Studying Modern Human Origins from Neandertal DNA Max Planck Institute for Evolutionary Anthropology Evolutionary Genetics Martin Kircher September 9 2010, Berlin Studying Modern Human Origins from Neandertal DNA • Closely related species and our own history • Ancient DNA • Importance of how highthroughput sequencing • Insights from the Neandertal genome 2 Closest relatives • Tell us: – How evolution shaped our • Genome Apes • Transcriptome • Proteome – When things changed New world monkeys Old world monkeys ~ Lemurs ¾ How we adapted to environmental changes ¾ What makes us human! Steiper and Young (2006) Mol. Phyl. & Evol. 41(2):384 3 Closest relatives • Chimpanzees and Bonobos are our closest living relatives • ~98.8% genome identical Apes Bonobo New world monkeys Old world monkeys ~ Lemurs Chimpanzee Steiper and Young (2006) Mol. Phyl. & Evol. 41(2):384 4 Closest relatives http://www.mnh.si.edu/anthro/humanorigins/index2.htm 5 Neandertals • Closest extinct relative • Lived in Europe and West Asia ~400 – 30ka • Neandertal Went extinct when modern humans spread in Europe & Asia modern human • Share ~99.9% of genome ¾ Allow to distinguish recent changes from shared evolutionary history 6 Recent changes ... world-wide dispersion morphological changes appearance of art agricultural and technological revolution 7 Ancient DNA • DNA can be extracted from blood, soft tissues as well as bones, hair and teeth • Successful for up to 100ka old samples ~ 500 mg 1 cm DNA extract 8 Two types of DNA? Modern DNA Contamination ~1μg DNA per gram tissue Ancient DNA ~0.0000001-0.001μg DNA per gram tissue 9 Contamination avoidance Minimizing contamination from handling (e.g. Sidron 1253) EL SIDRÓN (ASTURIAS, SPAIN) 10 Quantifying human contamination • Neandertal mitochondrial genomes fall outside of human variation – 133 fixed differences can be used as informative sites Green et al. Cell 2008 / en.wikipedia.org 11 Quantifying human contamination • Neandertal nuclear genome falls within human genomic variation • No known fixed differences, other measures possible: – Triallic sites – X homozygosity – Y chromosomal coverage Green et al. Science 2010 12 Sampling ancient DNA 4.17% 4.49% 2.17% 4.10% 2.5% 1.77% 1.60% 0.86% 1.7% 0.27% 0.40% 0.41% 13 Neandertal libraries Screened ~200 DNA extracts from at least 70 fossils from 16 sites Vi33.16 Vi33.25 Vi33.26 Feld1 Mez1 Sid1253 3 2 0 1 % of reads 4 • Vindija El Sidron Neander Valley Mezmaiskaya 0.2 – 4.0% 0.1 - 0.4% 0.2 - 0.5% 0.8 - 1.5% 0 20 40 60 80 100 120 140 Length 14 Feasibility: Neandertal genome 1997 2000 2005 Sanger sequencing of hypervariable region of first Neandertal mitochondrial genome Two additional mitochondrial sequences 454 platform becomes available Neandertal 1x genome project idea is born Bone (grams) Nov. 2006 Aug. 2007 May. 2007 Aug. 2007 Sep. 2007 Feb. 2008 Jul. 2008 (“Proof-of-Principle”) Improved library prep 454 FLX upgrade Library amplification Library enrichment Titanium upgrade Illumina/Solexa 20 2 2 0.2 0.2 0.2 0.2 Sequencing (runs) 6.000 (454 GS20) 6.000 (454 GS20) 4.000 (454 FLX) 4.000 (454 FLX) 700 (454 FLX) 300 (454 Titanium) 20 (Illumina GAII) 15 Neandertal Illumina sequencing • Improved base caller (Ibis) • Ancient DNA aware aligner (ANFO) • Paired End sequencing: reconstruction of original molecule • Deep sequencing: PCR duplicate consensus 16 Improved base calling: Ibis Ibis Perfect Error Perfect Error GA II (51nt, v1) 39.8% 2.0% 60.2% 1.1% GA II (77nt, v2) 9.19% 2.74% 36.58% 0.73% GA II GA IIx (76nt, v3) (101nt, v4) 51.52% 62.60% 0.89% 0.41% 58.90% 65.05% 0.65% 0.33% 0.03 Bustard GA I (26nt) 11.3% 7.1% 23.4% 5.4% Estimated error rate 0.02 0.01 Bustard Ibis 20 40 60 Position in read 80 100 0.00 0 17 Ancient DNA aligner: ANFO • Short, erroneous and damaged reads are difficult to align • Ancient DNA damage model, substitutions and indel aware aligner • Modified from Briggs et al. NAR 2010 Highr resolution mapping quality: search for second best alignment ¾ Correct alignments: important for downstream analyses 18 Error profile Paired End read merging Reverse read 0 20 Forward read 40 60 80 100 Position in read 19 Paired End read merging Forward read 20 40 60 Position in read 80 100 0.1 0.2 0 21x error reduction Average of raw reads (no merging) Error-informative scores 0.0 Sequencing error on reads [%] 0.3 Reverse read 0 50 100 Insert size 150 20 Neandertal Genome Consortium Max Planck Institute for Evolutionary Anthropology * Adrian Briggs * Anne Fischer * Jeffrey Good * Ed Green * Janet Kelso * Johannes Krause * Martin Kircher * Michael Lachmann * Tomislav Maricic * Matthias Meyer * Svante Pääbo * Kay Prüfer * Susan Ptak * Qiaomei Fu * Susanna Rankin * Rigo Schultz * Udo Stenzel * Johann Visagie * Hernan Burbano Sequencing group at MPI EVA: * Aximu Ayinuer-Petri * Anne Butthof * Barbara Höber * Barbara Höffner * Madlen Siegemund * Antje Weihmann Museo Nacional de Ciencias Naturales, Madrid * Javier Fortea * Carles LaLueza-Fox * Marco de la Rasilla * Antonio Rosas Rheinisches Museum/University of Tübingen * Ralf Schmitz Broad Institute/ MIT * David Reich * Nick Patterson * Chad Nussbaum * Eric Lander Whitehead Institute * Steve Rozen * Jen Hughes * Helen Skaletsky Slatkin Lab: UC Berkeley * Hua Chen * Philip Johnson * Anna-Sapfo Malaspinas * Josh Pollack * Montgomery Slatkin * Rasmus Nielsen U. of Washington, Seattle * Evan Eichler LBL * Gavin Crookes EMBL, Heidelberg * Peer Bork NIH/NHGRI * Jim Mullikin CSHL * Greg Hannon * Emily Hodges * Zhenyu Xuan * Michelle Rooks Uppsala University * Siv Andersson Oxford University * Daniel Falush European Bioinformatics Institute (EBI) * Ewan Birney * Paul Flicek * Ben Paten * Michael Hoffmann * Daniel Zerbino Croatian Academy of Sciences and Arts * Maja Paunovic * Dejana Brajkovic * Jadranka Mauch Lenardic * Zeljko Kucan * Ivan Gusic * Pavao Rudan Cornell University * Andy Clark * Kirk Lohmueller * Carlos Bustamante 454 Life Sciences Inc * Jan Berka * Brian Desany * Lei Du * Michael Egholm * Xavier Gomes * Jerry Irzyk * Clotilde Perbost * Jason Affourtit 21 Science 328, May 2010 22 Neandertal genome • 454 data from Vindija extracts (206 million reads; 1.4 Gb hominid) • Illumina data (214 lanes; 2.5 billion raw reads; 4.1Gb hominid) • ~ 1.5x: coverage for ~63% bases of human genome 23 Browse the genome... http://neandertal.ensemblgenomes.org http://genome.ucsc.edu/Neandertal 24 Time of last common ancestor x 6.5 ma Neandertal: 12.7% French: 8.0% Han: 8.4% Papua: 9.3% Yoruba: 9.4% San: 10.3% 825,000 yrs 520,000 yrs 550,000 yrs 605,000 yrs 610,000 yrs 670,000 yrs ~6.5 Myr 12.7% 5 human HGDP samples, sequenced to ~6-8x (Illumina GAII) Reference human 25 Catalog of novel features fixed in the human genome • 78 amino acid substitutions • 45 fixed changes in 5‘ UTRs and 223 fixed changes in 3‘ UTRs of protein-coding genes • 1 fixed change in seed region of hsa-mir-1304 .... Burbano et al. Science 2010 5 genes with two amino acid changes since Neandertal split: RPTN SPG17 CAN15 TTF1 PCD16 Epidermal matrix protein Sperm axoneme Optic lobe homolog RNA pol. I termination factor Ca-dep. fibroblast adhesion 26 Adaptive evolution • Adaptive changes spread fast in a population • Regions will show recent SNPs not known to Neandertal Haplogroups before selection After selection Regaining diversity 27 Positive selection Top 20 candidate regions: Type II diabetes Down syndrome Schizophrenia Cleidocranial dysplasia Autism Green et al. Science 2010 28 Cleidocranial dysplasia (CCD) • RUNX2 only gene associated with CCD, a skeletal dysplasia Ancestral state CCD patient Normal rib cage 29 Neandertals interbreed with modern humans? • Neandertal mitochondrial DNA outside of known human variation: No maternal decendents of Neandertals • Arguments for Neandertal admixture in Europe for morphological and geographical/temporal reasons: Is there gene flow detectable in the nuclear genome? 30 Neandertals interbreed with modern humans? 13 non-african haplotypes: 10 are shared with Neandertal Green et al. Science 2010 31 Neandertals interbreed with modern humans? 1-4% admixture in all (tested) out-of-Africa populations 7 6 Z-Score 5 4 % Neandertal matching to H2 – % Neandertal matching to H1 HGDP01029 (San) HGDP01029 (Yoruba) HGDP01029 (San) HGDP00521 (French) HGDP01029 (San) HGDP00542 (Papuan) HGDP01029 (San) HGDP00778 (Han) HGDP01029 (Yoruba) HGDP00521 (French) 3 HGDP01029 (Yoruba) HGDP00542 (Papuan) 2 HGDP01029 (Yoruba) HGDP00778 (Han) 1 0 -1 HGDP00521 (French) HGDP00542 (Papuan) HGDP00521 (French) HGDP00778 (Han) HGDP00542 (Papuan) HGDP00778 (Han) 32 What next? • Higher coverage genome (~20x?) • Targeted analyses of genomic regions and candidates • Functional characterization of changes! • Other human forms? 33 Denisovans ... 34 Contact Max Planck Institute for evolutionary Anthropology Evolutionary Genetics Deutscher Platz 6 D-04103 Leipzig PhD or PostDoc at MPI EVA? – Viola Mittag (Assistant to Svante Pääbo) [email protected] – Bioinformatics (Janet Kelso) [email protected]
© Copyright 2026 Paperzz