred only in the first third of T". It is important to stress that the first stable morphologically altered state of the nucleosome occurs in the latter third of T". It is there that the toroids become measureably expanded, frequently aggregated into clusters of 2 to 4 and ends of loops are occasionally detectable. Since secondary structure of histones is located in the more hydrophobic d o m a i n s , which are the regions that interact with each other ( 3 - 6 , 2 8 , 3 1 , 6 1 , 6 3 , 6 5 , 6 8 ) , the aggregation property may be a direct measurement of the alteration in histone structure that takes place at this stage C 6 8 ) . Unfolding of nucleosome secondary structure by urea has been earlier shown by electron microscopy ( 2 7 , 3 5 , 6 0 ) , hydrodynamic and circular dichroic studies ( 2 3 , 3 5 , 6 0 ) . Physical changes in mononucleosomes following trypsin treatment have also recently been reported ( 3 1 ) . The data are explained on the basis of a structural unfolding of nucleosomal DNA whereby part of the DNA rcetains the properties within intact core particles and the remaining portion behaves much like free DNA. We note that the melting data of 01 ins and co-workers (27) and Lilley and Tachell (31) exhibit a similar preferential loss of transition T"' over T" that we observed here. However, no visual studies on the unfolding of trypsin treated nucleosomes is currently available for more rigorous interpretation. From present w o r k , which correlates unfolding of the supercoiled DNA with T " 1 , preferential loss of T"' because of u r e a , trypsin or urea and trypsin treatment of nucleosomes would be expected. It is tempting to conclude that the presence of T" 1 can be used as a direct i n d i c a t o r , at all t i m e s , for m o r p h o l o g i c a l l y intact nucleosomes. H o w e v e r , our recent shearing studies (in preparation) indicate that this is not always t r u e , particularly if no T" is present. Similar caution should be applied when inter- 2249 Nucleic Acids Research p r e t i n g the o r i g i n of t r a n s i t i o n s <_ T". In a d d i t i o n to T" a r i s i n g f r o m t h e m e l t i n g of a l i m i t e d n u m b e r of b a s e pairs w i t h i n the n u c l e o s o m e ( 6 8 ) , it c o u l d also a r i s e from the m e l t - o u t of a m i n o r n u c l e o s o m e or n u c l e o s o m e - 1 i k e p o p u l a t i o n w h i c h lacks thermal s t a b i l i t y in the d e n a t u r e d state as e x h i b i t e d by d e n a t u r e d core n u c l e o s o m e s a t t e m p e r a t u r e s > T " ' . C l o s e s c r u t i n i z a t i o n of m i c r o g r a p h s o b t a i n e d from the e a r l y p o r t i o n of T" of a n u m b e r of s a m p l e s i n d i c a t e s that this is p o s s i b l e . T h e r e f o r e , for some n u c l e o s o m e e l e m e n t s t h e r e may be a d i f f e r e n c e in e i t h e r the types of p r o t e i n ( s p e c i e s or c h a r g e m o d i f i c a t i o n s ) or t h e way core p r o t e i n s a r e a s s o c i a t e d w i t h DNA s i s t e r s t r a n d s (intra or i n t e r s t r a n d c r o s s - 1 i n k i n g ) a f t e r d e n a t u r a t i o n . A study of s i n g l e s t r a n d a v a i l a b i l i t y and DNA s e q u e n c e p o l a r i t y b e f o r e , d u r i n g and a f t e r thermal d e n a t u r a t i o n of n a t i v e n u c l e o s o m e s may be useful a p p r o a c h e s for i n v e s t i g a t i n g this p o s s i b i l i t y . ACKNOWLEDGEMENTS The a u t h o r s w i s h to thank D r s . C.V. L u s e n a ( N . R . C . C . ) and A . R . M o r g a n ( U n i v e r s i t y of A l b e r t a ) for p r o v i d i n g us with X and P M 2 D N A . We a r e e x t r e m e l y i n d e b t e d to the e x p e r t technical s u p p o r t s k i l l s of M . J . D o v e , L. S o w d e n and R. W h i t e h e a d . This is N R C C c o n t r i b u t i o n N o . 16572. REFERENCES 1 O l i n s , D . E . and O l i n s , A . L . ( 1 9 7 4 ) S c i e n c e 1 8 4 , 3 3 0 - 3 3 2 2 O u d e t , P., G r o s s - B e l l a n d , M . and C h a m b o n , P. ( 1 9 7 5 ) Cell 4 , 281-299 3 K o r n b e r g , R . D . ( 1 9 7 7 ) Ann. Rev. B i o c h e m i s t r y 4 6 , 9 3 1 - 9 5 4 4 F e l s e n f e l d , G. ( 1 9 7 8 ) N a t u r e 2 7 1 , 1 1 5 - 1 2 2 5 L i , H.J. ( 1 9 7 5 ) N u c l e i c Acids R e s . 2 , 1 2 7 5 - 1 2 8 9 6 van H o l d e , K . E . and I s e n b e r g , I. ( 1 9 7 5 ) A c e . Chem. R e s . 8 , 327 7 van H o l d e , K . E . , S a h a s r a b u d d h e , C.G. and S h a w , B.R., van B r u g g e n , E . F . J . and A r n b e r g , A . C . ( 1 9 7 4 ) B i o c h e m . B i o p h y s . Res. Commun. 6 0 , 1365-1370 8 O l i n s , A . L . , C a r l s o n , D. and O l i n s , D.E. ( 1 9 7 5 ) J. Cell B i o l . 6 4 , 528-537 9 B a k a y e v , V . V . , M e l n i c k o v , A . A . , O s i c k a , V . D . and V a r s h a v s k y , A . J . ( 1 9 7 5 ) N u c l e i c Acids R e s . 2 , 1 4 0 1 - 1 4 1 9 10 F i n c h , J . T . , N o l l , M. and K o r n b e r g , R.D. ( 1 9 7 5 ) P r o c . N a t . Acad. Sci. U.S.A. 7 2 , 3320-3322 11 W o o d c o c k , C . F . L . , S a f e r , J . P . and S t a n c h f i e l d , J.E. ( 1 9 7 6 ) Expt'l Cell R e s . 9 7 , 1 0 1 - 1 1 0 12 L a n g m o r e , J . P . and W o o l e y , J.C. ( 1 9 7 5 ) P r o c . N a t . A c a d . S c i . U.S.A. 7 2 , 2691-2695 13 P o o n , N . H . and S e l i g y , V . L . ( 1 9 7 7 ) P r o c . of M i c r o s c o p i c a l S o c i e t y of C a n a d a 4 , 56-57 2250 Nucleic Acids Research 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 P o o n , N.H. and S e l i g y , V . L . (1978) Expt'l Cell Res. 113, 95-110. F i n c h , J.T., L u t t e r , L.C., R h o d e s , D., B r o w n , R . S . , R u s h t o n , B., L e v i t t , M. and K l u g , A. ( 1 9 7 7 ) N a t u r e 2 6 9 , 29-36 A n s e v i n , A . T . , H n i l i c a , L . S . , S p e l s b e r g , T . C . and Kelm, S.L. (1971) Biochemistry 10, 4793-4803 L i , H.J., C h a n g , C. and W e i s k o p f , M. ( 1 9 7 3 ) B i o c h e m i s t r y 1 2 , 1763-1772 W i l h e l m , F.X., De M u r c i a , G.M., C h a m p a g n e , M . H . and D a u n e , M . P . (1974) E u r . J. B i o c h e m . 4 5 , 4 3 1 - 4 4 3 S a h a s r a b u d d h e , C.G. and van H o l d e , K . E . (1974) J. B i o l . Chem. 249, 152-156 W o o d c o c k , C . F . L . and F r a d o , L.L.Y. ( 1 9 7 5 ) B i o c h e m . B i o p h y s . Res. Commun. 6 6 , 403-410 M i l l e r , P., K e n d e l l , F. and N i c o l i n i , C. ( 1 9 7 6 ) Nucleic Acids R e s . 3, 1875-1881 M a n d e l , R. and F a s m a n , G. (1976) N u c l e i c Acids R e s . 3, 1 8 3 9 1855 W h i t l o c k , J.P. and S i m p s o n , R.T. ( 1 9 7 6 ) N u c l e i c Acids R e s e a r c h 3, 2 2 5 5 - 2 2 6 6 L u r q u i n , P.F. and S e l i g y , V . L . (1976) C h e m . - B i o l . Intera c t i o n s 1 3 , 27-45 L a w r e n c e , J.J., C h a n , D.C.F. and P i e t t e , L.H. ( 1 9 7 6 ) N u c l e i c A c i d s R e s . 3, 2 8 7 9 - 2 8 9 3 S t a y n o v , D.Z. (1976) Nature 2 6 4 , 5 2 2 - 5 2 5 O l i n s , D . E . , B r y a n , P.N., H a r r i n g t o n , R . E . , H i l l , W . E . and O l i n s , A . L . ( 1 9 7 7 ) Nucleic A c i d s ' R e s . 4 , 1911-1931 L e w i s , P.N. (1977) C a n . J. B i o c h e m . 5 5 , 7 3 6 - 7 4 6 V e n g e r o v , Y.Y. and P o p e n k o v , V . I . ( 1 9 7 7 ) N u c l e i c Acids Res. 4, 3017-3027 D e f e r , N . , K i t z i s , A . , K r u t h , J., B r a h m s , S. and B r a h m s , J. (1977) J. N u c l e i c A c i d s R e s . 4 , 2 2 9 3 - 2 3 0 6 L i l l e y , D.M.J. and T a t c h e l l , K. ( 1 9 7 7 ) N u c l e i c A c i d s R e s . 4 , 2039-2055 W i t t i g , B. and W i t t i g , S. (1977) N u c l e i c A c i d s R e s . 4, 3 9 0 7 3917 C o t t e r , R . I . and L i l l e y , D.M.J. ( 1 9 7 7 ) FEBS L e t t e r s 8 2 , 6 3 - 6 8 . S t e i n , A . , S t e i n - B i n a , M. and S i m p s o n , R.T. (1977) Proc. N a t . A c a d . S c i . U.S.A. 7 4 , 2 7 8 0 - 2 7 8 4 G a r r e t , R.A. ( 1 9 7 1 ) B i o c h e m i s t r y 1 0 , 2 2 2 7 - 2 2 3 0 W o o d c o c k , C.F.L. and F r a d o , L.-L.Y. ( 1 9 7 6 ) J. Cell B i o l . 7 0 , 267a ( A b s t . ) P a r d o n , J . F . , W o r c e s t e r , D.L., W o o l e y , J . C . , C o t t e r , R . I . , L i l l e y , D.M. and R i c h a r d s , B.M. ( 1 9 7 7 ) N u c l e i c A c i d s Res. 4 , 3199-3214. S o l l n e r - W e b b , B. and F e l s e n f e l d , G. ( 1 9 7 5 ) B i o c h e m i s t r y 1 4 , 2915B i r n b o i m , H . C . , H o l f o r d , R.M. and S e l i g y , V . L . Cold Spring H a r b o r S y m p . Q u a n t . B i o l . 42 (in p r e s s ) M a r k o v , G.G. and I v a n o v , I.G. ( 1 9 7 4 ) A n a l . B i o c h e m . 5 9 , 555563 D a h l b e r g , A . E . , D i n g m a n , C.W. and P e a c o c k , A . C . (1969) J. Mol. Biol. 4 1 , 139-147 L a e m m l i , U. (1970) Nature 2 2 7 , 6 8 0 - 6 8 5 P a n y i m , S. and C h a l k l e y , R. (1969) B i o c h e m i s t r y 8, 3972-3979 T o b i n , R . S . and S e l i g y , V . L . ( 1 9 7 5 ) J. B i o l . C h e m . 2 5 0 , 3 5 8 364. 2251 Nucleic Acids Research 45 G o r d o n , C.N. and K l e i n s c h m i d t , A.K. (1968) B i o c h e m . B i o p h y s . Acta 155, 305-307 46 01 ins, A . L , , C a r t s o n , R.D., W r i g h t , E.B. and O l i n s , D.E. (19.76) Nucleic Acids R e s . 3, 3271-3291 47 T o d d , R.D. and G a r r a r d , W . T . (1977) J. B i o l . Chem. 2 5 2 , 4 7 2 9 4738 4 8 V a r s h a v s k y , A . J . , B a k a y e v , V . V . , C h u m a c k o v , P.M. and G e o r g i e v , G . P . ( 1 9 7 6 ) N u c l e i c A c i d s R e s . 3, 2 1 0 1 - 2 1 1 4 49. B a k a y e v , V . V . , B a k a y e v a , T.G. and V a r s h a v s k y , A . J . ( 1 9 7 7 ) Cell 11 , 6 1 9 - 6 2 9 5 0 K o v a c i c , R.T. and van H o l d e , K.E. (1977) B i o c h e m i s t r y , 1 6 , 1490-1498 51 L o h r , D., C o r d e n , J., T a t c h e l l , K., K o v a c i c , R.T. and van H o l d e , K . E . ( 1 9 7 7 ) P r o c . Nat. A c a d . Sci . U.S.A. 7 4 , 7 8 - 8 3 . 52 S h e l t o n , K.R. and N e e l i n , J.M. (1971) B i o c h e m i s t r y 1 0 , 2 3 4 2 2348 53 S e l i g y , V . L . and Miyagi , M. (1974) E u r . J. B i o c h e m . 4 6 , 2 5 9 269 54 S e l i g y , V . L . , P o o n , N . H . , D o v e , M. and T o b i n , R . S . u n p u b l i s h e d . 55 S a n d e r s , M.M. and H s u , J.T. (1977) B i o c h e m i s t r y 1 6 , 1 6 9 0 - 1 6 9 5 . 56 C a m p b e l l , A.M. and C o t t e r , R . I . (1977) N u c l e i c A c i d s R e s . 4, 3877-3886 57 L i , H.J., H u , A . W . , M a c i e w i c z , R.A., C o h e n , P., S a n t e l l a , R.M. and C a n g , C. ( 1 9 7 7 ) Nucleic Acids R e s . 4 , 3 8 3 9 - 3 8 5 4 58 S e l i g y , V . L . and M i y a g i , M. (1969) Expt'l Cell R e s . 5 8 , 2 7 - 3 4 . 59 B r a s c h , K., S e t t e r f i e l d , G. and S e l i g y , V . L . (1971) Expt'l Cel 1 R e s . 6 5 , 6 1 - 7 2 60 O l i n s , D.E. and O l i n s , A.L. (1972) J. Cell B i o l . 5 3 , 715 61 L i , H.J. ( 1 9 7 7 ) "Chromatin S t r u c t u r e - A M o d e l " in T h e M o l e c u l a r B i o l o g y of the M a m m a l i a n G e n e t i c A p p a r a t u s , T s ' o , P., Ed., p p . 3 2 3 - 3 4 3 . E l s e v i e r / N o r t h - H o l 1 and B i o m e d i c a l P r e s s . 62 W o o d c o c k , C . F . L . ( 1 9 7 7 ) Science 1 9 5 , 1 3 5 0 - 1 3 5 2 63 C a m e r i n i - O t e v o , R.D. and F e l s e n f e l d , G. ( 1 9 7 7 ) N u c l e i c Acids Res . 4 , 1 1 5 9 - 1 1 8 1 64 W e i n t r a u b , H., Worcel , A. and A l b e r t s , B. (1976) Cell 9, 409-417 65 W e i n t r a u b , H. and van L e n t e , F. (1974) P r o c . N a t . A c a d . S c i . U.S.A. 7 1 , 4 2 4 9 - 4 2 5 3 66 O u d e t , P., S p a d a f o r a , C. and C h a m b o n , P. Cold Spring H a r b o r S y m p . Q u a n t . B i o l . 42 (in p r e s s ) 67 P o l a c o w , I., C a b a s s o , L. and L i , H.J. (1976) B i o c h e m i s t r y 1 5 , 4560-4565 68 W e i s c h e t , W . , T a t c h e l l , K., Van H o l d e , K. and K l u m p , H. (1978) N u c l e i c A c i d s R e s . 5, 1 3 9 - 1 6 0 . 2252
© Copyright 2025 Paperzz