Osculating orbit elements and the perturbed Kepler problem a= Gmr + f (r, v, t) 3 r Same x&v Define: r := rn , r := p/(1 + e cos f ) , p = a(1 e2 ) osculating orbit p he sin f h v := n+ , h := Gmp p r ⇥ ⇤ n := cos ⌦ cos(! + f ) cos ◆ sin ⌦ sin(! + f ) eX ⇥ ⇤ + sin ⌦ cos(! + f ) + cos ◆ cos ⌦ sin(! + f ) eY + sin ◆ sin(! + f ) eZ ⇥ ⇤ := cos ⌦ sin(! + f ) cos ◆ sin ⌦ cos(! + f ) eX ⇥ ⇤ + sin ⌦ sin(! + f ) + cos ◆ cos ⌦ cos(! + f ) eY + sin ◆ cos(! + f ) eZ ĥ := n ⇥ = sin ◆ sin ⌦ eX sin ◆ cos ⌦ eY + cos ◆ eZ e, a, ω, Ω, i, T may be functions of time actual orbit new osculating orbit Perturbed Kepler problem a= Gmr + f (r, v, t) 3 r dh =r⇥f dt dA n =) Gm = f ⇥ h + v ⇥ (r ⇥ f ) dt h = r ⇥ v =) A= v⇥h Gm Decompose: f = Rn + S + W ĥ dh = rW + rS ĥ dt dA Gm = 2hS n hR + rṙS dt Example: rṙW ĥ. ḣ = rS d (h cos ◆) = ḣ · eZ dt d◆ ḣ cos ◆ h sin ◆ = rW cos(! + f ) sin ◆ + rS cos ◆ dt Perturbed Kepler problem “Lagrange planetary equations” r dp p3 1 =2 S, dt Gm 1 + e cos f r de p 2 cos f + e(1 + cos2 f ) = sin f R + S , dt Gm 1 + e cos f r d◆ p cos(! + f ) = W, dt Gm 1 + e cos f r d⌦ p sin(! + f ) sin ◆ = W, dt Gm 1 + e cos f r d! 1 p 2 + e cos f sin(! + f ) = cos f R + sin f S e cot ◆ W dt e Gm 1 + e cos f 1 + e cos f An alternative pericenter angle: $ := ! + ⌦ cos ◆ r d$ 1 p 2 + e cos f = cos f R + sin f S dt e Gm 1 + e cos f Perturbed Kepler problem Comments: § these six 1st-order ODEs are exactly equivalent to the original three 2nd-order ODEs § if f = 0, the orbit elements are constants § if f << Gm/r2, use perturbation theory § yields both periodic and secular changes in orbit elements § can convert from d/dt to d/df using df = dt ✓ df dt ◆ Kepler ✓ d! d⌦ + cos ◆ dt dt ◆ Drop if working to 1st order Perturbed Kepler problem Worked example: perturbations by a third body r12 a1 = Gm2 3 r12 r12 a2 = +Gm1 3 r12 Gmr a= r3 Gm3 r h n R3 r13 Gm3 3 , r13 r23 Gm3 3 r23 i 3(n · N )N + O(Gm3 r2 /R4 ) 3 r13 r23 R := |r23 | , N := r23 /|r23 | , m := m1 + m2 ⇤ Gm3 r ⇥ 2 R := f · n = 1 3(n · N ) , R3 Gm3 r (n · N )( · N ), S := f · = 3 3 R Gm3 r W := f · ĥ = 3 (n · N )(ĥ · N ) R3 Put third body on a circular orbit N = eX cos F + eY sin F , dF = dt r 2 r=r12 G(m + m3 ) df ⌧ R3 dt 1 Perturbed Kepler problem Worked example: perturbations by a third body Integrate over f from 0 to 2π holding F fixed, then average over F from 0 to 2π: h ai = 0 h ei = h !i = h ◆i = h ⌦i = ✓ ◆3 15⇡ m3 a e(1 e2 )1/2 sin2 ◆ sin ! cos ! 2 m R ✓ ◆3 h 3⇡ m3 a (1 e2 ) 1/2 5 cos2 ◆ sin2 ! + (1 e2 )(5 cos2 ! 2 m R ✓ ◆3 15⇡ m3 a e2 (1 e2 ) 1/2 sin ◆ cos ◆ sin ! cos ! 2 m R ✓ ◆3 3⇡ m3 a (1 e2 ) 1/2 (1 5e2 cos2 ! + 4e2 ) cos ◆ 2 m R Also: 3⇡ m3 h $i = 2 m ✓ a R ◆3 (1 h e2 )1/2 1 + sin2 ◆(1 5 sin2 !) i 3) i Perturbed Kepler problem Worked example: perturbations by a third body Case 1: coplanar 3rd body and Mercury’s perihelion (i = 0) 3⇡ m3 h $i = 2 m ✓ a R ◆3 (1 e2 )1/2 For Jupiter: d$/dt = 154 as per century (153.6) For Earth d$/dt = 62 as per century (90) Mercury’s Perihelion: Trouble to Triumph • 1687 Newtonian triumph 575 “ per century • 1859 Leverrier’s conundrum • 1900 A turn-of-the century crisis Planet Venus Earth Mars Jupiter Saturn Total Discrepancy Modern measured value General relativity prediction Advance 277.8 90.0 2.5 153.6 7.3 531.2 42.9 42.98 ± 0.001 42.98 Perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism h ai = 0 ✓ ◆3 15⇡ m3 a h ei = e(1 e2 )1/2 sin2 ◆ sin ! cos ! 2 m R ✓ ◆3 h i 3⇡ m3 a 2 2 1/2 2 2 2 h !i = (1 e ) 5 cos ◆ sin ! + (1 e )(5 cos ! 3) 2 m R ✓ ◆3 15⇡ m3 a h ◆i = e2 (1 e2 ) 1/2 sin ◆ cos ◆ sin ! cos ! Stationary point: 2 m R A conserved quantity: e cos ◆h ei + sin ◆h ◆i = 0 1 p =) 1 e2 cos ◆ = constant e2 1 LZ ! ⇡ 3⇡ !c = or 2 2 3 2 ec = cos2 ◆c 5 Perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism Eccentricity Inclination Pericenter Incorporating post-Newtonian effects in N-body dynamics Capture by BH Merritt, Alexander, Mikkola & Will, PRD 84, 044024 (2011) Animations courtesy David Merritt Perturbed Kepler problem Worked example: body with a quadrupole moment Gmr a= r3 a = 0, 3 GmR2 n⇥ 2 J2 5(e · n) 2 r4 e = 0, ◆ = 0 ✓ ◆2 ✓ ◆ R 5 ! = 6⇡J2 1 sin2 ◆ p 4 ✓ ◆2 R ⌦ = 3⇡J2 cos ◆ p ⇤ 1 n 2(e · n)e , For Mercury (J2 = 2.2 X 10-7) d$ = 0.03 as/century dt For Earth satellites (J2 = 1.08 X 10-3) ✓ ◆7/2 d⌦ R = 3639 cos ◆ deg/yr dt a § LAGEOS (a=1.93 R, i = 109o.8): 120 deg/yr ! § Sun synchronous: a= 1.5 R, i = 65.9 o
© Copyright 2026 Paperzz