C19_007 1 Modified Brayton Refrigeration Cycles for Liquid Hydrogen in Spallation Neutron Source Moderator H.-M. Chang1,2, S.G. Kim1, J.G. Weisend II2, H. Quack3 1 Hong Ik University, Seoul, 121-791, Korea European Spallation Source, SE-221 00 Lund, Sweden 3 TU Dresden, D-01062 Dresden, Germany 2 ABSTRACT $WKHUPRG\QDPLFVWXG\RIVWDQGDUGDQGPRGL¿HG%UD\WRQUHIULJHUDWLRQF\FOHVLVFDUULHGRXW to cool liquid hydrogen in spallation neutron facilities. The target moderators under development at ESS require a refrigeration capacity of 30 kW at 20 K to remove the dissipated energy from VXEFRROHGOLTXLGK\GURJHQ$VWDQGDUG%UD\WRQUHIULJHUDWLRQF\FOHWRSHUIRUPWKLVUHIULJHUDWLRQLV GHVLJQHGZLWKKHOLXPDVUHIULJHUDQW$YDULHW\RIPRGL¿HGSURFHVVHVDUHexamined for improved HI¿FLHQF\DQGVXLWDELOLW\7KHPRGL¿FDWLRQLQFOXGHVWKHFRPSDULVRQRI/3ORZSUHVVXUHDQG+3 KLJKSUHVVXUHFRROLQJGHSHQGLQJRQWKHORFDWLRQRIFU\RJHQLFH[SDQGHULQWKHF\FOHDQGWZR VWDJHDQGGXDOWXUELQHF\FOHVGHSHQGLQJRQWKHPDQQHURIFRPELQLQJWKHWZRH[SDQGHUV%DVHG on existing and proposed designs, eight different cycles are selected and analyzed fully with the DVVXPHGPRGHOVRIWKHFRPSRQHQWV7KHUHVXOWVDUHSUHVHQWHGLQWHUPVRIWKH¿JXUHRIPHULWFOM as an index of the thermodynamic performance, and the detailed exergy expenditure is also investiJDWHG$VDUHVXOWRIWKLVDQDO\VLVDPRGL¿HGGXDOWXUELQHF\FOHLVUHFRPPHQGHGIRUODUJHFDSDFLW\ refrigeration at 20 K. INTRODUCTION Cryogenic ryogenic refrigeration at 20 K is required for liquid-hydrogen moderators in spallation neutron source facilities1-5. As shown in Figure 1, the dissipated energy of neutrons is removed at the PRGHUDWRUVE\DFLUFXODWLQJÀRZRIVXEFRROHGOLTXLGK\GURJHQDWWHPSHUDWXUHVEHORZ.DQG WKHQGHOLYHUHGWRDUHIULJHUDWRUYLDDKHOLXPK\GURJHQ+H+2KHDWH[FKDQJHU+;7KHFORVHG loop of liquid hydrogen can be plotted as a counterclockwise triangular cycle on the phase diagram, DVVKRZQLQ)LJXUH7KHFRROLQJÀRZWKURXJKWKHPRGHUDWRUVLVUHSUHVHQWHGE\DGHVFHQGLQJOLQH according to the magnitude of the pressure drop and the temperature rise, which are restored by a pump and by the refrigerator, respectively. In order to avoid any vaporization, liquid hydrogen LVPDLQWDLQHGDWDVXEFRROHGWHPSHUDWXUHDWa.DQGDWWKHDSSUR[LPDWHFULWLFDOSUHVVXUH 03D7KHUHIULJHUDWLRQORDGLVaN:IRUWKHH[LVWLQJV\VWHPVXQGHURSHUDWLRQRUQHDULQJ completion1-3. A much larger cryogenic moderator system has been recently designed and will be FRPSOHWHGE\IRUWKH(XURSHDQ6SDOODWLRQ6RXUFH(664,5, where the maximum heat load is estimated to be over 30 kW during the operation with a full level of beam power. Cryocoolers 19, edited by S.D. Miller and R.G. Ross, Jr. ©¶International Cryocooler Conference, Inc., Boulder, CO, 2016 463 464 BRAYTON CRYOCOOLER DEVELOPMENTS C19_007 2 Figure 1. Cryogenic refrigeration system and liquid-hydrogen cycle on phase diagram. 7KHFU\RJHQLFUHIULJHUDWRUVWRFRYHUaN:DW.KDYHEHHQGHVLJQHGDVDVWDQGDUGUHYHUVH %UD\WRQF\FOH1-3. Helium is the only possible gas refrigerant for this application, as a cryogenic WXUELQHVKRXOGEHXVHGDWWHPSHUDWXUHVEHORZ.7KHVWDQGDUG%UD\WRQF\FOHFRXOGEHPRGL¿HG LQYDULRXVZD\VWRLQFUHDVHWKHWKHUPRG\QDPLFHI¿FLHQF\DQGUHIULJHUDWLRQFDSDFLW\RUWRVDWLVI\ other design requirements. The thermodynamic design of the 30 kW refrigerator for ESS is a new and exciting challenge at 20 K, since it requires not only the largest capacity ever, but also a set of thermo-hydraulic and geometric constraints5. This study investigates the structures of standard or PRGL¿HGF\FOHVLQDV\VWHPDWLFZD\DQGSURYLGHVDWKHUPRG\QDPLFEDVLVIRUWKHGHYHORSPHQWRI large-scale refrigerators at 20 K. STANDARD AND MODIFIED CYCLES (LJKWGLIIHUHQWUHIULJHUDWLRQF\FOHVDUHVHOHFWHGDQGVKRZQLQ)LJXUH&\FOH,LVWKHVWDQGDUG %UD\WRQF\FOHWKDWKDVRQHUHFXSHUDWLYHKHDWH[FKDQJHU+;DQGRQHH[SDQGHU(RUWXUELQH 7KLVF\FOHLVFDOOHG³6WDQGDUGF\FOHZLWK/3ORZSUHVVXUHFRROLQJ´VLQFHWKHFROGKHOLXPVWDWH HQWHUV+;DIWHUH[SDQVLRQIRUWKHWKHUPDOFRQWDFWZLWK/+2&\FOH,,LVDQRWKHUVLPSOHF\FOHZLWK RQH+H+H+;DQGRQHH[SDQGHUEXWLVFDOOHG³6WDQGDUGF\FOHZLWK+3KLJKSUHVVXUHFRROLQJ´ VLQFHWKHFROGKHOLXPVWDWHHQWHUV+;EHIRUHWKHH[SDQVLRQ7KHHI¿FLHQF\RIWKHVHVWDQGDUG F\FOHVKDVDFHUWDLQOLPLWQRPDWWHUKRZKLJKO\HIIHFWLYH+;PD\EHEHFDXVHWKHUHLVDPLVPDWFK LQWKHVSHFL¿FKHDWRI+HEHWZHHQWKH+3DQGWKH/3VWUHDPV The limit of standard cycles can be overcome by employing two expanders67KH¿UVWZD\LV WRDUUDQJHWZRH[SDQGHUVLQVHULHVVXFKWKDWWKH¿UVWZDUPH[SDQGHULVXVHGWRFRPSHQVDWHWKH PLVPDWFKRIVSHFL¿FKHDWDQGWKHVHFRQGFROGH[SDQGHUSOD\VWKHPDLQUROHRIFU\RJHQLFUHIULJHUDWLRQ&\FOHV,,,DQG,9DUHVXFKH[DPSOHVZKLFKDUHFDOOHG³7ZRVWDJHF\FOHZLWK/3FRROLQJ´ DQG³7ZRVWDJHF\FOHZLWK+3FRROLQJ´UHVSHFWLYHO\,QWKHVHWZRVWDJHF\FOHVWKHÀRZUDWHLVWKH same for the two expanders, but the operating pressure is different. Another way is to arrange two expanders in parallel so that they work at the same pressure level. $PRQJDYDULHW\RISRVVLEOHVWUXFWXUHV&\FOHV9DQG9,DUHVHOHFWHGDVFDOOHG³'XDOWXUELQH F\FOHZLWK/3FRROLQJ´DQG³'XDOWXUELQHF\FOHZLWK+3FRROLQJ´UHVSHFWLYHO\$WDORFDWLRQRIWKH +3VWUHDPVWDWHDVPDOOIUDFWLRQRIJDVLVGLYHUWHGH[SDQGHGWKURXJKWKH¿UVWZDUPH[SDQGHU DQGUHXQLWHGZLWKWKH/3VWUHDPEHORZ+;7KHPDLQ+3VWUHDPFRQWLQXHVWKURXJK+;DQG +;DQGLV¿QDOO\H[SDQGHGWKURXJKWKHVHFRQGFROGH[SDQGHUWRWKHFROGHVWWHPSHUDWXUH7KH structure of these cycles is similar to the Claude cycle, except that the JT valve is replaced by a cold H[SDQGHU,Q+;WKH/3VWUHDPKDVDKLJKHUÀRZUDWHWKDQWKH+3VWUHDPLQRUGHUWRFRPSHQVDWH IRUWKHPLVPDWFKLQVSHFL¿FKHDW 7KHFROGHQGRIWKHGXDOWXUELQHF\FOHVFRXOGEHIXUWKHUPRGL¿HGE\DGGLQJDZDUPXSÀRZ WRWKH+3VWUHDPEHIRUHHQWHULQJWKHFROGWXUELQHDVVKRZQLQ&\FOHV9,,DQG9,,,DQGFDOOHG ³0RGL¿HGGXDOWXUELQHF\FOHZLWK/3FRROLQJ´DQG³0RGL¿HGGXDOWXUELQHF\FOHZLWK+3FRROLQJ´ UHVSHFWLYHO\,QWKHVHF\FOHVWKHQXPEHURI+H+H+;¶VLV¿YHDQG+;LVDWULSOHVWUHDP+; KDYLQJWZRFROGVWUHDPVDQGRQHZDUPVWUHDP7KHZDUPXSÀRZFRXOGEHHIIHFWLYHLQUHGXFLQJ the temperature difference at the cold end as described later. MODIFIED BRAYTON REFRIGERATION CYCLES FOR LIQUID H2 465 C19_007 3 Figure 2. Standard or modified Brayton cycles for sub-cooled liquid hydrogen. (AC: after-cooler, C: compressor, HX: heat exchanger, E: expander) CYCLE ANALYSIS The following assumptions are made to analyze and compare the selected cycles. Ɣ 7KHDPELHQWWHPSHUDWXUHT0LV. Ɣ 7KHUHIULJHUDWLRQORDGE\OLTXLGK\GURJHQLVN: Ɣ $WWKH+H+2+;Whe inlet and exit temperatures of He are 15 K and 20 K, respectively, and WKHSUHVVXUHGURSRI+HÀRZLV03D7KHPLQLPXPWHPSHUDWXUHGLIIHUHQFHEHWZHHQ+2 and He is 0.5 K. Ɣ The KLJKSUHVVXUHRIDOOF\FOHVLV03D Ɣ 7KHSUHVVXUHGURSLQDOO+H+H+;¶VLV]HUR Ɣ The minimum temperature difference between hot and cold streams is.RU.IRU +;DQGRURIWKHDEVROXWHWHPSHUDWXUHDW+3VWUHDPIRURWKHU+;¶V. Ɣ 7KHDGLDEDWLFHI¿FLHQF\RIDOO compressors andWXUELQHVLV 7KHVHFRQGDQGWKLUGDVVXPSWLRQVDUHVSHFL¿HGE\WKHGHVLJQUHTXLUHPHQWVRIWKHWDUJHWPRGerator system at ESS77KHVL[WKDVVXPSWLRQLVPDGHWRLQYHVWLJDWHWKHVL]HHIIHFWRI+;¶VRQHDFK F\FOHZLWKWZRGLIIHUHQWFDVHV'Tmin .DQG.ZKLFKUHSUHVHQWVUHODWLYHO\KLJKDQGORZ HIIHFWLYHQHVVUHVSHFWLYHO\7KHWHPSHUDWXUHGLIIHUHQFHJLYHQDVRURIDEVROXWHWHPSHUDture means, for example, that 'Tmin .RU.DWTHP = 100 K and 'Tmin .RU.DW THP .6LQFHWKHWHPSHUDWXUHRIWKH+3VWUHDPLVGHWHUPLQHGDVDUHVXOWRIWKHF\FOHDQDO\VLV 466 C19_007 BRAYTON CRYOCOOLER DEVELOPMENTS this assumption will be imposed by a few iterative calculations. In calculating the input power to the compressors, a single-stage compression is assumed, because the pressure ratio is between 3 DQGDQGVFUHZFRPSUHVVRUVFRXOGEHXVHGLQSUDFWLFH7KHRQO\H[FHSWLRQLV&\FOH,,ZKHUHD two-stage compression with inter-cooling is assumed for the pressure ratios exceeding 10. $JHQHUDOSXUSRVHSURFHVVVLPXODWRU$VSHQ+<6<6®ZLWKWKHWKHUPRG\QDPLFSURSHUWLHVRI KHOLXPDQGSDUDK\GURJHQLVXVHGIRUWKHF\FOHDQDO\VLV8QGHUWKHVSHFL¿HGFRQGLWLRQV&\FOHV, DQG,,DUHXQLTXHO\GHWHUPLQHGDVWKHQXPEHURIXQNQRZQVLVWKHVDPHDVWKHQXPEHURIJLYHQ HTXDWLRQV )RU &\FOHV ,,, WKURXJK 9,,, KRZHYHU WKHQXPEHURIXQNQRZQV LVPRUHWKDQWKH number of given equations by one. The cycle analysis is repeated over one variable, until the input power can be minimized under the assumptions. The thermodynamic performance of a refrigeration cycle is evaluated with a dimensionless index, FOMWKH¿JXUHRIPHULW, which isGH¿QHGDVWKHUDWLRRIPLQLPXPWRWKHDFWXDOZRUN The minimum work is the thermodynamic limit for a reversible cycle, which can be expressed DVWKHLQFUHDVHRIH[HUJ\RUÀRZDYDLODELOLW\RIOLTXLGK\GURJHQ where h and sDUHVSHFL¿FHQWKDOS\DQGHQWURS\UHVSHFWLYHO\. The subscripts e and i denote the exit and inlet of He-H2+;UHVSHFWLYHO\, as shown in Figure 1 and 2, and T0 is the ambient temperature at which heat is rejected by the refrigerator. ,QSUDFWLFHWKHSRZHURXWSXWRIWKHH[SDQGHUVWE may be used to drive the compressors or may be simply dissipated, but the ³QHW´ input WC - WE is counted inWKHGHQRPLQDWRURI(T2 For a better understanding of the thermodynamic nature of cycles, DQH[HUJ\RUVHFRQGODZ analysis is presented as well. Combining the energy and entropy balance equations9, the exergy balance can be written as: 4 where the left-handed side is the exergy input for refrigeration, and the right-handed side shows VRFDOOHGWKHH[HUJ\H[SHQGLWXUH$VGH¿QHGLQ(T.WKHIUDFWLRQRIWKH¿UVWWHUPLVWKHFOM, and the remaining terms are the irreversibility or the entropy generation rate multiplied by ambient temperature. The total irreversibility can be itemized for the components in the system, including FRPSUHVVRUV&DIWHUFRROHUV$&H[SDQGHUV(DQGKHDWH[FKDQJHUV+;. In case of Cycles ,9 through 9III, the mixing of two streams is another source of entropy generation, but is not included here, since the magnitude is negligibly small for an optimized cycle10. RESULTS AND DISCUSSION The selected eight cycles are fully analyzed with the assumptions described above, and the results are plotted as temperature-entropy diagram in Figure 3 and exergy expenditure in Figure 4. The cycles with 'Tmin .DUHSUHVHQWHGKHUHDQGZLOOEHGLVFXVVHGODWHUWRJHWKHUZLWK 'Tmin .$VPHQWLRQHGDERYH&\FOHV,,,WKURXJK9,,,KDYHEHHQRSWLPL]HGIRUWKH maximum FOM. ,QWKHFDVHRIWKHVWDQGDUGF\FOHV&\FOH,ZLWK/3FRROLQJLVPRUHHI¿FLHQWWKDQ&\FOH,, ZLWK+3FRROLQJ7KHPDLQUHDVRQLVWKDWWKH+3FRROLQJQHHGVDODUJHUSUHVVXUHUDWLRWRSHUIRUPWKH UHIULJHUDWLRQ7KHSUHVVXUHUDWLRLVDQGLQ&\FOHV,DQG,,UHVSHFWLYHO\,QDVHQVHWKH +3FRROLQJLVUHJDUGHGDV³LQGLUHFW´FRROLQJEHFDXVHWKHFROGHVW/3VWUHDPFRROVWKH+3VWUHDP DQGWKHQWKH+3VWUHDPFRROVWKH/+2ÀRZ,WPD\EHVWDWHGLQVWDQGDUGF\FOHVWKDWWKH/3FRROLQJ LVHVVHQWLDOO\VXSHULRULQHI¿FLHQF\WRWKH+3FRROLQJ2QWKHRWKHUKDQGWKH+3FRROLQJFRXOGKDYH PHULWVLQRWKHUDVSHFWVVXFKDVDVPDOOHUGLDPHWHURIWUDQVIHUOLQHVIRUFROGKHOLXP7KH+3FRROLQJ FRXOGDOVREHVDIHUDJDLQVWWKHIUHH]HRXWRIOLTXLGK\GURJHQEHFDXVHWKHFROGHVWKHOLXPDWWKHH[LW RIWXUELQHLQGLUHFWO\DIIHFWVWKH/+2ÀRZZKHQWKHWHPSHUDWXUHWHPSRUDULO\GURSVDFFRUGLQJWRD scheduled or unscheduled decrease of thermal load. 7ZRVWDJHF\FOHV&\FOHV,,,DQG,9KDYHFRQVLGHUDEO\KLJKHUFOM’s than the standard F\FOHV,Q)LJXUHWKHLUUHYHUVLELOLW\LQ+;¶VRI&\FOHV,,,DQG,9LVVPDOOHUWKDQWKDWRI&\FOHV 4 MODIFIED BRAYTON REFRIGERATION CYCLES FOR LIQUID H2 467 C19_007 5 Figure 3. Temperature-entropy diagram of eight cycles at optimized condition with 'Tmin = 3 K (1%). Figure 4. Exergy expenditure of eight cycles at optimized condition with 'Tmin = 3 K (1%). (FOM: figure of merit, AC: after-cooler, C: compressor, E: expander, HX: heat exchanger) ,DQG,,DVWKHWHPSHUDWXUHGLIIHUHQFHLQ+;¶VLVUHGXFHGE\WKHDGGLWLRQRIZDUPH[SDQGHU$ NH\SRLQWKHUHLVWKDWWKH/3FRROLQJLVVWLOOPRUHHI¿FLHQWWKDQWKH+3FRROLQJEXWWKHLUGLIIHUHQFH in FOMLVQRWVRODUJH,WLVLQWHUHVWLQJWRQRWLFHLQ)LJXUHWKDW&\FOH,9KDVDODUJHULUUHYHUVLELOLW\LQ+;+;WKDQ&\FOH,,,EXWDVPDOOHULUUHYHUVLELOLW\LQ+;7KLVPHDQVWKDWWKH+3 FRROLQJVWLOOUHTXLUHVDODUJHUSUHVVXUHUDWLRIRUDODUJHUWHPSHUDWXUHGLIIHUHQFHEXWWKHSHQDOW\RI 468 C19_007 BRAYTON CRYOCOOLER DEVELOPMENTS SUHVVXUHGURS03DLQ+;LVOHVVVHYHUHLQ+3FRROLQJ7KHSUHVVXUHUDWLRLVDQGIRU &\FOHV,,,DQG,9UHVSHFWLYHO\ 7KHGXDOWXUELQHF\FOHV&\FOHV9DQG9,KDYHDQHYHQKLJKHUFOM’s than the two-stage F\FOHV7KHEUDQFKLQJÀRZWKURXJKWKHZDUPWXUELQHLVHIIHFWLYHLQUHGXFLQJWKHWHPSHUDWXUHGLIIHUHQFHLQUHFXSHUDWLYH+;¶VDQGWKHSUHVVXUHUDWLRLVVPDOOIRUERWKF\FOHV/LNHW\SLFDO&ODXGH F\FOHVWKHPDLQGHVLJQSDUDPHWHULVWKHUDWLRRIWKHÀRZUDWHWKURXJKWKHZDUPWXUELQHWRWKHWRWDO ÀRZUDWHWKURXJKWKHFRPSUHVVRU. The optimal condition is determined such that the exit temperaWXUHRIWKHZDUPWXUELQHVWDWHPDWFKHVFORVHO\ZLWKWKH/3WHPSHUDWXUHDWWKHSRLQWRIPL[LQJ 7KHÀRZUDWLRLVDQGIRU&\FOHV9DQG9,UHVSHFWLYHO\DQGWKHSUHVVXUHUDWLRLV DQGIRU&\FOHV9DQG9,UHVSHFWLYHO\ 7KHPRGL¿FDWLRQRIGXDOWXUELQHF\FOHZLWKDZDUPXSÀRZLVQRWDVHIIHFWLYHLQLPSURYLQJ the FOMIRU/3FRROLQJEXWLVYHU\HIIHFWLYHIRU+3FRROLQJ&\FOHV9,,KDVQHDUO\WKHVDPH FOMDV&\FOH9HYHQWKRXJKWKHGHWDLOHGF\FOHVDUHVOLJKWO\GLIIHUHQWIURPHDFKRWKHU2QWKH RWKHUKDQG&\FOH9,,,KDVDVLJQL¿FDQWO\KLJKHUFOMWKDQ&\FOH9,7ZRDGGLWLRQDO+;¶VDW WKHFROGHQGDQGWKHZDUPXSÀRZPDNHWKHRSHUDWLQJWHPSHUDWXUHRIWKHZDUPWXUELQHKLJKHUDQG DFFRUGLQJO\WKHRYHUDOOWHPSHUDWXUHGLIIHUHQFHLQWKH+;VLVVPDOOHU7KHÀRZUDWLRWRWKHZDUP WXUELQHLVDQGIRU&\FOHV9,,DQG9,,,UHVSHFWLYHO\DQGWKHSUHVVXUHUDWLRLV DQGIRU&\FOHV9,,DQG9,,,UHVSHFWLYHO\ ,QRUGHUWRH[DPLQHWKHVL]HHIIHFWRIWKH+;V)LJXUHFRPSDUHVWKHFOM of eight cycles with WKHPLQLPXPWHPSHUDWXUHGLIIHUHQFHRI.DQG.7KHVWDQGDUGF\FOHV&\FOHV ,DQG,,DUHQRWRQO\SRRULQHI¿FLHQF\LWVHOIEXWDOVRPRUHVHQVLWLYHWRWKHVL]HRI+;VWKDQWKH PRGL¿HGF\FOHV$PRQJWKHPRGL¿HGF\FOHVGXDOWXUELQHF\FOHVDUHVXSHULRUWRWZRVWDJHF\FOHV LIKLJKO\HIIHFWLYH+;VDUHXVHG7KHSHQDOW\RIVPDOO+;VL]HLVOHDVWIRU&\FOH9,,,7KLVPHDQV WKDWDQHI¿FLHQWUHIULJHUDWLRQZLWK+3FRROLQJcan be achieved E\WKHZDUPXSÀRZZLWKRXWDQ H[WUHPHO\ODUJHVL]HRI+;V In summary, two cycles are suggested from a thermodynamic point of view. First, the dualWXUELQHF\FOHZLWK/3FRROLQJRU&\FOH9LVDSUHIHUUHGF\FOHIRUERWKVLPSOLFLW\DQGHI¿FLHQF\ 7KLVF\FOHLVHVSHFLDOO\UHFRPPHQGDEOHZKHQKLJKO\HIIHFWLYH+;VFDQEHXVHG$OWHUQDWLYHO\WKH PRGL¿HGGXDOWXUELQHF\FOHZLWK+3FRROLQJRU&\FOH9,,,KDVDQDGYDQWDJHLQHI¿FLHQF\HYHQ ZKHQWKH+;VDUHQRWVRKLJKO\HIIHFWLYH2QWKHRWKHUKDQGWKLVF\FOHLVFRPSOH[LQVWUXFWXUHDQG FRXOG\LHOGPRUHSUHVVXUHGURSVLQWKH+;V7DEOHOLVWVWKHGHWDLOHGWKHUPRG\QDPLFGDWDLQFOXGLQJWHPSHUDWXUHSUHVVXUHDQGÀRZUDWHDWHDFKVWDWHIRU&\FOH9ZLWK'Tmin = .DQG&\FOH 9,,,ZLWK'Tmin = . In determining a refrigeration cycle, there are a number of practical factors to take into account DVZHOODVHI¿FLHQF\$OWKRXJKWKHGHWDLOVDUHEH\RQGWKHVFRSHRIWKLVWKHUPRG\QDPLFVWXG\D few comments are mentioned for discussion. First, the availability and performance of cryogenic turbines should be considered for the selection between the two-stage cycle and the dual-turbine Figure 5.)LJXUHRIPHULW)20IRUHLJKWF\FOHVZLWK'Tmin .DQG. 6 MODIFIED BRAYTON REFRIGERATION CYCLES FOR LIQUID H2 C19_007 469 Table 1.7HPSHUDWXUHSUHVVXUHDQGÀRZUDWHRIWZRVXJJHVWHGF\FOH F\FOH,QWZRVWDJHF\FOHVWKHZDUPWXUELQHUHTXLUHVDVPDOOSUHVVXUHUDWLRZLWKDODUJHÀRZUDWH In dual-turbine cycles, on the contrary, the warm turbine requires a large pressure ratio with a small ÀRZUDWH 'HWDLOHG+;GHVLJQFRXOGEHLPSRUWDQWIRUDWKRURXJKDQGIDLUFRPSDULVRQRIWKHF\FOHV,WLV UHFDOOHGWKDWWKHUHVXOWVSUHVHQWHGDUHEDVHGRQDVLPSOL¿HGPRGHORIPLQLPXPWHPSHUDWXUHGLIIHUHQFHDQGDQDVVXPSWLRQRIQRSUHVVXUHGURSLQWKH+;V7KHDFWXDOVL]HDQGWKHUPRK\GUDXOLF FKDUDFWHULVWLFVRIWKH+;VFRXOGDIIHFWWKHVHOHFWLRQWRDQH[WHQW Finally, an optimization theory is FLWHGKHUHZLWKUHJDUGVWRWKHHIIHFWRI¿QLWH+;VL]HVHVSHFLDOO\ZKHQDF\FOHLVFRPSRVHGRIPXOWL VWDJHVRI+;V,WLVDOZD\VWUXHWKDWDVDQ\+;DUHDLQFUHDVHVWKHWHPSHUDWXUHGLIIHUHQFHEHWZHHQ KRWDQGFROGVWUHDPVLQWKH+;GHFUHDVHV,WLVDQLPSRUWDQWGHVLJQVWUDWHJ\KRZHYHUWRDOORFDWH WKH+;DUHDWRHDFKVWDJHLIWKHWRWDOVXPRI+;DUHDLV¿[HG7KLVLVDZHOONQRZQRSWLPL]DWLRQ problem subject to a constraint, which has been solved by the method of Lagrange multiplier. The results show that the best thermodynamic performance is achieved when the temperature difference is proportional to the absolute temperature9,11. 5 This condition has been already incorporated as an assumption of the cycle analysis. CONCLUSIONS 6WDQGDUGDQGPRGL¿HG%UD\WRQUHIULJHUDWLRQF\FOHVDUHLQYHVWLJDWHGZLWKDQDLPDWWKHHI¿FLHQW UHIULJHUDWLRQRIN:IRUVXEFRROHGOLTXLGK\GURJHQDW.%DVHGRQH[LVWLQJDQGSURSRVHG V\VWHPVDYDULHW\RIPRGL¿FDWLRQVDUHWULHGLQDV\VWHPDWLFZD\DQGWKHLUHI¿FLHQF\LVFDOFXODWHGLQ terms of FOM¿JXUHRIPHULWWKURXJKDIXOOWKHUPRG\QDPLFDQDO\VLV7KHPRGL¿FDWLRQVLQFOXGH WKH/3ORZSUHVVXUHRU+3KLJKSUHVVXUHFRROLQJGHSHQGLQJRQWKHORFDWLRQRIWKHFU\RJHQLF expander in a cycle, and the two-stage or dual-turbine cycles, depending on the combination of the two expanders. Among the eight cycles under consideration, two cycles are suggested along with WKHUHTXLUHGVL]HRI+;VDQGRWKHUFRQVWUDLQWV$GXDOWXUELQHF\FOHZLWK/3FRROLQJRU&\FOH9 LVSUHIHUUHGIRUVLPSOLFLW\DQGHI¿FLHQF\DWWKHVDPHWLPHLIKLJKO\HIIHFWLYH+;VFDQEHXVHG$ PRGL¿HGGXDOWXUELQHF\FOHZLWK+3FRROLQJRU&\FOH9,,,KDVDQDGYDQWDJHLQHI¿FLHQF\HYHQ LIOHVVHIIHFWLYH+;VDUHXVHG7KHUHVXOWVRIWKLVWKHUPRG\QDPLFVWXG\DUHLPPHGLDWHO\DSSOLFDEOH to the neutron source moderators at ESS, and should be useful in large-scale refrigeration at 20 K as well. ACKNOWLEDGMENT This work was partially supported by 2016 Hong Ik University Research Fund for sabbatical leave in a foreign institute. 7 470 C19_007 BRAYTON CRYOCOOLER DEVELOPMENTS REFERENCES 1. $VR77DWVXPRWR++DVHJDZD68VKLMLPD,.DWR.2KWVX7,NHGD<³'HVLJQUHVXOWRIWKH &U\RJHQLF+\GURJHQ&LUFXODWLRQ6\VWHPIRU0:3XOVH6SDOODWLRQ1HXWURQ6RXUFH-616LQ-3$5&´ Adv. in Cryogenic Engineering9RO$PHU,QVWLWXWHRI3K\VLFV0HOYLOOH1<SS 2. /HH 0 &KRL +< +DQ -6 &KR 6+ .LP 06 +XU 62 6RQ:-$KQ *+ /LP ,& ³2SHUDWLRQDOFKDUDFWHULVWLFVRIWKHKHOLXPUHIULJHUDWLRQV\VWHPDW+$1$52&16´Adv. in Cryogenic Engineering9RO$PHU,QVWLWXWHRI3K\VLFV0HOYLOOH1<SS 3. :DQJ*3=KDQJ<;LDR-+H&&'LQJ0<:DQJ<4/L1+H.³'HVLJQSURJUHVV RIFU\RJHQLFK\GURJHQV\VWHPIRU&KLQD6SDOODWLRQ1HXWURQ6RXUFH´Adv. in Cryogenic Engineering, 9RO$PHU,QVWLWXWHRI3K\VLFV0HOYLOOH1<SS 4. $UQROG3+HHV:-XUQV-6X;7:DQJ;/:HLVHQG-*³(66FU\RJHQLFV\VWHPSURFHVV GHVLJQ´ IOP Conference Series: Materials Science and Engineering 9RO1R, ,23 3XEOLVKLQJS 5. -XUQV-5LQJQpU-4XDFN+$UQROG3:HLVHQG-*/\QJK'³6SDOODWLRQWDUJHWFU\RJHQLFFRROLQJ GHVLJQFKDOOHQJHVDWWKH(XURSHDQ6SDOODWLRQ6RXUFH´IOP Conference Series: Materials Science and Engineering 9RO1R,233XEOLVKLQJS 6. &KDQJ+03DUN-+&KD.6/HH6&KRH.+³0RGL¿HG5HYHUVH%UD\WRQ&\FOHVIRU(I¿FLHQW /LTXHIDFWLRQRI1DWXUDO*DV´&U\RFRROHUV,&&3UHVV%RXOGHU&2, pp. 435-442. 7. European Spallation Source, $QQH[7HFKQLFDO6SHFL¿FDWLRQ'RFXPHQW1XPEHU(66 pp. 41-42. %DUURQ5)Cryogenic systems&ODUHQGRQ3UHVVSS 9. %HMDQ$Advanced Engineering ThermodynamicsUGHG-RKQ:LOH\6RQV1HZ-HUVH\ pp. 101-142. 10. &KDQJ+0/LP+6&KRH.+7KHUPRG\QDPLFGHVLJQRIQDWXUDOJDVOLTXHIDFWLRQF\FOHVIRU RIIVKRUHDSSOLFDWLRQCryogenicsSS 11. &KDQJ +0 &KXQJ 0- /HH 6 &KRH .+ ³$Q HI¿FLHQW PXOWLVWDJH %UD\WRQ-7 F\FOH IRU OLTXHIDFWLRQRIQDWXUDOJDV´CryogenicsQRSS
© Copyright 2026 Paperzz