Antibaryon interactions with the nuclear medium Jaroslava Hrtánková Nuclear Physics Institute, eº, Czech Republic INPC, Adelaide, September 11 - 16, 2016 1 Introduction Introduction study of B̄ (p̄, Λ̄, Σ̄, Ξ̄) bound states in selected nuclei: behavior of B̄ in the nuclear medium including its absorption core polarization eect due to B̄ testing models of (anti)hadronhadron interactions knowledge of B̄ nucleus interaction for future experiments (PANDA@FAIR) 2 Model RMF approach Nucleons Dirac elds interacting via the exchange of meson elds Dirac equation for nucleons and antibaryon ~ + β(mj + Sj ) + Vj ]ψjα = αj ψjα , [−i α ~∇ S = gσj σ, Vj = gωj ω 0 + gρ j ρ 0 τ 3 + e j Klein-Gordon equations for meson elds j = N , B̄ , 1 + τ3 A0 , 2 (−4 + mσ2 )σ = −gσN ρS −gσB̄ ρS B̄ (−4 + mω2 )ω0 = gωN ρV +gωB̄ ρV B̄ (−4 + mρ2 )ρ0 = gρN ρI +gρB̄ ρI B̄ −4A0 = e ρp +eB̄ ρB̄ . 3 Model Baryon-nucleus interaction Nucleon-meson couplings obtained by tting nuclear matter and nite nuclei properties Hyperon-meson coupling constants: for ω and ρ eld obtained from SU(6) symmetries, for σ eld obtained from ts to experimental data (Λ hypernuclei, Σ atoms, Ξ production in (K + , K − ) reactions) gσΛ = 0.621gσN , gσΣ = 0.5gσN , gσΞ = 0.299gσN , gωΛ = 2/3gωN , gωΣ = 2/3gωN , gωΞ = 1/3gωN , gρΛ = 0 , gρΣ = 2/3gρN gρΞ = gρN , 4 B̄ -nucleus interaction B̄ -nucleus interaction BN → BN interaction G-parity transformation Ĝ = Ĉe i πI1 gσB̄ = gσB , gωB̄ = −gωB , gρB̄ = gρB G-parity valid for the long and medium range → 750 MeV deep p̄ potential in the nucleus B̄N potential Nuclear medium + short range interaction possible deviations from the G-parity Antiprotonic atoms and p̄ scattering o nuclei at low energies → ReVp̄ ∼ 100 − 300 MeV deep Reduced B̄ coupling constants gσB̄ = ξ gσB , gωB̄ = −ξ gωB , gρB̄ = ξ gρB , where parameter ξ = 0.2 − 0.3 5 B̄ -nucleus interaction Antibaryon potential 0 20 TM2 ξ=0.2 -50 S+V (MeV) 0 -100 -20 -150 16 -40 16 16 -60 16 0 2 4 r (fm) Fig.1: The 16 Op 16 OΛ 16 OΣ0 16 OΞ0 6 Op -200 OΛ OΣ0 -250 OΞ0 4 2 0 r (fm) B nucleus (left) and B̄ nucleus (right) potentials in 16 O. 6 B̄ -nucleus interaction Antibaryon spectrum TM 200 ξ=0.2 12 6 BΒ (MeV) 150 Li C 16 p O 40 100 208 Ca 90 Zr Pb Λ 0 Σ 50 0 Ξ 0 10 20 (-) 30 40 2/3 A Fig.2: The A dependence of model for ξ = 0.2. B̄ 1s binding energies, calculated dynamically in the TM 7 p̄ absorption p̄ absorption p̄nucleus potential: 1.0 2π channel s = (EN +Ep̄ ) ηω 0.6 3π 0.4 ξ = 0.2, Imb0 = 1.9 fm 2 fs ReVp̄ =ξ VRMF X ImVp̄ = fs (√s )Br Imb0 ρ KK 0.8 5π πρ 2ω 2πρ 2πη 2πω 6π ρω 0.2 −(~pN +~pp̄ ) 7π πω πKK 2 ωKK 4π 0.8 1 1.2 1.4 1/2 s 1.6 1.8 (GeV) Fig.3: The phase space suppression factor √ fs as a function of the center-of-mass energy s . p̄ absorption Energy available for annihilation CMS frame → √ s = mp̄ + mN − Bp̄ − BN (M) p̄ absorption in a nucleus → ~pN + ~pp̄ 6= 0 (A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mare², PLB 702, 402 (2011)) √ s = Eth 1/2 2(Bp̄ + BNav ) (Bp̄ + BNav )2 1 1 1− + − T − T , (J) p̄ Nav Eth Eth2 Eth Eth where Tj = − ~2 mj∗ 4 and 2 mj∗ = mj − Sj , j = N , p̄ 9 p̄ absorption 1s p̄ energies and widths in nuclei 280 M J 320 Pb 240 Ca Γp (MeV) Bp (MeV) 280 200 160 Ca Pb Zr Zr 240 200 TM1 120 TM1 10 20 2/3 A 30 40 10 20 2/3 A 30 40 Fig.4: Binding energies (left panel) and widths (right panel) of 1s p̄ -nuclear √ states in selected nuclei, calculated dynamically using the TM1 model for dierent s . 10 Paris Paris N̄N N̄N potential potential Microscopic N̄N Paris potential constrained by scattering and antiproton atom data (B. El-Bennich, M. Lacombe, B. Loiseau, S. Wycech, PRC 79 (2009) 054001.) Recently used to describe the p̄ -atom data and low energy o nuclei p̄ scattering (E. Friedman, A. Gal, B. Loiseau, S. Wycech, NPA 934 (2015) 101) S-wave p̄ -nucleus optical potential in a 'tρ' form √ 1 s 1 2Ep̄ Vopt = −4π ρ +ρ F ρ +F mN 0 2 p 1 2 p n 11 Paris N̄N potential In-medium Paris S-wave amplitudes In-medium amplitudes F0 and F1 obtained from free-space amplitudes by multiple scattering approach (WRW) (T. Wass, M. Rho, W. Weise, NPA 617 (1997) 449) √ √ √ fp̄n√(δ s ) [2fp̄p (δ s ) − fp̄n (δ s )] √ F1 = , F0 = , √ √ √ s 1 1 1 + 4 ξk mN fp̄n (δ s )ρ 1 + 4 ξk mNs [2fp̄p (δ s ) − fp̄n (δ s )]ρ √ √ R ∞ dt 2 t exp(iqt )j1 (t ) 0 where δ s = s − Eth , ξk = 9pπ2 4 f and q = p1 f q Ep̄ − mp̄ 2 2 12 Paris N̄N potential In-medium Paris S-wave amplitudes 10 10 ρ0 free 8 8 6 Im FpN (fm) Re FpN (fm) 6 4 2 4 2 0 0 -2 -2 -4 -200 -4 -150 -100 -50 E - Eth (MeV) 0 50 -200 -150 0 -100 -50 E - Eth (MeV) 50 Fig.5: Energy dependence of the Paris 09 p̄N S-wave amplitudes: Pauli blocked amplitude for ρ0 = 0.17 fm−3 (solid lines) compared with free-space amplitude (dotted lines). Paris 1s N̄N potential p̄ energies and widths 240 260 220 240 Paris 09 Pb 200 Γp (MeV) Bp (MeV) NL-SH Zr O Ca C 180 Paris 09 220 200 Ca NL-SH C 160 Pb Zr O 180 0 10 20 2/3 A 30 40 0 10 20 2/3 A 30 40 Fig.6: Binding energies (left panel) and widths √ (right panel) of 1s p̄ -nuclear states in selected nuclei, calculated dynamically for s = J using the Paris N̄N S-wave potential (red) and phenomenological approach within the NL-SH model (black). Paris N̄N potential p̄ spectrum in 16O Bp (MeV) 280 16 O+p phenom. Vopt 16 1s1/2 1p3/2 1p1/2 O+p S-wave Paris 09 320 280 240 240 200 200 160 160 120 120 80 80 40 40 Bp (MeV) 320 16 Fig.7: 1s and 1p binding energies (lines) √and widths (boxes) of p̄ in O calculated dynamically within the TM2 model for s = J with phenomenological p̄ optical potential (left) and S-wave Paris potential (right). 15 Conclusions Conclusions Antibaryons deeply bound in the nuclear medium within the RMF + G-parity approach p̄ absorption in a nucleus p̄ widths are reduced due to signicant contribution from Tp̄ and TN to Γp̄ , but still remain large for potentials consistent with p̄ atom data p̄-nucleus quasibound states calculated with the Paris N̄N potential S-wave potential yields smaller 1s p̄ energies and larger p̄ widths then the RMF approach the P-wave interaction to be included 16
© Copyright 2026 Paperzz