Exercise Lecture of Mathematics November 22, 2016 Exercise 1. Compute the derivatives of the following functions, specifying their domain and that of their derivative. 1) f (x) = x6 − 3x4 − 6x3 + 7x − 5 2 2) f (x) = 4 − 2 5 + 2 x x 4) f (x) = sin x + cos x 5) f (x) = sin(4x + 7) 7) f (x) = (5x4 − πx − 1)3 8) f (x) = x2 |x| 2x 10) f (x) = 5e−x 11) f (x) = e x+1 1 cos x q p 3 16) f (x) = 1 + x2 − 1 14) f (x) = arctan(x2 ) 13) f (x) = tan x + 19) f (x) = x arcsin x + 22) f (x) = √ 2+x 3 − x2 √ x 6) f (x) = x √ e 9) f (x) = 2+π 3) f (x) = 17) f (x) = log p 1 − x2 x − 3 arccos √ x 20) f (x) = arctan(sin x) 23) f (x) = 25) f (x) = log log(log x) x2 − 2 x2 + x sin(x − 5) (x + 1)2 26) f (x) = log | log(sin x)| 12) f (x) = log2 (3x − 8) √ 5 1 + x3 √ 15) f (x) = 5 3 1− x 2 18) f (x) = log x3 21) f (x) = cos earctan x 24) f (x) = sin x−x 27) f (x) = (sin x)cos x Exercise 2. Write the equation of the tangent to the graph of the function f at the point whose abscissa is given. Function x + e3x Abscissa of the point x = log 2 xex ex − e−x 2 x=0 2 x=1 cos(x3 + π) p x= 3 π 2 sin 5 3x + π 2 x=0 Exercise 3. For each of the following functions, determine the domain, possible symmetries, the sign, possible intersections with the axes, the limits at the extreme points of the domain. Finally, represent graphically the information obtained. 2 1 x − 10x + 16 1) f (x) = log 2 + 2) f (x) = exp x x3 − 8 s x4 − 1 x3 − 27 3) f (x) = 4) f (x) = arctan x2 − 4 x2 + 3x + 2 ( x log(−x − 1) if x < 0, 5) f (x) = arcsin 6) f (x) = √ x − 1 − 1 if x ≥ 0 x+1 1
© Copyright 2026 Paperzz