Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 3, 105 - 114 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61243 A Solution of the One-Dimensional Nonlinear Logarithmic Schrödinger Equation F. Fonseca Universidad Nacional de Colombia Grupo de Ciencia de Materiales y Superficies Departamento de Fı́sica Bogotá, Colombia c 2016 F. Fonseca. This article is distributed under the Creative Commons Copyright Attribution License, which permits unrestrikd use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper we find solutions of the Nonlinear Logarithmic Schrödinger equation. We use a solitary wave and field transformations that let us to find analytical solutions in terms of hyperbolic and Jacobi elliptic functions. We present the spatio-temporal evolution of the wave function, and several structure profiles as the nonlinear coupling constants change. Keywords: Nonlinear Logarithmic Schrödinger equation, hyperbolic functions, Jacobi elliptic functions 1 Introduction The Schrödinger equation (SEq) is one of the fundamental tools in the physical description of quantum world. The phenomenology offered by this equation is greatly enriched by the nonlinear terms added to it. We can find nonlinear Terms like power laws, e.g. cubic or quintic, functions as sin cos or sinh of the wave function. Recently, in the work reported in [1], [2], terms proportional to the logarithm of arithmetic combinations of the wave function are incorporated to SEq. Those logarithmic terms are relevant in research in quantum field theory [3]-[4] and critical phenomena [5]-[6]. 106 F. Fonseca This work presents the solution of the logarithmic Schrödinger equation. In section (2), it is shown the coordinate and field transformations that let us to find the real and complex equations. In sections (3) and (4), in order to find solutions we apply the hyperbolic and Jacobi elliptic functions, respectively. Finally, we present conclusions in section (5). 2 One-dimensional Nonlinear Logarithmic Schrödinger equation We start from the one-dimensional logarithmic Schrödinger equation, [1]: h̄2 ∂ 2 ψ ψ ∂ψ 2 = − ih̄(κ ln |ψ| + Γ ln )ψ ih̄ ∂t 2m dx2 ψ̄ (1) Firstly, we start doing the following coordinate transformation: u = x − ct + u0 ; h̄ = 1; 2m = 1 (2) The derivatives are: Figure 1: Spatio-temporal evolution of the traveling wave solution 1 v(x − ct). 107 Nonlinear logarithmic Schrödinger equation Figure 2: The traveling wave solution 1, v(x−ct). The parameters are a = 0.4, c = 1 κ = 2.1 and Γ = 2.1. d ∂ = ; ∂x du ∂ d = −c ; ∂t du ∂2 d2 = ∂x2 du2 (3) Replacing in eq. (1) dψ d2 ψ ψ = − i(κ ln |ψ|2 + Γ ln )ψ 2 du du ψ̄ Also, we define the next field transformation −ci ψ = exp (v) (4) (5) Then dψ dψ dv dv d2 ψ dv 2 d2 v = = exp (v) ; = exp (v)( ) + exp (v) du dv du du du2 du du2 And replacing in eq. (4) −ci exp (v) dv dv d2 v Ψ = exp (v)( )2 + exp (v) 2 − i(κ ln |Ψ|2 + Γ ln )Ψ du du du Ψ̄ Assuming v = vr + ivc (6) (7) 108 F. Fonseca Ψ exp (v) = exp (2ivc ) = exp (v̄) Ψ̄ (8) dv dv d2 v = exp (v)( )2 + exp (v) 2 − i(κ2vr + Γ2ivc ) exp (v) du du du (9) |Ψ|2 = ΨΨ̄ = exp (v) exp (v̄) = exp (2vr ); −ci exp (v) Figure 3: The traveling wave solution 1, v(x − ct). The parameter κ goes from 2.1, 3.1 to 4.1. The parameters are a = 0.4, c = 1 and Γ = 2.1. The real component equation dvr 2 dvc 2 d2 vr dvc =( ) +( ) + + Γ2vc du du du du2 The complex component equation c −c 3 d2 v c dvr = + 2 − κ2vr du du Solution 1 Now, we suppose the real and complex solution are: (10) (11) 109 Nonlinear logarithmic Schrödinger equation Figure 4: The traveling wave solution 1, v(x − ct). The parameter Γ goes from 2.1, 4.1 to 6.1. The parameters are a = 0.4, c = 1 and κ = 2.1. vr = A sinh (au); vc = iA cosh (au); dvr d2 vr = aA cosh (au); = a2 A sinh (au) du du2 (12) d2 vc dvc = iaA sinh (au); = ia2 A cosh (au) du du2 (13) The complex component equation is −caA cosh (au) = ia2 A cosh (au) − κ2A sinh (au) → tanh (au) = ca + ia2 (14) 2κ The real component equation is icaA sinh (au) = (aA)2 cosh2 (au) − (aA)2 sinh2 (au) +a2 A sinh (au) + 2iΓA cosh (au) icaA sinh (au) = (aA)2 + a2 A sinh (au) + 2iΓA cosh (au) (15) (16) 110 F. Fonseca and using eq. (14) cosh (au) = (a2 A) 2 4 ( (ca)2κ−a − 2Γ) ; sinh (au) = (a2 A(ca + a2 )) (ca)2 − a4 − 4κΓ (17) Using cosh2 (au) − sinh2 (au) = 1, we get: A= v u ca 2 u( ) ±t κ 2 2 −a + ( c 2κ − 2 2 2 1 − c a4κ+a 2 2Γ 2 ) a2 (18) Therefore v = vr + ivc = A sinh (au) + iA cosh (au) (19) ψ = exp (A sinh (au) + iA cosh (au)); u = x − ct + u0 (20) The solution is Where A is given by the negative root of eq. (18). 4 Solution 2 Also, we use the Jacobi elliptic functions. They satisfy the next relations: sn2 (t, k) + cn2 (t, k) = 1, k 2 sn2 (t, k) + dn2 (t, k) = 1 (21) dn2 (t, k) − k 2 cn2 (t, k) = k 02 , k 02 sn2 (t, k) + cn2 (t, k) = dn2 (t, k) (22) k0 = √ 1 − k2 (23) Then, we suppose the next solutions vr = Asn(au, k); dvr = aAcn(au, k)dn(au, k); du d2 v r = Aa2 (2k 2 sn3 (au, k) − (1 + k 2 )sn(au, k)) du2 (24) 111 Nonlinear logarithmic Schrödinger equation vc = Acn(au, k); dvc = −aAsn(au, k)dn(au, k); du (25) d2 vc = Aa2 (−2k 2 cn3 (au, k) − (1 − 2k 2 )cn(au, k)) du2 Then, replacing in eqs. (10) and (11) −acAsn(au, k)dn(au, k) = (aA)2 − (aA)2 k 2 sn2 (au, k) + 2ΓAcn(au, k)(26) −2Aa2 k 2 cn(au, k) + 2Aa2 k 2 cn(au, k)sn2 (au, k) − Aa2 (1 − 2k 2 )cn(au, k) The complex component equation −caAcn(au, k)dn(au, k) = −2Aa2 k 2 cn(au, k) (27) 2 2 2 2 2 +2Aa k cn(au, k)sn (au, k) − Aa (1 − 2k )cn(au, k) − κ2Asn(au, k) Equating the left hand sides of eqs. (26) and (27), we get: −(aA)2 k 2 sn2 (au, k) + κ2Asn(au, k) + (aA)2 + 2ΓAcn(au, k) = 0 (28) Then, we get: −(aA)2 k 2 sn2 (au, k) + κ2Asn(au, k) = 0 → sn(au, k) = (aA)2 + 2ΓAcn(au, k) = 0 → cn(au, k) = − Aa2 2Γ 2κ Aa2 k 2 (29) (30) So, applying eq. (21) ( a2 2 4 2κ ) A − A 2 + ( 2 2 )2 = 0 2Γ ak (31) Defining c1 = ( c3 = v u u t 1 − c1 √ a2 2 2κ ) , c2 = ( 2 2 )2 2Γ ak 1 − 4c1 c2 , c4 = c1 v u u t 1 + c1 (32) √ 1 − 4c1 c2 c1 (33) 112 F. Fonseca Figure 5: The traveling wave solution 2, v(x − ct). The parameter k is taken as (0, 0.4, 0.7, 0.9). The parameters are a = 1.4, Γ = 2.1 and changes as κ = 2.5, 4.5, 6.5. The solutions are: c3 c4 c4 c3 A1 = − √ , A2 = √ , A3 = − √ , A4 = √ 2 2 2 2 (34) v = vr + ivc = Asn(au, k) + iAcn(au, k) (35) ψ = exp (Asn(au, k) + iAcn(au, k)); u = x − ct + u0 (36) So, The solution is Where A is given by eqs. (34). Nonlinear logarithmic Schrödinger equation 5 113 Conclusions Finally, we solve the nonlinear logarithmic Schrödinger equation. Also, figures (1-5), we get the main overall behavior of the nonlinear parameters, κ and Γ, given in [1]. In addition, the nonlinear part of the equation is solved using two types of transformations that allow us to find hyperbolic solutions. Also, we find four sets of solitary wave solutions using elliptic Jacobi functions. They are: ψ1 = exp (A sinh (au) + iA cosh (au)); u = x − ct + u0 ψ2 = exp (Asn(au, k) + iAcn(au, k)); u = x − ct + u0 (37) The extension of the results to higher dimensions is straightforward. As a future work we can extend the method to explore other kind of nonlinear terms. Acknowledgements. This research was supported by Universidad Nacional de Colombia in Hermes project (32501). References [1] T. Yamano, Localized traveling wave solution for a logarithmic nonlinear Schrödinger equation, Wave Motion, 67 (2016), 116-120. https://doi.org/10.1016/j.wavemoti.2016.07.005 [2] H. Hossieni, Solitary Solution of Non-linear Schrdinger Field with a Logarithmic Non-Linearity for Free Particle in (1+1) Dimension, International Journal of Basic & Applied Sciences IJBAS-IJENS, 13 (2013), no. 02, 1820. [3] K. G. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297. https://doi.org/10.1134/s0202289310040067 [4] K. G. Zloshchastiev, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Phys. Polon. B, 42 (2011), 261-292. https://doi.org/10.5506/aphyspolb.42.261 [5] K. G. Zloshchastiev, Vacuum Cherenkov effect in logarithmic nonlinear quantum theory, Phys. Lett. A, 375 (2011), 2305-2308. https://doi.org/10.1016/j.physleta.2011.05.012 114 F. Fonseca [6] A. V. Avdeenkov and K.G. Zloshchastiev, Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent, J. Phys. B: At. Mol. Opt. Phys., 44 (2011), 195303. https://doi.org/10.1088/0953-4075/44/19/195303 Received: December 23, 2016; Published: January 16, 2017
© Copyright 2026 Paperzz