Cereal Nitrogen Fixation International Crops Research Institute for the Semi-Arid Tropics The International Crops Research Institute for the Semi-Arid Tropics is a nonprofit scientific educational institute receiving support from donors through the Consultative Group on International Agricultural Research. Donors to I C R I S A T include governments and agencies of Australia, Belgium, Canada, Federal Republic of Germany, Finland, France, India, Italy, Japan, Netherlands, Nigeria, Norway, People's Republic of China, Sweden, Switzerland, United Kingdom, United States of America, and the following international and private organizations: Arab Bank for Economic Development in Africa, Asian Development Bank, International Development Research Centre, International Fertilizer Development Center, International Fund for Agricultural Development, The European Economic Community, The Ford Foundation, The Leverhulme Trust, The Opec Fund for International Development, The Population Council, The Rockefeller Foundation, The World Bank, and the United Nations Development Programme. Information and conclusions in this publication do not necessarily reflect the position of the aforementioned governments, agencies, and international and private organizations. Cover: Mucigel-secreting brace roots of sorghum grown at ICRISAT Center during the rainy season. shows an electron micrograph of a nitrogen-fixing bacterium A z o s p i r i l l u m brasilense (x 19 800). Inset Cereal Nitrogen Fixation Proceedings o f the W o r k i n g G r o u p M e e t i n g held a t I C R I S A T Center, I n d i a , 9-12 O c t o b e r 1984 International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India 1986 Correct citation: I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502324, India: I C R I S A T . Workshop Coordinator and Scientific Editor S. P. W a n i The opinions in this publication are those of the authors and not necessarily those of I C R I S A T . The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of I C R I S A T concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Where trade names are used this does not constitute endorsement of or discrimination against any product by the Institute. ISBN 92-9066-111-9 Contents Foreword Welcome Address Inaugural Address L.D. Swindale C.R. Jackson vii 1 J.S. Kanwar 3 S.P. Wani 7 N.S. Subba Rao Cereal Nitrogen Fixation: Problems and Potentialities Cereal N i t r o g e n F i x a t i o n Research under the B N F Coordinated Project o f the I C A R 23 Associative Biological N i t r o g e n F i x a t i o n Research at Haryana Agricultural University B.S. K u n d u , K . R . D a d a r w a l , and P. T a u r o Studies on the Interactions between 31 Azospirillum and Pearl Millet A.V. Rao and B. Venkateswarlu 37 Response of Pearl Millet to Inoculation w i t h Azospirillwn brasilense at Varying Levels of Nitrogen G.S. Jadhav, A . N . Giri, and N.B. Pawar 43 Rhizosphere Ecology and Nitrogen Fixation of Azospirillum in Pearl Millet D. Purushothaman and K. Govindarajan 47 Response of S o r g h u m and Pearl Millet Genotypes to Azospirillum and Azotobacter Inoculations C.P. Ghonsikar, R.S. Raut, and G.B. Research on Cereal Nitrogen F i x a t i o n at I C R I S A T S.P. Rudraksha Wani 53 55 Yield and Nitrogen Gains of S o r g h u m as Influenced by Azospirillum brasilense N.S. Subba Rao, K.V.B.R. Tilak, C.S. Singh, and Azotobacter Inoculation: Nitrogen and Response of S o r g h u m C S H P.V. N a i r 69 Economy 1 S.T. Shende, G.B. Rudraksha, Rajani Apte, and R.S. Raut 75 Response of S o r g h u m Cultivars to Inoculation with D. Azospirillum Purushothaman and G. Oblisami N i t r o g e n T r a n s f o r m a t i o n s by A. brasilense S t r a i n 12S f r o m Sorghum Roots Effect of brasilense Azotobacter Inoculations chroococcum and and Nitrogen on 77 Bela S h u k l a a n d B.S. K u n d u 81 B.K. K o n d e and P.A. Shinde 85 Azospirillum yields of S o r g h u m , Maize, Pearl Millet, and Wheat Root-Associated Nitrogen Fixation in Finger Millet M . N . U p a d h y a y a , S.V. Hegde, P.V. R a i , a n d S.P. W a n i 93 Heterotrophic Nitrogen Fixation as Influenced V. by Fertilizers in Rice-Soil Systems Rajaramamohan Rao, J.L.N. Rao, and T.K. Adhya 103 Effect of Certain Organic A m e n d m e n t s and Potassium on the Bacterization of Rice with Azotobacter Chroococcum N.N. Prasad 107 K.R. Krishna 111 Studies o n Vesicular A r b u s c u l a r M y c o r r h i z a i n Cereals at I C R I S A T Center (abstract only) T h e use o f E L I S A ( E n z y m e - L i n k e d I m m u n o s o r b e n t Assay) f o r Q u a l i t y Assessment of Bacterial Inoculants (abstract only) P.T.C Nambiar 113 Recommendations 115 M e e t i n g Organization and Participants 118 Foreword A m o n g cereals, s o r g h u m a n d m i l l e t s t o g e t h e r p r o v i d e the highest c a l o r i e i n t a k e i n A f r i c a n diets a n d r a n k t h i r d i n A s i a . These crops are g r o w n l a r g e l y o n r a i n f e d , m a r g i n a l soils b y r e s o u r c e - p o o r f a r m e r s w h o c a n n o t bear the cost o f n i t r o g e n o u s fertilizers that can boost their yields. A l t h o u g h a n i n e x h a u s t i b l e store o f n i t r o g e n exists i n the a t m o s p h e r e , m o s t plants a r e n o t a b l e t o use i t d i r e c t l y . L e g u m e s h a v e b e e n k n o w n t o m a k e use o f t h i s n i t r o g e n t h r o u g h association o f n i t r o g e n - f i x i n g bacteria, w h i c h f o r m nodules i n the roots o f these p l a n t s a n d h a v e a s y m b i o t i c r e l a t i o n s h i p w i t h t h e m . I n r e c e n t y e a r s , r e s e a r c h h a s indicated that certain bacteria l i v i n g near the roots of s o r g h u m a n d m i l l e t can also f i x the a t m o s p h e r i c n i t r o g e n n o n s y m b i o t i c a l l y a n d p a r t i a l l y meet the n i t r o g e n requirem e n t o f these c r o p s . C o n s e q u e n t l y , the c o m p l e x process o f n i t r o g e n f i x a t i o n i n s o r g h u m a n d m i l l e t has a t t r a c t e d the a t t e n t i o n o f m a n y scientists i n I n d i a a n d a b r o a d . T h e studies are s t i l l i n t h e i r p r e l i m i n a r y stages a n d t h e m e t h o d o l o g y i s s t i l l b e i n g p e r f e c t e d . W i t h a v i e w t o share experiences, discuss m e t h o d s a n d t e c h n i q u e s , a n d a r r i v e a t a n agreed basis f o r assessing r e s u l t s , a w o r k i n g g r o u p m e e t i n g w a s c o n v e n e d a t I C R I S A T C e n t e r d u r i n g 9-12 O c t o b e r 1984. A t o t a l o f 3 0 scientists t o o k p a r t i n the d e l i b e r a t i o n s , 1 9 f r o m Indian institutions and 11 f r o m I C R I S A T . Meetings such as this play an i m p o r t a n t role, developing interpersonal a n d profess i o n a l r e l a t i o n s h i p s a m o n g the scientists i n v o l v e d , w h i c h c a n lead t o m o r e m e a n i n g f u l research a n d d e v e l o p m e n t strategies. I a m pleased t h a t I C R I S A T h o s t e d this m e e t i n g o n c e r e a l n i t r o g e n fixation, a n d I b e l i e v e these p r o c e e d i n g s w i l l be a v a l u a b l e s o u r c e o f i n f o r m a t i o n and inspiration to all concerned. L . D . Swindale Director General vii Welcome Address C . R . Jackson Ladies and Gentlemen: W e are pleased t o have y o u here t o d a y . I w a n t t o w e l c o m e y o u o n b e h a l f o f I C R I S A T , its m a n a g e m e n t , a n d o u r staff t o this i m p o r t a n t w o r k i n g g r o u p m e e t i n g o n cereal n i t r o g e n f i x a t i o n . M o s t of my concern as Director of International Cooperation in I C R I S A T is aimed a t places outside I n d i a , p a r t i c u l a r l y i n A f r i c a . S o this m e e t i n g i s o f p a r t i c u l a r i m p o r tance t o m e , because I believe i t helps a i d the d e v e l o p m e n t o f t e c h n o l o g y t h a t w i l l m e a n a great deal to I n d i a , to A f r i c a , a n d to a l l countries where the c u l t i v a t i o n of crops is in some p a r t m a r g i n a l a n d of a subsistence n a t u r e . A s y o u a l l k n o w , n i t r o g e n i s one o f the m o s t i m p o r t a n t factors l i m i t i n g cereal p r o d u c t i o n i n t h e w o r l d a n d b i o l o g i c a l n i t r o g e n f i x a t i o n needs t o b e f u l l y e x p l o i t e d . W e need t o u n d e r s t a n d i t a s w e l l a s possible, b u t n o t t o the e x t e n t t h a t w e u n d e r s t a n d e v e r y t h i n g b e f o r e w e g o t o t h e f i e l d i n a t t e m p t i n g t o use t h i s p h e n o m e n o n . T h e r e are m a n y parts o f the w o r l d t h a t are i n d i f f i c u l t y f r o m l a g g i n g f o o d supplies, g r o w i n g p o p u l a t i o n s , etc. H e r e I w a n t t o e m p h a s i z e the p r o b l e m o f A f r i c a , p a r t i c u l a r l y W e s t A f r i c a , i n a t t e m p t i n g t o feed itself. T h e S a h e l i a n r e g i o n , a n d the r e g i o n a b i t f u r t h e r S o u t h f r o m the Sahel are i n such great distress t h a t w e m u s t c o n t e m p l a t e the m o v e m e n t o f p e o p l e o n a c o n t i n e n t a l scale t o p l a c e s w h e r e c o n d i t i o n s a r e b e t t e r f o r growing food. I a m g o i n g t o m a k e a n a p p e a l t o y o u t o give y o u r v e r y best t h o u g h t s t o this p a r t i c u l a r subject o f n i t r o g e n f i x a t i o n i n cereal crops. W e m u s t m a k e early progress i n this subject. It is n o t j u s t an academic subject. I w a n t to t r a n s m i t to y o u the u r g e n c y of t h e p r o b l e m o f d e v e l o p i n g t h i s t e c h n o l o g y , s o t h a t i t c a n b e a p p l i e d o n a b r o a d scale a n d w i t h d e p e n d a b i l i t y i n I n d i a , i n A f r i c a , a n d i n o t h e r parts o f the w o r l d . Y o u m u s t g i v e y o u r b e s t t h o u g h t t o i t a n d see t h a t i t w o r k s i n t h e f i e l d . Y o u m u s t e x p e n d e v e r y e f f o r t t o see t h a t s o m e t h i n g u s e f u l f o r h u m a n k i n d c o m e s o u t o f y o u r r e s e a r c h a n d o u t o f the deliberations o f conferences l i k e this. We cannot continue to rely solely on plant breeding to give us bigger a n d better p l a n t s t h a t w i l l g r o w o n less a n d less w a t e r . T h e r e a r e o t h e r f a c t o r s i n t h e e q u a t i o n . S o i l f e r t i l i t y i s o n e o f t h e m a n d a v e r y i m p o r t a n t o n e . W e c e r t a i n l y n e e d t o p u t t o use e v e r y i n c r e m e n t o f k n o w l e d g e t h a t w e h a v e , s u c h a s t h e p r a c t i c a l use o f N 2 - f i x i n g m i c r o o r g a n i s m s , t o g i v e u s a n a d d i t i o n a l i n c r e m e n t o f g r o w t h i n these v e r y h a r s h e n v i r o n m e n t s where people are t r y i n g desperately to survive. W i t h those few w o r d s o f encouragement, a n d w i t h the n o t i n g that y o u r p r o g r a m i s g o i n g to cover some very i m p o r t a n t topics a n d perhaps reveal things never before revealed to h u m a n k i n d , I w i s h y o u all l u c k in this conference. W e l c o m e . G i v e us y o u r best efforts. 1 I n a u g u r a l Address J. S. Kanwar I t gives m e i m m e n s e pleasure t o e x t e n d m y w a r m w e l c o m e t o the p a r t i c i p a n t s o f this m e e t i n g , w h o are a c t i v e l y engaged i n research o n N 2 f i x a t i o n b y cereals, specifically s o r g h u m a n d millets. I feel this m e e t i n g is t i m e l y a n d i m p o r t a n t . S o r g h u m a n d m i l l e t together p r o v i d e f o o d t o 700 m i l l i o n people o f the semi-arid tropics. T h e y are g r o w n on 70 m i l l i o n ha, m o s t l y under rainfed conditions, often w i t h o u t nitrogenous fertilizers, a n d b y r e s o u r c e - p o o r f a r m e r s w h o c a n n o t a f f o r d m o n e t a r y i n p u t s . N e a r l y 9 5 % o f m i l l e t a n d 6 0 % o f s o r g h u m g r a i n i s p r o d u c e d u n d e r e n v i r o n m e n t s w h e r e stress f r o m l a c k o f m o i s t u r e , n u t r i e n t stress, a n d o t h e r p h y s i c a l a n d b i o t i c stresses s e r i o u s l y constrain yields. N i t r o g e n is a key element in increased c r o p p r o d u c t i o n , a n d a n y technique that w i l l enhance nitrogen n u t r i t i o n o f the crop w i l l go a l o n g w a y i n increasing crop yields. T h e Green R e v o l u t i o n in wheat a n d rice is n o t h i n g b u t the conversion of chemical energy supplied t h r o u g h fertilizers i n t o b i o l o g i c a l products where h i g h - y i e l d i n g varieties act as vehicles of this change. T h e greater the capacity of the variety to respond to heavier doses o f n i t r o g e n , greater i s the y i e l d o b t a i n e d . T h u s , i t i s n o e x a g g e r a t i o n t h a t the p r o b l e m o f f o o d deficit a n d m a l n u t r i t i o n i n the w o r l d i s really the p r o b l e m o f n i t r o g e n starvation of the cereal crops. Despite the fact t h a t a n i n e x h a u s t i b l e store o f N 2 exists i n the a t m o s p h e r e , m o s t p l a n t s a r e n o t a b l e t o use i t d i r e c t l y . I n d u s t r i a l p l a n t s a r e c o n v e r t i n g a s m a l l f r a c t i o n o f available N2 i n t o nitrogenous fertilizers, b u t it is recognized that despite man's i n g e n u i t y a n d resources, the w o r l d is n o t able to meet m o r e t h a n a f r a c t i o n of the n i t r o g e n r e q u i r e m e n t o f the crops. T h u s w e have t o l o o k t o other sources, o f w h i c h biological nitrogen f i x a t i o n ( B N F ) is an i m p o r t a n t one. T h e dependance of fertilizer n i t r o g e n p r o d u c t i o n o n fossil energy resources a n d the prospects o f d i m i n i s h e d a v a i l a b i l i t y o f this costly i n p u t f o r fertilizer i n the years t o c o m e have a d d e d a n urgency t o the study o f B N F . W e recognize t h a t crops like s o r g h u m a n d millets are very p o o r c o m p e t i t o r s f o r the a v a i l a b l e f e r t i l i z e r s , a n d m o r e s o u n d e r d r y - f a r m i n g c o n d i t i o n s , because o f the greater risks i n v o l v e d a n d l o w e r payoff. Thus, for m o r e t h a n 60 m i l l i o n ha of s o r g h u m a n d m i l l e t g r o w n i n the S A T , any b r e a k t h r o u g h i n B N F c o u l d b r i n g i n a r e v o l u t i o n i n production. T h e f i n d i n g b y D o b e r e i n e r o f n o n s y m b i o t i c N 2 f i x a t i o n b y associated bacteria i n cereals, s t i m u l a t e d research i n t h i s subject a l l o v e r the w o r l d . W i t h the e s t a b l i s h m e n t o f I C R I S A T , a special emphasis was l a i d o n N 2 - f i x a t i o n studies i n s o r g h u m a n d m i l l e t s . C o n s i d e r a b l e progress has been m a d e i n o u r u n d e r s t a n d i n g o f this process, b u t there are n u m e r o u s aspects t h a t need t h o r o u g h i n v e s t i g a t i o n before w e c a n t a k e this technology t o farmers' fields. T h e standardization o f techniques t o measure N 2 f i x a t i o n i s t h e f i r s t p r o b l e m n e e d i n g a t t e n t i o n . I t i s r e c o g n i z e d t h a t unless r e l i a b l e , repeatable, a n d c o m p a r a b l e results are o b t a i n e d b y different w o r k e r s , n o v a l i d c o n c l u sions c a n be d r a w n . 3 A f t e r 1 0 years o f p a i n s t a k i n g research, I C R I S A T m i c r o b i o l o g i s t s are n o w reasonably confident that the methodologies they have developed can give reproducible results f o r o t h e r scientists as w e l l . W h e t h e r it is a m e a s u r e m e n t of nitrogenase a c t i v i t y w i t h a c e t y l e n e r e d u c t i o n m e t h o d o n seedlings g r o w n i n test t u b e s o r p o t s , o r 15 N d i l u t i o n techniques, s i m i l a r results have been c l a i m e d . H o w e v e r , the q u e s t i o n still r e m a i n s w h e t h e r the results o f the c o n t r o l l e d e n v i r o n m e n t s correlate w e l l w i t h the f i e l d performance of different genotypes in different environments. D r W a n i w i l l give y o u the details o f o u r B N F w o r k . I w i l l j u s t m a k e a m e n t i o n o f the b r o a d objectives: • • to standardize research techniques. to study relative efficiency of N2 f i x a t i o n by different genotypes of s o r g h u m a n d millets. • to study environmental factors affecting N2 fixation. • t o increase N 2 f i x a t i o n b y genetic m a n i p u l a t i o n o f the p l a n t , b y a g r o n o m i c m a n i p u l a t i o n of the c r o p , or by i n o c u l a t i n g w i t h effective bacterial cultures. I n short, w e are interested i n i n c o r p o r a t i n g the desirable traits o f N 2 f i x a t i o n i n h i g h - y i e l d i n g varieties a n d developing techniques a n d practices f o r e n h a n c i n g yields of s o r g h u m a n d millets i n farmers' f i e l d s . O u r studies are n o t restricted t o N , a s w e are also s t u d y i n g differences in activities of m y c o r r h i z a e associated w i t h different genotypes f o r release o f p h o s p h a t e s a n d its i n t e r a c t i o n s w i t h N 2 f i x a t i o n . An External P r o g r a m Review panel that evaluated ICRISAT's w o r k earlier this year, while appreciating our w o r k to date on B N F , observed that it is innovative but s p e c u l a t i v e a n d needs t o b e i n t e n s i f i e d t o test a n d select t h e m o s t e f f e c t i v e p l a n t m i c r o o r g a n i s m associations. W e realize t h a t t o a c c o m p l i s h this task, w e need the support of many competent microbiologists w o r k i n g under different environments, using the same m e t h o d o l o g y . I consider this meeting very t i m e l y as y o u c a n share y o u r experiences w i t h I C R I S A T scientists a n d d e v e l o p a c o m m o n a p p r o a c h f o r f u r t h e r studies o n N 2 f i x a t i o n b y s o r g h u m a n d millets. We are n o w entering a second phase in the study of N2 f i x a t i o n b y cereals. D r W a n i a n d his colleagues have screened some g e r m p l a s m lines a n d rated t h e m f o r their N 2 - f i x i n g efficiency. H o w e v e r , there is a large g e r m p l a s m resource that still needs to be screened. S e c o n d l y , we are interested in t r a n s f e r r i n g these u s e f u l traits t o a g r o n o m i c a l l y s u p e r i o r lines f o r a c h i e v i n g the yield a d v a n t a g e . T h e r e are some indications t h a t this can be done, b u t we w o u l d like to have some critical studies m a d e c o o p e r a t i v e l y s o a s t o b e sure a b o u t the f i n d i n g s . T h i s W o r k i n g G r o u p M e e t i n g s h o u l d help us achieve the f o l l o w i n g objectives : • to share k n o w l e d g e a n d experience of n o n s y m b i o t i c N2 f i x a t i o n in s o r g h u m a n d millet; • to accept standardized techniques f o r m a k i n g measurements of N2 fixation; • to develop a c o o r d i n a t e d a p p r o a c h f o r c o n d u c t i n g research f o r t r a n s f e r r i n g desirable traits to agronomically superior genotypes; and • t o s t u d y the effect o f e n v i r o n m e n t s o n n o n s y m b i o t i c N 2 f i x a t i o n i n cereals. F o r a c h i e v i n g these objectives, i t i s essential t h a t this m e e t i n g identifies teams o f scientists w o r k i n g i n d i f f e r e n t institutes t o t a k e u p c o o r d i n a t e d research, w h o agree t o 4 share experiences a n d materials. These should be interdisciplinary teams consisting of geneticists, m i c r o b i o l o g i s t s , a n d a g r o n o m i s t s / soil scientists. I am c o n v i n c e d t h a t the high hopes that have arisen—about i m p r o v i n g the nitrogen n u t r i t i o n of s o r g h u m and millet a n d enhancing their p r o d u c t i o n — c a n be realized o n l y t h r o u g h interdisciplinary teamwork. I u n d e r s t a n d that all of y o u assembled here t o d a y are interested in such t e a m w o r k , b u t while studying N2 fixation y o u should not forget the interaction of the e n v i r o n m e n t a n d the effect o f o t h e r nutrients i n v o l v e d i n this process. T h e effect o f vesicular arbuscular mycorrhiza in stimulating N2 fixation through enhanced availability of phosphates has been observed. W h e t h e r this synergism c a n be enhanced t h r o u g h m a n a g e m e n t of e n v i r o n m e n t s or genetic engineering is a q u e s t i o n t h a t needs investigat i o n . T h e r e is a l o t of basic w o r k t h a t needs to be d o n e . I find in this g r o u p s o m e scientists w h o are i n v o l v e d i n such basic studies. Q u i t e often the experiments are conducted under controlled environments w i t h o u t a n y m o i s t u r e constraints. W h e t h e r the same results are possible u n d e r c o n d i t i o n s of d r o u g h t stress a n d h i g h t e m p e r a t u r e needs i n v e s t i g a t i o n . T h e effect o f p h y s i c a l s o i l e n v i r o n m e n t s a n d i n i t i a l s o i l - f e r t i l i t y level o n N 2 f i x a t i o n also needs t o b e s t u d i e d . I t i s m y i m p r e s s i o n t ha t there are m o r e u n k n o w n factors t h a n the k n o w n ones i n f l u e n c i n g n o n s y m b i o t i c N2 fixation by crops like s o r g h u m a n d millets a n d we need to investigate further. J u d g i n g f r o m the p r o g r a m t h a t m y colleagues have d r a w n u p f o r this m e e t i n g , I get the feeling t h a t y o u w o u l d b e l o o k i n g a t a l l these p r o b l e m s . I realize t h a t m a n y o f y o u are interested i n N 2 f i x a t i o n b y cereals o t h e r t h a n s o r g h u m a n d m i l l e t s . T h e r e are s o m e papers r e l a t i n g to rice. Since the e n v i r o n m e n t s in w h i c h rice is g r o w n are v e r y different f r o m those o f s o r g h u m a n d millets, the transferability o f the i n f o r m a t i o n f r o m rice t o s o r g h u m a n d m i l l e t s a n d vice versa needs i n v e s t i g a t i o n . I t w o u l d b e desirable f o r y o u t o extend y o u r discussions t o N 2 f i x a t i o n b y s o r g h u m a n d millets u n d e r c o n d i t i o n s o f d r o u g h t stress a s w e l l . I u n d e r s t a n d t h a t t h e best e s t i m a t e s s h o w t h a t a b o u t 2 0 k g N ha-1 could be added t h r o u g h bacterial association w i t h sorghum and millets. Even an increase of 20 kg N ha-1 in all the s o r g h u m - a n d m i l l e t - p r o d u c i n g areas c a n m e a n a t r e m e n d o u s increase i n the p r o d u c t i o n o f these cereals. W e w i l l b e d o i n g a great service t o h u m a n i t y i f w e c a n d e m o n s t r a t e this effect o n f a r m e r s ' fields, u n d e r the e n v i r o n m e n t s w h e r e these c r o p s are g r o w n . It w i l l be a real achievement if we succeed in t r a n s f e r r i n g this t r a i t to a g r o n o m i c a l l y superior genotypes. I need h a r d l y emphasize that A f r i c a , m o r e t h a n I n d i a , is badly in need o f this t e c h n o l o g y a n d w e are keenly interested i n the o u t c o m e o f y o u r researches. I w i s h y o u a l l success i n y o u r d e l i b e r a t i o n s . I h a v e g r e a t p l e a s u r e i n i n a u g u r a t i n g t h i s Working Group Meeting. 5 Cereal Nitrogen Fixation: Problems and Potentialities S. P. Wani 1 Summary Estimates of occurs at magnitudes Long-term estimating nonsymbiotic N the (ARA) are fixation as light, is of N2 fixed. in as infield of bacteria the of work are difficult 15 using techniques limitations source plant examples. involved their performance, the plant results that nitrogen fixation significance. although these are indicate to measure, N directly are discussed. to their use to are measure necessary for nitrogen fixation Acetylene-reduction in quantification assays of nitrogen studies. moisture, with fixation Techniques there about through influence but soil of agronomic employing sensitive illustrated fixation studies, areas production, temperature, Types activity be crop understanding fixation nitrogen may involved well nitrogen that very Current associative balances for amounts and problems and Possibilities breeding and of and of energy for genotype, are methods such mode of age, of improving nitrogen fixation and the and combined nitrogen the ability of cereals effect of on nitrogen to support discussed. used studies. cereal plant to isolate, Problems benefiting count, associated crops from with and test selecting inoculations are their bacteria discussed. nitrogenase for field Future highlighted. Introduction o f cereal n i t r o g e n f i x a t i o n a n d t o i n d i c a t e the areas needing further investigation. N i t r o g e n i s the m o s t l i m i t i n g n u t r i e n t i n f o o d p r o d u c t i o n . T h e b i o l o g i c a l n i t r o g e n cycle ( F i g . 1 ) i s responsible f o r a t u r n o v e r of 10 8 -10 9 t N a - 1 on e a r t h i n w h i c h b i o l o g i c a l l y f i x e d N 2 i s one o f the i n p u t s . M i c r o b i o l o g y of the Association N o n s y m b i o t i c a n d associative N 2 f i x a t i o n i s c o n s i dered to occur at magnitudes that m a y be of agro- Since W i n o g r a d s k y (1893) established t h a t C l o s t r i - n o m i c significance ( D o b e r e i n e r 1978, K n o w l e s 1976, dium pasteurianum c o u l d M o o r e 1966, D a r t a n d W a n i 1982, W a n i e t a l . 1984). Beijerinck The apparent potential for biological nitrogen fixa- the list (1901) fix described atmospheric the first N2 and Azotobacter, o f n i t r o g e n - f i x i n g bacteria has gone o n t i o n ( B N F ) associated w i t h cereals exceeds its p r e - i n c r e a s i n g ( B a l a n d r e a u 1983). M a n y d i f f e r e n t g e n - sent u t i l i z a t i o n , b u t k n o w l e d g e i n t h i s f i e l d i s n o t era a n d strains o f N 2 - f i x i n g bacteria c a n b e i s o l a t e d e n o u g h t o e x p l o i t these associations f u l l y . T h e r e f r o m the s o i l a n d the r o o t s . T h e d i f f i c u l t y i n s t u d y i n g a p p e a r t o b e m a n y ways o f i n c r e a s i n g t h e c o n t r i b u - the e c o l o g y o f N 2 - f i x i n g b a c t e r i a i s i n d e v i s i n g selec- t i o n f r o m cereal n i t r o g e n f i x a t i o n . T h e a i m o f t h i s t i v e m e d i a a n d n e w i s o l a t i o n procedures t o c o u n t the r e v i e w i s t o evaluate the p r o b l e m s a n d p o t e n t i a l i t i e s populations of particular organisms. Each labora- 1. Microbiologist, Pearl Millet Improvement Program, I C R I S A T , Patancheru, A.P. 502 324, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 7 N2 Denitrification Fixation Protein in Ammonification NO-3 NH3 organisms Nitrification NO-2 Assimilation F i g u r e 1. T h e nitrogen cycle. t o r y uses a p a r t i c u l a r set o f t e c h n i q u e s f o r g r o w i n g , s a m p l i n g , distance o f r o o t s f r o m t h e c r o w n , a n d isolating, a n d c o u n t i n g N 2 - f i x i n g bacteria. Conse- d i f f i c u l t y in recovering all the roots f r o m the soil. q u e n t l y , e a c h l a b o r a t o r y has a t e n d e n c y t o c o n s i d e r H o w e v e r , expressing t h e n u m b e r o f b a c t e r i a p e r u n i t t h a t its o w n b a c t e r i u m has a d o m i n a n t r o l e i n N 2 mass o f a b o v e - g r o u n d p l a n t p a r t s p r o d u c e d m a y fixation. give a better understanding and uniformity in expression. Isolation and Enumeration of N2-fixing Bacteria Testing for N2-fixing Efficiency T o o v e r c o m e t h e p r o b l e m o f selective c a r b o n s o u r c e Sometimes reports of new organisms capable of fix- in the m e d i u m as far as rhizosphere bacteria are i n g a t m o s p h e r i c n i t r o g e n are l a t e r p r o v e d t o b e c o n c e r n e d , use o f c a r b o n sources s i m i l a r t o t h o s e u n t r u e because t h e c u l t u r e u n d e r test m a y n o t b e present i n t h e r h i z o s p h e r e , i.e, r o o t e x u d a t e s , w o u l d p u r e a n d even s l i g h t c o n t a m i n a t i o n b y a N 2 - f i x i n g b e better. Use o f t h e ' s p e r m o s p h e r e m o d e l ' i s p r o m i s - organism could be sufficient to indicate fixation. i n g f o r counting and isolating N 2 - f i x i n g bacteria G r o w t h on a N-free m e d i u m is n o t a sufficient criter- ( T h o m a s - B a u z o n e t a l . 1982). i o n f o r n i t r o g e n a s e a c t i v i t y ( H i l l a n d P o s t g a t e 1969) A n o t h e r d i f f i c u l t y i n c o m p a r i n g t h e results o f v a r - as some of the N-scavenging bacteria can g r o w on ious groups is the w a y of expressing the n u m b e r of traces o f N present i n t h e m e d i u m a n d s o m e N 2 - b a c t e r i a . T h e s e are g e n e r a l l y expressed p e r g of fixing bacteria cannot g r o w on a m e d i u m completely rhizospheric soil. However, there is no clear d e f i n i - free o f c o m b i n e d N ( W a t a n a b e a n d B a r r a q u i o 1979). t i o n o f r h i z o s p h e r i c s o i l . E x p r e s s i n g t h e results p e r The 15 N 2 i n c o r p o r a t i o n , even t h o u g h a d e f i n i t i v e test u n i t mass o f r o o t does n o t solve t h e p r o b l e m e i t h e r , t o m e a s u r e N 2 f i x a t i o n i s t o o e x p e n s i v e a n d gener- c o n s i d e r i n g t h e d i f f e r e n t types o f r o o t s f o u n d o n t h e a l l y C 2 H 2 r e d u c t i o n a s a n i n d i r e c t assay t e c h n i q u e i s s a m e p l a n t , s a m p l i n g m e t h o d , age o f t h e p l a n t a t u s e d . T h i s t e c h n i q u e poses p r o b l e m s d u e t o t h e s h o r t 8 exposure p e r i o d t o C 2 H 2 r e d u c t i o n a n d also due t o adsorption o x i d a t i o n o f C 2 H 4 b y s o m e b a c t e r i a ( K n o w l e s 1981). fluorescens. M a n y N 2 - f i x i n g b a c t e r i a express n i t r o g e n a s e a c t i v - and ity o n l y w h e n they are i n sufficient numbers ( H a u k e - tetrazolium-reducing bacteria in the roots of maize, of Rhizobium Electron millet roots trifolii and micrographs and optical Pseudomonas of P. maximum micrographs of P a c e w i c z o w a e t a l . 1970, B r o u z e s e t a l . 1971) a n d i n w h e a t , a n d s o r g h u m suggest t h a t i n f e c t i o n o f t h e enumeration experiments w i t h high dilutions this c o r t e x a n d stale o f these r o o t s b y Azospirillum i s a t c a n t a k e as l o n g as 3 weeks ( V i l l e m i n et a l . 1974). T h e t h e p o i n t o f emergence o f l a t e r a l r o o t s ( P a t r i q u i n established n i t r o g e n a s e a c t i v i t y c a n b e suppressed a n d D o b e r e i n e r 1978; U m a l i - G a r c i a e t a l by carbon or oxygen limitation so that the overall 1980; M a g a l h a s e e t a l . 1979). B a c t e r i a h a v e b e e n period f o r expression of activity is very short. This o b s e r v e d i n t o r n o r d i s r u p t e d r o o t cells ( S c h a n k e t difficulty can be overcome by waiting long enough a l . 1983) a n d also o b s e r v e d i n t e r c e l l u l a r l y b u t n o t for each tube containing N2-fixing bacteria to 1978, w i t h i n l i v i n g r o o t cells ( U m a l i - G a r c i a e t a l . 1980). d e v e l o p a s u f f i c i e n t l y large p o p u l a t i o n a n d t h e n a d d i n g fresh m e d i u m , a n d i n c u b a t i n g under C 2 H 2 ( V i l l e m i n e t a l . 1974). A n o t h e r p o s s i b i l i t y i s t o i n c u bate t h e r e p l i c a t e tubes u n d e r 1 % C 2 H 2 a s s o o n a s Estimates of Nonsymbiotic and t h e y are i n o c u l a t e d ( B a l a n d r e a u 1983). Associative N 2 Fixation S o m e o f t h e m o s t - c o n v i n c i n g evidence t h a t n o n s y m - Identification of Bacteria biotic nitrogen fixation may be important under f i e l d c o n d i t i o n s has c o m e f r o m n i t r o g e n - b a l a n c e A d e t a i l e d i d e n t i f i c a t i o n of b a c t e r i a i s o l a t e d is g e n - studies. erally overlooked by soil microbiologists. As i n d i - Rothamsted, England estimated nonsymbiotic nit- cated r o g e n f i x a t i o n u p t o 18-20 k g N h a - 1 a - 1 i n p l o t s by Balandreau (1983) "many soil The long-term continuously the receiving no nitrogen fertilizer, a n d m o r e t h a n 39 kg generic level based o n c o m m o n tests, e.g., o r g a n i s m s N ha - 1 in p l o t s left to d e v e l o p n a t u r a l v e g e t a t i o n f o r m i n g a pellicle in malate semisolid m e d i u m are ( J e n k i n s o n 1977, W i t t y e t a l . 1977) ( T a b l e 1). identified up to w h e a t since 1943 at Sometimes are to studies m i c r o b i o l o g i s t s are n o t v e r y k e e n o n t a x o n o m y " . organisms cropped N-balance and c a l l e d Azospirillum, w h e n there a r e o t h e r N 2 - f i x i n g N i t r o g e n - b a l a n c e studies a r e a l s o a v a i l a b l e i n t h e b a c t e r i a such a s some m e m b e r s o f e n t e r o b a c t e r i a - tropics. In the old long-term, permanent-manurial ceae a n d species o f Pseudomonas c a p a b l e o f f o r m - e x p e r i m e n t a t C o i m b a t o r e , I n d i a , t h e r e was a net i n g pellicle i n s e m i s o l i d m a l a t e m e d i u m . E i t h e r w a y , gain of N in b o t h c o n t r o l (no fertilizer) plots and workers should not overlook detailed t a x o n o m y and plots w i t h N- and P- fertilizer application ( K r i s h n a - should avoid n a m i n g u n c o n f i r m e d cultures (Balan- m o o r t h y a n d R a v i k u m a r 1973). S e v e r a l p o t e x p e r i - d r e a u 1983). ments w i t h s o r g h u m , pearl millet, finger millet Occurrence of N2-fixing Bacteria T a b l e 1 . S o m e estimates o f nitrogen f i x e d i n association w i t h cereals a n d grasses based on N balance. Large populations of heterotrophic bacteria capable o f g r o w i n g o n N - f r e e m e d i a exist i n soils o f t h e Nitrogen fixed Crop ( k g N ha-1 a - 1 ) Reference s e m i - a r i d t r o p i c s ( W a n i , i n press). I n g e n e r a l , m u l t i p l i c a t i o n o f s u c h b a c t e r i a a s w e l l a s selective p r o l i f e r a t i o n o f p a r t i c u l a r types occurs i n t h e r h i z o s p h e r e . Nitrogen-fixing bacteria have been observed Maize 11.2 Wheat 18-23 D a r t a n d D a y 1975 Rice 30-60 F i r t h e t a l . 1973 to K o y a m a a n d A p p 1979 a d h e r e v e r y closely t o t h e r o o t s a n d c o n s i d e r a b l e n u m b e r s w e r e o b t a i n e d f r o m r o o t pieces s u r f a c e sterilized in 1% c h l o r a m i n e T f o r 1 h ( D a r t a n d W a n i W a l c o t t e t a l 1977 Legume-free grass s o d 1982). W h e t h e r t h e a s s o c i a t i o n b e t w e e n b a c t e r i a a n d Grasses plant roots is external or the bacteria invade the r o o t Noncultivated tissues i s n o t c l e a r l y k n o w n . U m a l i - G a r c i a e t a l . (1980) f o u n d t h a t a d s o r p t i o n o f t h r e e s t r a i n s o f A . brasilense t o m i l l e t r o o t h a i r s was b e t t e r t h a n t h e S m i t h e t a l . 1954 (legume-free) R y e grass Finger millet 34 S m i t h e t a l . 1954 45 W h i t e e t a l . 1945 49 D a r t a n d D a y 1975 63 P a r k e r 1957 112-148 M o o r e 1963 9 ( E l e u c i n e coracana), a n d N a p i e r b a j r a 21 ( P e n n i s e tum purpureum x P. americanum) h a v e s h o w n s u b - I n t h e t r o p i c s , h i g h rates o f d i n i t r o g e n f i x a t i o n associated w i t h grasses have been r e p o r t e d . F o r ha - 1 a-1 s t a n t i a l p o s i t i v e balances f o r N ( D a r t a n d W a n i e x a m p l e , 90 kg N 1982; W a n i , i n press; U p a d h y a y a e t a l . 1986). A F l u g g e ( D o b e r e i n e r e t a l . 1972), 2 k g N h a - 1 d - 1 w i t h w i t h Paspalum notatum p o s i t i v e N b a l a n c e o v e r a 4 - m o n t h p e r i o d f o r the s o i l Zea mays L . ( v o n B u l o w a n d D o b e r e i n e r 1975), 3 - 6 3 p l a n t system i n p o t e x p e r i m e n t s w i t h f i n g e r m i l l e t k g N h a - 1 season - 1 w i t h f l o o d e d rice ( Y o s h i d a a n d was f o u n d , w h i c h e x t r a p o l a t e d t o a g a i n o f 1 1 2 - 1 4 8 A n c a j a s 1973), a n d 70 kg N ha - 1 a - 1 a l s o w i t h rice k g N h a - 1 ( M o o r e 1963). S i m i l a r l y , p o s i t i v e N b a l - ( B a l a n d r e a u et a l . 1976). T h e highest rates (2 kg N ance f o r f l o o d e d soils i n p o t s p l a n t e d t o rice h a v e ha-1 d-1) of d i n i t r o g e n f i x a t i o n in the tropics were been r e p o r t e d ( A p p e t a l . 1980). T h e s u b s t a n t i a l o b t a i n e d b y u s i n g p r e i n c u b a t e d e x c i s e d - r o o t assays c o n t r i b u t i o n o f B N F t o t h e N e c o n o m y o f t h e rice ( v o n B u l o w a n d D o b e r e i n e r 1975, D o b e r e i n e r 1978). c r o p is w e l l d o c u m e n t e d . T h e s h o r t f a l l s i n this assay m e t h o d a r e discussed Azolla-Anabaena associa- t i o n / b l u e - g r e e n algae, a n d p h o t o s y n t h e t i c b a c t e r i a account f o r substantial contributions to total N under A R A methods. T h e r e are f e w r e p o r t s ( T a b l e 3 ) i n d i c a t i n g i n c o r - i n p u t f o r t h e rice c r o p ( V e n k a t a r a m a n 1975, W a t a - poration of n a b e 1 9 8 1 , S i n g h 1981). A t t h e I n t e r n a t i o n a l R i c e unequivocal 15 N 2 i n t o cereal p l a n t s t h a t p r o v i d e a n p r o o f of biological nitrogen fixation Research Institute ( I R R I ) , 23 rice crops were g r o w n ( R u s c h e l e t a l . 1975, D e - P o l l i e t a l . 1977, I t o e t a l . o v e r 1 1 years w i t h o u t a d d i t i o n o f N w i t h n o a p p a r - 1980, G i l l e r et a l . 1984). T h e r e is a need to c o l l e c t -1 m o r e d a t a i n the t r o p i c s t o e s t i m a t e t h e n i t r o g e n c r o p - 1 were removed t h r o u g h g r a i n a n d straw ( W a t - f i x a t i o n w i t h d i f f e r e n t cereals. T h i s c a n b e a c h i e v e d ent d e c l i n e in s o i l N f e r t i l i t y . A b o u t 4 5 - 6 0 kg N ha a n a b e a n d L e e 1977). U s i n g 15 N2 incorporation by r h i z o s p h e r i c s o i l , i t has been d e m o n s t r a t e d t h a t r h i - by c o n d u c t i n g l o n g t e r m N-balance trials in the field a n d also by 15 N 2 i n c o r p o r a t i o n studies. zospheric soil fixed f o u r - f o l d higher nitrogen t h a n the nonrhizospheric soil. T h e 15 N2 incorporation in t h e r h i z o s p h e r e also v a r i e d s i g n i f i c a n t l y d e p e n d i n g M e t h o d o l o g y for Measurement of o n t h e v a r i e t y ( C h a r y u l u e t a l . 1981). N2 Fixation G e n e r a l l y , l o w rates o f d i n i t r o g e n f i x a t i o n ( < 6 k g N h a - 1 season - 1 ) have been r e p o r t e d f o r grasses, i n T e c h n i q u e s used f o r m e a s u r e m e n t o f n i t r o g e n f i x a - t e m p e r a t e c l i m a t e s ( T a b l e 2 ) ( N e l s o n e t a l . 1976, t i o n associated w i t h f i e l d - a n d p o t - g r o w n p l a n t s c a n T j e p k e m a a n d B u r r i s 1976, Pedersen e t a l . 1978). b e b r o a d l y classified a s d i r e c t a n d i n d i r e c t . H i g h e r f i x a t i o n rates o f u p t o 3 3 k g N h a - 1 i n 100 days f o r Cynodon dactylon ( L . ) pers. w e r e r e p o r t e d f r o m T e x a s ( W e a v e r e t a l . 1980). F r o m t h e O r e g o n Direct Techniques w e t l a n d s Juncus ballicus p l a n t s w e r e r e p o r t e d to fix u p t o 0.8 k g N h a - 1 d - 1 ( T j e p k e m a a n d E v a n s 1976). T o t a l N by Kjeldahl analysis. T o t a l - N measure- T a b l e 2 . S o m e estimates o f nitrogen f i x e d , based o n acetylene-reduction activity ( A R A ) . Plant Period kg N Grasses i n C a l i f o r n i a Season <6 Oklahoma Oregon ha-1 Reference S t e y n a n d D e l w i c h e 1970 K a p u s t k a a n d R i c e 1978 Wisconsin and New Zealand L i n e a n d L o u t i t 1973 Wheat and sorghum in Nebraska N e l s o n e t a l . 1976 T j e p k e m a a n d B u r r i s 1976 P e d e r s e n e t a l . 1978 Sporobolis heterolepsis Cynodon Juncus dactylon balticus Paspalum Zea Oryza notatum mays sativa Pasture soils 10 Year 100 D a y s Day Season Day Season 9 33 0.8 90 T j e p k e m a a n d B u r r i s 1976 W e a v e r e t a l . 1980 T j e p k e m a a n d E v a n s 1976 D o b e r e i n e r e t a l . 1972 2 v o n B u l o w a n d D o b e r e i n e r 1975 3.6 Y o s h i d a a n d A n c a j a s 1973 Year 70 B a l a n d r e a u e t a l . 1976 Year 32 K o c h a n d O y a 1974 Table 3. Incorporation of I 5 N 2 b y nonlegumes. -1 % Ndfa Incubation N fixed (µg p l a n t ) time Shoot Root D.decumbens 78 h 0.01 0.12 . P. 30 h 0.001 0.02 - Crop S. 0. S. P. notatum officinarum Soil Shoot Root Soil Reference 1 7 - D e - P o l l i e t a l . 1977 0 1 - D e - P o l l i e t a l . 1977 R u s c h e l e t a l . 1975 30 h 4.66 4.14 160 52 - 24 h 0.001 0.03 - 0 3 - R u s c h e l et a l . 1978 72 h 0.15 0.27 - 124 46 - R u s c h e l e t a l . 1981 I t o et a l . 1980 sativa vulgare americanum 7d 3.26 1.43 - 961 1005 - 7d 0.08 0.37 0.07 65 44 510 3d 0.003 0.35 0.01 6 95 16 E s k e w e t a l . 1981 3d 0.406 0.242 - 33 13 - G i l l e r e t a l . 1984 3d 0.05 0.089 - 1.4 1.1 - 2.0 1.5 6.01 Y o s h i d a a n d Y o n e y a m a 1980 Grown further 5d ments w i t h the K j e l d a h l m e t h o d w i t h small subsam- bance o f r h i z o s p h e r i c i n t e g r i t y a n d u n r e p r e s e n t a t i v e pies of a p a r t i c u l a r system enable N - a c c r e t i o n to be n i t r o g e n u p t a k e b y the p l a n t . These p r o b l e m s have However, as the K j e l d a h l been o v e r c o m e r e c e n t l y w i t h a s i m p l e , i n e x p e n s i v e analysis does n o t d i s t i n g u i s h N f r a c t i o n w i t h i n t h e apparatus developed at I C R I S A T Center f o r expos- t o t a l , i t i s essential t o c o n s t r u c t a n N - b a l a n c e sheet i n g the p l a n t s t o for estimating N input f r o m N2 fixation. Under field c a n b e used t o establish the r a t i o o f C 2 H 2 r e d u c t i o n c o n d i t i o n s such e x p e r i m e n t s are d i f f i c u l t t o c o n d u c t , to N2 a s t h e y need t o r u n f o r m o r e t h a n o n e season a n d ments. d e t e r m i n e d w i t h ease. 1 5 fixation It is N 2 ( G i l l e r e t a l . 1984). T h i s m e t h o d b u t i s n o t relevant t o f i e l d e x p e r i obviously difficult 1 5 extrapolate r e q u i r e a r i g o r o u s s a m p l i n g o f t h e s o i l i f t h e y are t o amounts o f nitrogen f i x e d from r e l i a b l y measure s o i l - N changes of 2 0 - 5 0 kg N ha - 1 studies o v e r a s h o r t p e r i o d t o a m o u n t s f i x e d o n a p e r a-1 p l a n t o r p e r hectare basis. ( V a l l i s 1973). A l s o , e s t i m a t i o n o f N 2 loss b y 2 incorporation T h e above l i m i t a t i o n can be overcome using the denitrification is difficult under field conditions, a l t h o u g h i t i s believed t o b e s m a l l u n d e r n o r m a l f i e l d N to 15 N isotope-dilution technique. Using this technique s i t u a t i o n s w i t h l o w doses o f N f e r t i l i z e r a p p l i c a t i o n s lines o f s o r g h u m a n d m i l l e t g r o w n i n p o t s c o n t a i n i n g ( G r e e n l a n d 1962). T h e l y s i m e t e r , a l t h o u g h a dis- v e r m i c u l i t e were screened f o r t h e i r p o t e n t i a l t o f i x t u r b e d system, enables m e a s u r e m e n t s o f N-accre- N 2 ( G i l l e r e t a l . , 1986). I n s u c h e x p e r i m e n t s , e x t r a t i o n a n d loss w i t h m o r e p r e c i s i o n . H o w e v e r , i t i s care has t o b e t a k e n t o p r e v e n t t h e systems f r o m d i f f i c u l t to regulate the water content of lysimeters, getting contaminated w i t h because the s o i l w i t h i n the l y s i m e t e r i s d e t a c h e d such a s w a t e r o r the g r o w t h m e d i u m . I 4 N f r o m o t h e r sources, A n a l t e r n a t i v e m e t h o d t o measure N 2 f i x a t i o n f r o m the w a t e r t a b l e . w o u l d b e t o d e t e r m i n e differences i n n a t u r a l a b u n T h e use of N isotopes. T h e use of i s o t o p e l 3 N is r e s t r i c t e d because o f its s h o r t h a l f - l i f e o f 1 1 m i n . T h e stable i s o t o p e 15 N is preferred f o r measuring n i t r o - dance o f I 5 N a r i s i n g f r o m mass d i s c r i m i n a t i o n effects r e s u l t i n g f r o m N 2 f i x a t i o n , N H 4 a s s i m i l a t i o n , and I 5 N t r a n s p o r t . B u t a s t h e δ I 5 N has been r e p o r t e d g e n f i x a t i o n . I t has been used w i t h sugarcane, t r o p i - to vary considerably w i t h soil depth (Karamanos c a l grasses, a n d r i c e , u s i n g c h a m b e r s t o enclose b o t h a n d R e n n i e 1980), its use t o d e t e r m i n e N 2 f i x a t i o n t h e p l a n t s a n d g r o w t h m e d i a ( R u s c h e l e t a l 1975, may be limited. D e - P o l l i e t a l . 1977, I t o e t a l . 1980). M a j o r d i f f i c u l ties w i t h s u c h e x p e r i m e n t s are t h e e n c l o s u r e o f p l a n t s a n d changes i n e n v i r o n m e n t a l c o n d i t i o n s Indirect Techniques w i t h t h e necessary l o n g - t e r m i n c u b a t i o n s r e q u i r i n g complex control equipment. Incubation chambers A c e t y l e n e - r e d u c t i o n assays ( A R A ) . have also been e v a c u a t e d t o r e m o v e t h e a i r b e f o r e reduces n u m e r o u s c h e m i c a l analoges o f n i t r o g e n , Nitrogenase i n t r o d u c t i o n o f gas m i x t u r e ( D e - P o l l i e t a l . 1977; small molecules c o n t a i n i n g a t r i p l e b o n d ( T a b l e 4). R u s c h e l e t a l . 1975, 1981). T h i s c o u l d l e a d t o d i s t u r - A l l b i o l o g i c a l d i n i t r o g e n - f i x i n g systems tested t o 11 T a b l e 4. S o m e substrates reduced by nitrogenase. Substrate Products Dinitrogen N=N NH3 Ammonia Acetylene HC=CH H2C=CH2 Ethylene Hydrogen cyanide H-C=N CH4+NH3 Methane, M e t h y l isocyanide CH3-N=C CH3NH2+CH4 Methylamine, H y d r o g e n azide H-N-N=N NH3+N2 A m m o n i a , nitrogen Nitrous oxide N=N-O N2+H20 Nitrogen, Hydrogen ion H30+ H2+H20 Hydrogen, ammonia methane1 water water 1. Ethylene, ethane, and propylene formed as minor products. A l l reductions require A T P . For more detailed discussion and references, see Postgate (1972). date have also reduced acetylene to ethylene. T h e use o f f l a m e i o n i s a t i o n detector gas c h r o m a t o g r a p h y t o measure the ethylene p r o d u c e d was first p r o p o s e d b y H a r d y a n d K n i g h t (1967). T h e A R A i s a s i m p l e b u t i n d i r e c t m e t h o d t o test nitrogenase a c t i v i t y ( B e r gersen 1970). T h e A R A i s a b o u t 10 3 times m o r e sensitive t h a n I 5 N techniques a n d 10 6 t i m e s m o r e sensitive t h a n the K j e l d a h l m e t h o d . E t h y l e n e c a n b e separated c o m p l e t e l y f r o m C 2 H 2 , C H 4 , a n d a l l o t h e r gases a n d C 2 H 2 a n d C 2 H 4 are easily a n d r a p i d l y detected u s i n g gas c h r o m a t o g r a p h y . A s the A R A does n o t measure transfer o f f i x e d N 2 f r o m the d i a z o t r o p h t o t h e associated c r o p p l a n t , i t c a n o n l y i d e n t i f y w h e t h e r o r n o t nitrogenase a c t i v i t y i s p r e sent in a p a r t i c u l a r system. E x p e r i m e n t s w i t h 1 5 N are s t i l l necessary t o d e m o n s t r a t e t h a t a g r i c u l t u r a l crops d e r i v e s i g n i f i c a n t benefit f r o m N 2 f i x a t i o n . B e i n g a n i n d i r e c t assay, t h e m a j o r d i f f i c u l t y w i t h the A R A i s i n quantifying the amounts o f N 2 fixed over time. The ratio of C 2 H 2 : N 2 reducing activity cannot be assumed w i t h m u c h accuracy w i t h o u t a c t u a l tests and is seldom experimentally determined (Knowles 1981). T h e o r e t i c a l l y , three moles o f C 2 H 2 are reduced p e r m o l e o f N 2 reduced, h o w e v e r , C 2 H 2 : N 2 ratios v a r y i n g f r o m 1.5 to 6.9 f o r different systems have been r e p o r t e d (Bergersen 1970, K n o w l e s 1981). T h e s o l u b i l i t i e s o f C 2 H 2 a n d N 2 i n w a t e r are different w h i c h makes i t d i f f i c u l t t o i n t e r p r e t the C 2 H 2 data. P r o b l e m s w i t h the A R A can also b e e n c o u n t e r e d w h e n l o w N 2 - f i x a t i o n rates are measured i n soils. E t h y l e n e p r o d u c e d b y a n a e r o b i c bacteria c a n overestimate N 2 f i x a t i o n , a n d b a c t e r i a l o x i d a t i o n o f ethylene c a n reduce estimates o f f i x a t i o n (de B o n t 1976, H a r v e y a n d U n s c o t t 1978, N o h r s t e d t 1975, W i t t y 1979). T h e p r o b l e m o f endogenous p r o d u c t i o n o f ethylene i n t e r f e r i n g i n A R A c o u l d b e o v e r c o m e u s i n g l 4 C 2 H 2 ( W i t t y 1979) o r the endogenous p r o d u c t i o n o f ethylene c a n b e measured b y suppressing 12 nitrogenase a c t i v i t y u s i n g C O , w h i c h stops n i t r o genase f u n c t i o n i n g w i t h o u t d a m a g i n g the p l a n t s ( N o h r s t e d t 1983). T h e excised r o o t assay i n v o l v e s p r e i n c u b a t i o n f o r 8-18 h u n d e r reduced o x y g e n tension before e x p o sure t o C 2 H 2 ( D o b e r e i n e r a n d D a y 1975, N e y r a a n d D o b e r e i n e r 1977). D u r i n g p r e i n c u b a t i o n o f r o o t s , considerable f e r m e n t a t i o n a n d p r o l i f e r a t i o n o f bacteria takes place r e s u l t i n g i n o v e r e s t i m a t i o n o f nitrogenase a c t i v i t y ( O k o n e t a l . 1977, v a n B e r k u m a n d B o h l o o l 1980, B a r b e r et a l . 1976). H o w e v e r , i m m e d i a t e r e d u c t i o n o f acetylene b y excised r o o t s f r o m several grasses ( v a n B e r k u m a n d Sloger 1979) a n d s o r g h u m a n d m i l l e t s ( D a r t a n d W a n i 1982) has been r e p o r t e d . T h e difficulties i n c o m p l e t e recovery o f the p l a n t r o o t s u n d e r f i e l d c o n d i t i o n s c o m p l i c a t e s the i n t e r p r e t a t i o n a n d c o m p a r i s o n o f d a t a collected b y different g r o u p s . In-situ assays w i t h i n t a c t plants are c u m b e r s o m e a n d t h e measurements are d i f f i c u l t t o i n t e r p r e t ( B a l a n d r e a u a n d D o m m e r g u e s 1973, Lee et a l . 1977, T j e p k e m a a n d v a n B e r k u m 1977). S o i l - r o o t cores r e m o v e d f r o m the field at harvest have been used f o r m e a s u r i n g nitrogenase a c t i v i t y o f b o t h grasses a n d g r a i n c r o p s ( D a y e t a l . 1975b; v a n B e r k u m a n d D a y 1980; W a n i e t a l . 1983; W a n i , i n press). T h e i n i t i a l l a g p e r i o d varies f r o m 1 to 30 h w i t h s o i l cores, d e p e n d i n g o n the t i m e r e q u i r e d f o r d i f f u s i o n o f C 2 H 2 t h r o u g h different s o i l types ( v a n B e r k u m a n d D a y 1980, W a n i et a l . 1984). H o w e v e r , large p l a n t - t o p l a n t v a r i a b i l i t y has been r e p o r t e d u s i n g t h i s techn i q u e ( D a r t a n d W a n i 1982, W a n i e t a l . 1983, U p a d h y a y a 1984) a n d i t i s n o t clear w h e t h e r t h i s reflects t h e n a t u r a l v a r i a t i o n . H o w e v e r , such v a r i a b i l i t y has been r e p o r t e d w i t h in-situ assays ( B a l a n d r e a u 1979) as w e l l as i n t a c t p l a n t assays in t h e greenhouse ( W a n i e t a l . 1984). T h e factors responsible have been studied a n d as a result i m p r o v e m e n t s in the soil-core assay technique have been m a d e ( W a n i et a l . 1983). W i t h the i m p r o v e d soil-core ( p l a n t e d core) assay, w h i c h involves g r o w i n g the p l a n t i n cores i n the f i e l d f r o m 20 days after s o w i n g ( D A S ) t i l l assayed, signific a n t l y higher a c t i v i t y has been r e c o r d e d t h a n f o r the plants g r o w n a n d sampled i n the n o r m a l ( d i s t u r b e d core) w a y ( W a n i e t a l . 1983). I n some cases results o f soil-core assays are e x t r a p o l a t e d to hectare basis on the basis of core area ( N e l s o n et a l . 1976, W e a v e r et a l . 1980) or p l a n t p o p u l a t i o n (Pedersen et a l . 1978). H o w e v e r , such estimates c a n be correct o n l y w h e n factors l i k e seasonal a n d d i u r n a l v a r i a t i o n s i n the a c t i v i t y , s o i l m o i s t u r e , soil t e m p e r a t u r e , a n d f e r t i l i t y status o f the soil are t a k e n i n t o a c c o u n t . I f i t i s essential to e x t r a p o l a t e the soil-core assay results to hectare basis, t h e n several cores at each assay t i m e s h o u l d be t a k e n a n d the plants s h o u l d be assayed at regular intervals t h r o u g h o u t the g r o w t h p e r i o d . T h e a c t i v i t y at different c r o p - g r o w t h stages c a n be p l o t ted, a n d b y c o n s i d e r i n g the p e r i o d u n d e r each a c t i v i t y p o i n t , necessary corrections f o r d i u r n a l v a r i a t i o n a n d C 2 H 2 : N 2 r e d u c t i o n r a t i o can b e made. A n i n t a c t - p l a n t assay f o r p o t - g r o w n plants overcomes the p r o b l e m s faced w i t h soil-core assays, e.g., d e s t r u c t i o n o f the plants, m e c h a n i c a l d i s t u r b a n c e , tedious a n d t i m e - c o n s u m i n g operations, etc. ( W a n i et a l . 1984). U s i n g this technique, genotypes c a n be screened f o r t h e i r p o t e n t i a l t o s t i m u l a t e r h i z o s p h e r i c nitrogenase a c t i v i t y a n d / o r v a r i o u s e n v i r o n m e n t a l a n d b i o l o g i c a l factors affecting the a c t i v i t y can be studied. S i m i l a r l y , f o r t u b e - g r o w n seedlings, i n t a c t p l a n t assays have been used f o r screening lines of crops o r bacterial strains i n association w i t h the plants f o r t h e i r nitrogenase a c t i v i t y ( W a n i , i n press). These i n t a c t - p l a n t assays being n o n d e s t r u c t i v e are p r o m i s i n g f o r screening plants w i t h h i g h a c t i v i t y . Selected plants c a n t h e n be used in b r e e d i n g programs. Current Understanding about Factors Affecting Nonsymbiotic a n d Associative N 2 F i x a t i o n Energy Source T h e basic u n s o l v e d p r o b l e m c o n c e r n i n g associative n i t r o g e n f i x a t i o n i s the s u p p l y o f a n adequate energy source. T h e types a n d n u m b e r s o f m i c r o o r g a n i s m s present i n the rhizosphere are largely d e t e r m i n e d b y energy sources a v a i l a b l e t h r o u g h r o o t exudates a n d p l a n t debris ( R o v i r a 1965). R o o t exudates p l a y a n i m p o r t a n t r o l e f o r rhizo s ph eric m i c r o f l o r a o f y o u n g seedlings. As r o o t s age a n d die, cell debris becomes the d o m i n a n t energy source. P l a n t - r o o t e x u d a t i o n is affected by p l a n t species, c u l t i v a r , p l a n t age, l i g h t , t e m p e r a t u r e , p l a n t n u t r i t i o n , soil m o i s t u r e , m i c r o o r ganisms, a n d r o o t d a m a g e ( R o v i r a 1965, 1969). These are generally the same factors t h a t affect associative n i t r o g e n f i x a t i o n ( D o b e r e i n e r a n d D a y 1975; B a l a n d r e a u et a l . 1978; W a n i et a l . 1983, 1984). T h e t o t a l loss o f c a r b o n f r o m r o o t s i s m u c h greater w h e n c o m p a r e d t o the organic c a r b o n e x u d e d ( R o v i r a 1969, M a r t i n 1977, B a r b e r a n d M a r t i n 1976). U s i n g g r o w t h a n d nitrogenase a c t i v i t y o f a z o s p i r i l l a a s c r i t e r i a , q u a l i t a t i v e differences i n the r o o t exudates o f s o r g h u m ( I C R I S A T 1983) a n d m i l l e t genotypes ( R a o a n d V e n k a t e s w a r l u 1986) have been s h o w n . Photosynthesis Several-fold higher nitrogenase a c t i v i t y has been recorded w i t h intact s o r g h u m plants, a s c o m p a r e d t o those whose tops were r e m o v e d p r i o r to assay ( W a n i et a l . 1984). H o w e v e r , it is n o t clear w h e t h e r this effect is d i r e c t l y related to p h o t o s y n t h a t e s u p p l y . D i u r n a l v a r i a t i o n s i n nitrogenase a c t i v i t y associated w i t h grasses, s o r g h u m , m i l l e t , finger m i l l e t , Panicum maximum, a n d Lolium perenne have been r e p o r t e d ( D o b e r e i n e r a n d D a y 1975; B a l a n d r e a u 1975; W a n i et a l . 1983; W a n i , in press; U p a d h y a y a e t a l . 1986). H o w e v e r , these studies do n o t s h o w a n y clear r e l a t i o n s h i p between photosynthesis a n d r o o t associated N 2 f i x a t i o n because f l u c t u a t i o n s i n s o i l t e m p e r a t u r e c o i n c i d e w i t h the cycle o f nitrogenase a c t i v i t y d u r i n g the d a y - n i g h t cycle ( D a r t a n d W a n i 1982, v a n B e r k u m a n d B o h l o o l 1980). F u r t h e r e x p e r i m e n t s c o n d u c t e d a t I C R I S A T Center w i t h c o n t r o l l e d soil t e m p e r a t u r e d i d n o t s h o w d i u r n a l v a r i a t i o n i n nitrogenase a c t i v i t y o f i n t a c t s o r g h u m a n d m i l l e t plants ( W a n i , u n p u b l i s h e d results). S i g n i f i c a n t changes i n the rate o f root-associated C 2 H 2 r e d u c t i o n w i t h i n 1 5 m i n o f t r a n s f e r r i n g plants f r o m s u n l i g h t i n t o the d a r k or vice versa have been r e p o r t e d ( V a n B e r k u m a n d Sloger 1981), w h i c h s u g gests a s t r o n g l i n k between nitrogenase a c t i v i t y a n d l i g h t incidence i n rice. H o w e v e r , the nitrogenase a c t i v i t y o f the a b o v e - r e p o r t e d crops m a y b e i n d i rectly related to photosynthesis, as is evident f r o m studies o f D o b e r e i n e r e t a l . (1973) w h o f o u n d t h a t even t h o u g h n o d i u r n a l cycle o f nitrogenase was observed in P. notatum, p r o l o n g e d i n c u b a t i o n s of plants i n the d a r k reduced the a c t i v i t y . 13 Seasonal Variation Combined Nitrogen and Phosphorus Seasonal v a r i a t i o n s i n the nitrogenase a c t i v i t y o f forage grasses, c o r n , s o r g h u m , m i l l e t , Setaria italica, a n d Eleucine coracana have been r e p o r t e d u s i n g excised-root or soil-core assays ( D o b e r e i n e r a n d D a y 1975, v o n B u l o w a n d D o b e r e i n e r 1975, B a l a n d r e a u 1975, K a p u l n i k et a l . 1981, W a n i et a l . 1983, U p a d h y a y a e t a l . 1986). W i t h c o r n m a x i m u m a c t i v i ties were r e c o r d e d at the 7 5 % s i l k i n g stage ( v o n B u l o w a n d D o b e r e i n e r 1975), a n d w i t h s o r g h u m a n d m i l l e t a t t h e late f l o w e r i n g / e a r l y g r a i n - f i l l i n g stage. T h e a c t i v i t y was related t o ontogenetic d e v e l o p m e n t o f the p l a n t ( W a n i e t a l . 1983). W h i l e s t u d y i n g seas o n a l p r o f i l e s o f nitrogenase a c t i v i t y , f e r t i l i z e r n i t r o gen s h o u l d be t a k e n i n t o c o n s i d e r a t i o n as it has been s h o w n t h a t higher rates o f N a p p l i c a t i o n i n h i b i t the nitrogenase a c t i v i t y associated w i t h cereals. T h e presence of c o m b i n e d N affects the e n z y m e nitrogenase. M a n i p u l a t i n g the times a n d m e t h o d s o f N a p p l i c a t i o n a n d selection o f the p r o p e r f o r m o f f e r t i l i z e r N , l i k e slow-release f o r m u l a t i o n s , m a y h e l p t o harness m a x i m u m n i t r o g e n f i x a t i o n associated w i t h these crops, w i t h o u t r e d u c i n g yields. Phosphorus fertilizer application is required for o p t i m u m growth and nitrogen-fixing activity by a z o l l a a n d blue-green algae ( D e a n d M a n d a l 1956, W a t a n a b e et a l . 1977). It is necessary to s t u d y the effect of levels a n d f o r m s of P a n d K a n d o t h e r elements o n nitrogenase a c t i v i t y o f cereals. Temperature A l i n e a r response to t e m p e r a t u r e has been observed f r o m 10°C to 35°C for C 2 H 2 reduction activity of Clostridium pasteurianum in c u l t u r e a n d f o r Azotobacter cell-free nitrogenase ( H a r d y et a l . 1968). Increased C 2 H 2 r e d u c t i o n over t i m e b y grass cores was a t t r i b u t e d t o w a r m i n g o f the s o i l ( N e l s o n e t a l . 1976). W i t h i n t a c t m i l l e t a n d s o r g h u m plants g r o w n i n p o t s , s i g n i f i c a n t l y h i g h e r C 2 H 2 r e d u c t i o n activities were r e c o r d e d a t 34° a n d 4 0 ° C t h a n w i t h the plants i n c u b a t e d a t 2 9 ° C ( W a n i e t a l . 1984). Soil Moisture T h e rate o f nitrogenase a c t i v i t y b y the s o i l cores was p o s i t i v e l y correlated w i t h s o i l m o i s t u r e a n d the rate o f acetylene r e d u c t i o n increased e x p o n e n t i a l l y w i t h linear increases i n s o i l m o i s t u r e ( D a y e t a l . 1975a). S i m i l a r c o r r e l a t i o n s have been r e p o r t e d i n s o i l cores o f grasslands (Vlassak e t a l . 1973) a n d s o r g h u m a n d m i l l e t ( W a n i e t a l . 1983), a s also i n p o t - g r o w n s o r g h u m a n d m i l l e t plants ( W a n i e t a l . 1984). I t i s d i f f i c u l t t o p i n p o i n t h o w s o i l m o i s t u r e affects nitrogenase a c t i v i t y as m a n y p l a n t processes t h a t m a y influence t h i s a c t i v i t y are also affected b y s o i l m o i s t u r e levels. D a y e t a l . (1975a) h y p o t h e s i z e d t h a t a s the level o f anaerobiosis i n s o i l c r u m b s a n d t h e rhizosphere increases w i t h h i g h e r s o i l m o i s t u r e , t h e p O 2 affects nitrogenase a c t i v i t y . 14 Plant Breeding T h e m a j o r t h r u s t i n N 2 f i x a t i o n has been m i c r o b i o l o g i c a l i n o r i e n t a t i o n . E v e n t h o u g h the role o f p l a n t genotype i n N 2 f i x a t i o n has been recognized, there i s a p a u c i t y o f i n f o r m a t i o n o n the n a t u r e o f the genetic i n v o l v e m e n t o f the host. T h e use o f n o n d e s t r u c t i v e i n t a c t - p l a n t assays f o r m e a s u r i n g C 2 H 2 r e d u c t i o n a c t i v i t y i n the greenhouse c o u p l e d w i t h 1 5 N isotope d i l u t i o n technique a n d f u r t h e r testing f o r y i e l d p o t e n t i a l u n d e r l o w - f e r t i l i t y field c o n d i t i o n s seems a prospective p r o p o s a l f o r such studies. Before b r e e d i n g m e t h o d s can p r o d u c e cereal lines w i t h increased p o t e n t i a l f o r n i t r o g e n f i x a t i o n , i t i s essential to u n d e r s t a n d the associations g o v e r n i n g N 2 f i x a t i o n t r a i t s i n p a r t i c u l a r crops. T h e r e are several reports i n d i c a t i n g differences a m o n g s t genotypes o f s o r g h u m , m i l l e t , m i n o r m i l l e t s , rice a n d forage grasses, a n d wheat, ( B o u t o n et a l . 1979; D o b e r e i n e r 1966, 1970,1977; v o n B u l o w a n d D o b e reiner 1975; Pederson et a l . 1978; W a t a n a b e et a l . 1979; C h a r y u l u e t a l . 1981; D a r t a n d W a n i 1982; U p a d h y a y a e t a l . 1986; W a n i , i n press). A t I C R I S A T Center, 1 8 o u t o f 248 m i l l e t lines tested s h o w e d s i g n i f i c a n t l y h i g h nitrogenase a c t i v i t y ( > 4 6 0 n m o l C 2 H 4 1 5 c m d i a m core - 1 h - 1 ) a n d t w o lines, G a m 7 3 a n d J 1407, were consistently active o v e r several seasons. S i m i l a r l y , 1 5 o u t o f 334 lines o f f i e l d - g r o w n s o r g h u m were consistently active i n three o r m o r e seasons t h o u g h n o t o n each assay occasion. T h i s m a y have been due t o u n f a v o r a b l e s o i l m o i s t u r e o r o t h e r c o n d i t i o n s d u r i n g t h e season. I n t h e E x - B o r n u p o p u l a t i o n o f m i l l e t , large p l a n t t o - p l a n t v a r i a b i l i t y f o r s t i m u l a t i n g nitrogenase a c t i v i t y r a n g i n g f r o m 0 t o 1900 n m o l C 2 H 4 p l a n t - 1 h - 1 has been observed u s i n g i n t a c t p o t assay t e c h n i q u e . W o r k o n s t a b i l i z i n g the character o f h i g h a n d l o w nitrogenase a c t i v i t y i n this p o p u l a t i o n i s u n d e r w a y t o s t u d y the i n h e r i t a n c e o f t h i s t r a i t ( I C R I S A T 1983). T h e r e is an urgent need to pursue b r e e d i n g research f o r p r o d u c i n g lines w i t h increased p o t e n t i a l for nitrogen fixation. C r o p Responses t o I n o c u l a t i o n T h e r e are several reports a b o u t f i e l d - a n d p o t - g r o w n cereals i n o c u l a t e d w i t h N 2 - f i x i n g bacteria a n d these have been reviewed ( B o d d e y a n d D o b e r e i n e r 1982). M a n y re p o rt s s h o w statistically significant increases i n cereal yields o r otherwise a n d also negative responses. T h e m e c h a n i s m b y w h i c h the cereals i n o c u l a t e d w i t h n i t r o g e n - f i x i n g bacteria derive the benefit i s n o t clearly u n d e r s t o o d . H o w e v e r , k n o w l edge has a c c u m u l a t e d to i n d i c a t e the possible m e c h anisms i n v o l v e d . I t has been s h o w n t h a t N 2 - f i x i n g a z o s p i r i l l a a n d Azotobacter benefit the i n o c u l a t e d plants t h r o u g h b i o l o g i c a l n i t r o g e n f i x a t i o n ( C o h e n et a l . 1980, D a r t a n d W a n i 1982, H e g a z i et a l . 1983, N u r e t a l . 1980, O k o n 1982) a n d also b y e n h a n c i n g r o o t - h a i r f o r m a t i o n a n d therefore, increased r o o t u p t a k e c a p a c i t y caused b y the secretion o f g r o w t h h o r m o n e s ( T i e n et a l . 1979, Vlassak a n d Reynders 1981). T h e extent t o w h i c h each o f the v a r i o u s p r o cesses c o n t r i b u t e s to y i e l d increase of i n o c u l a t e d cereal plants remains to be assessed. Areas of Future Research These associative N 2 - f i x i n g systems need to be u n d e r s t o o d i n d e t a i l , i n o r d e r t o f u l l y harness t h e i r p o t e n t i a l benefits. W o r k in several areas needs to be c o n t i n u e d w i t h v i g o r s o a s t o p u t the systems t o w o r k a n d i m p r o v e t h e m f u r t h e r . M o r e precise estimates o f the q u a n t i t y o f n i t r o g e n f i x e d are essential b y c o n d u c t i n g e x p e r i m e n t s using careful n i t r o g e n - b a l a n c e studies a n d l 5 N -based techniques. M e t h o d o l o g i e s f o r s t u d y i n g associative n i t r o g e n f i x a t i o n w i t h i m p r o v e d methods o f measuring nitrogenase a c t i v i t y (acetylene r e d u c t i o n ) , e.g., planted-core assays f o r field-grown p l a n t s , i n t a c t p l a n t assays f o r t u b e - g r o w n seedlings a n d p o t t e d greenhouse plants, etc., a n d greater use of 1 5 N-based techniques have been developed. H o w e v e r , this area needs m o r e a t t e n t i o n a s i t i s i m p o r t a n t f r o m the p o i n t o f v i e w o f better screening a n d selection methods. T h e r e is a need to l o o k at the b a c t e r i a l systems i n v o l v e d i n associative symbiosis systems. B y m a n i p u l a t i n g the c u l t u r e m e d i a a n d c u l t u r a l c o n d i tions like O2 concentration, p H , temperature, a n d c o n c e n t r a t i o n s o f c a r b o n a n d o t h e r n u t r i e n t sources, i t w i l l b e possible t o i d e n t i f y m a n y u n k n o w n o r g a nisms i n v o l v e d i n these associations. I n p a r t i c u l a r , w e need t o give t h o u g h t t o t h e r o l e o f n o n n i t r o g e n fixers present in the rhizosphere, as r e p o r t s have s h o w n synergism a m o n g s t n i t r o g e n f i x e r s a n d n o n n i t r o g e n fixers. These organisms m a y p l a y a n i m p o r tant role in manipulating oxygen concentration in the rhizosphere, p H changes a n d m o r e o v e r , m a y p r o v i d e energy substances b y m e t a b o l i z i n g the c o m p o u n d s w h i c h N 2 - f i x i n g bacteria c a n n o t use d i r e c t l y . M o r e critical methods of isolation and identificat i o n are r e q u i r e d , as it is a p p a r e n t t h a t there are s t i l l l i t t l e - k n o w n o r n e w f o r m s o f rhizosphere bacteria. Greater s u p p o r t f o r t a x o n o m i c studies is essential. T h e r o l e o f bacteria i n associative s y m b i o t i c systems needs to be better u n d e r s t o o d at the basic level so as t o seek i n f o r m a t i o n o n (1) l o c a t i o n o f the bacteria o n r o o t s , (2) source o f energy f o r N 2 f i x a t i o n , (3) r o l e o f p l a n t a f f i n i t y b e y o n d t h a t o f c a r b o h y d r a t e supplier, (4) ecological factors g o v e r n i n g such associations, (5) types o f bacteria i n v o l v e d , a n d (6) c r i t e r i a t o b e used f o r selecting b a c t e r i a l strains f o r f i e l d - i n o c u l a t i o n studies. A l t h o u g h several reports have i n d i c a t e d s i g n i f i cant p o s i t i v e responses t o c r o p i n o c u l a t i o n s i n f i e l d s , the d a t a are h i g h l y variable. T h e reasons f o r t h e f a i l u r e to o b t a i n p o s i t i v e responses in some cases m u s t be studied. Increased yields of field-grown crops i n o c u l a t e d w i t h N 2 - f i x i n g bacteria a n d the p o s s i b i l i t y o f i n t e r a c t i o n between host c u l t i v a r s a n d bacterial strains indicate the need to select the m o s t suitable c o m b i n a t i o n s o f host c u l t i v a r s a n d b a c t e r i a l strains. T h e r e is l i t t l e agreement on several p o i n t s . F o r e x a m p l e : (1) Is there a host specificity f o r bacteria? (2) W h i c h bacteria s h o u l d be used as i n o c u l u m a n d s h o u l d it be a single species or a m i x t u r e of bacteria? (3) W h i c h m e t h o d o f i n o c u l a t i o n s h o u l d b e used? (4) W h a t s h o u l d be the nature of a suitable carrier? (5) W h a t c r i t e r i a s h o u l d be used f o r checki n g the q u a l i t y o f the i n o c u l a n t s produced? I n f o r m a t i o n i s also essential t o p u t the system t o w o r k . M o r e emphasis needs t o b e g i v e n t o studies p e r t a i n i n g t o establishment a n d s u r v i v a l o f the a d d e d i n o c u l u m i n the rhizosphere a n d also the factors t h a t m i g h t affect the p e r f o r m a n c e o f the a d d e d i n o c u l u m . W h a t i s the exact r o l e o f i n o c u l a t e d bacteria i n increasing c r o p yields? A r e these solely due t o N 2 - f i x a t i o n o r h o r m o n a l effects o r because o f p r o t e c t i o n against p l a n t pathogens? 15 K n o w l e d g e a b o u t the a g r o n o m i c practices t h a t c o u l d help increase N 2 f i x a t i o n u n d e r n o r m a l situations, as w e l l as w i t h i n o c u l a t i o n , w i l l go a l o n g w a y i n i m p r o v i n g N 2 f i x a t i o n . T h e i n f o r m a t i o n o n the r o l e o f o r g a n i c a m e n d m e n t s , synergistic levels o f combined N , appropriate f o r m and method o f applic a t i o n o f c o m b i n e d N , effect o f o t h e r m a c r o - a n d microelements o n N 2 f i x a t i o n , and interaction w i t h o t h e r rhizospheric m i c r o o r g a n i s m s l i k e m y c o r r h i z a , w i l l help t o derive m a x i m u m possible benefits f r o m associative N 2 f i x a t i o n . Based on the available l i t e r a t u r e , it seems possible t o i m p r o v e p l a n t genotypes i n a p r a c t i c a l w a y f o r increased associative N 2 f i x a t i o n b y f o l l o w i n g r o u t i n e p l a n t b r e e d i n g m e t h o d s . N o t m a n y efforts have been d i r e c t e d i n this l i n e , p r o b a b l y because o f l a c k o f r o u t i n e assay m e t h o d s t o measure N 2 f i x a t i o n , w h i c h c a n b e used f o r selection, a n d also l a c k o f i n f o r m a t i o n o n the i n h e r i t a n c e o f this p a r t i c u l a r t r a i t i n host p l a n t . M o r e i n f o r m a t i o n i s r e q u i r e d o n basic aspects, such a s m e c h a n i s m o f i n h e r i t a n c e o f the N 2 f i x a t i o n t r a i t i n host plants, c r i t e r i a t o b e used f o r selecting lines w i t h h i g h N 2 f i x a t i o n p o t e n t i a l , a n d b r e e d i n g m e t h o d s t o b e a d o p t e d . T h r o u g h concerted efforts i n this d i r e c t i o n , i t w i l l b e possible t o select o r breed host lines w i t h increased associative N 2 - f i x i n g ability. References App, A . , Bouldin, D.R., D a r t , P . J . , a n d Watanabe, I . 1980. C o n s t r a i n t s t o b i o l o g i c a l n i t r o g e n f i x a t i o n i n soils of the t r o p i c s . Pages 319-337 in P r i o r i t i e s f o r a l l e v i a t i n g soil-related constraints to f o o d p r o d u c t i o n in the tropics. L o s Banos, Laguna, Philippines: International Rice Research I n s t i t u t e . Balandreau, J . 1975. M e s u r e d e l ' a c t i v i t e n i t r o g e n a s i q u e des m i c r o o r g a n i s m e s fixateurs libres d'azote de la r h i z o s phere d e quelques graminees. ( I n F r . S u m m a r y i n En.) R e v u e d ' E c o l o g i e e t d e B i o l o g i e d u S o l 12:273-290. B a l a n d r e a u , J . 1979. E v a l u a t i o n a n d factors a f f e c t i n g r h i zospheric n i t r o g e n f i x a t i o n . Pages 166-189 in R e c e n t advances i n b i o l o g i c a l n i t r o g e n f i x a t i o n ( S u b b a R a o , N . S . , ed.). N e w D e l h i , I n d i a : O x f o r d a n d I B H P u b l i s h i n g C o . B a l a n d r e a u , J . 1983. M i c r o b i o l o g y o f t h e a s s o c i a t i o n . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 29:851-859. Balandreau, J . , and D o m m e r g u e s , Y . 1973. A s s a y i n g nitrogenase ( C 2 H 2 ) a c t i v i t y i n the f i e l d . Pages 247-254 i n M o d e r n methods in the study of m i c r o b i a l ecology (Rosw a l l , T , ed.). B u l l e t i n s f r o m the E c o l o g i c a l Research C o m m i t t e e n o . 17. S t o c k h o l m , S w e d e n : S w e d i s h N a t u r a l Science Research C o u n c i l . 16 B a l a n d r e a u , J . , Ducerf, P . , H a m a d - F a r e s , I . , W e i n h a r d , P . , R i n a u d o , G . , M i l l i e r , C . , a n d D o m m e r g u e s , Y . 1978. L i m i t i n g factors i n grass n i t r o g e n f i x a t i o n . Pages 275-302 in L i m i t a t i o n s and potentials for biological nitrogen f i x a t i o n i n the t r o p i c s ( D o b e r e i n e r , J . , B u r r i s , R . H . , H o l laender, A . , F r a n c e , A . A . , N e y r a , C . A . , a n d S c o t t , D . B . , eds.). N e w Y o r k , U S A : P l e n u m Press. Balandreau, J . , Rinaudo, G . , Oumarov, M . M . , a n d D o m mergues, Y . 1976. A s y m b i o t i c N 2 f i x a t i o n i n p a d d y soils. Pages 611-628 in Proceedings of t h e F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y m a n , C.J., eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. Barber, L . E . , and M a r t i n , J . K . 1976. T h e release o f o r g a n i c substances b y cereal r o o t s i n t o s o i l . N e w P h y t o l o g y 76:69-80. Barber, L . E . , T j e p k e m a , J . D . , Pussell, S . A . , and Evans, H . J . 1976. A c e t y l e n e r e d u c t i o n ( n i t r o g e n f i x a t i o n ) associated w i t h c o r n i n o c u l a t e d w i t h Spirillum. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 32:108-113, Beijerinck, M . W . 1901. U e b e r O l i g o n i t r o p h i l e M i k r o b e n . ( I n D e . ) Z e n t r a l b l a t t fuer B a k t e r i o l o g i e , P a r a s i t e n k u n d e , I n f e k t i o n s k r a n k h e i t e n u n d H y g i e n e , I I 7:561-582. Bergersen, F . J . 1970. T h e q u a n t i t a t i v e r e l a t i o n s h i p b e t w e e n n i t r o g e n f i x a t i o n a n d the a c e t y l e n e - r e d u c t i o n assay. A u s t r a l i a n J o u r n a l o f B i o l o g i c a l Sciences 23:10151025. Boddey, R . M . , and Dobereiner, J . 1982. A s s o c i a t i o n o f Azospirillum a n d o t h e r d i a z o t r o p h s w i t h t r o p i c a l G r a m i nae. Pages 28-47 in N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d o r g a n i c m a t t e r i n the t r o p i c s . S y m p o s i a papers 1 . T r a n s a c t i o n s o f t h e 12th I n t e r n a t i o n a l Congress o f S o i l Science, 8-16 F e b 1982, N e w D e l h i , I n d i a . N e w D e l h i , I n d i a : I n d i a n A g r i c u l t u r a l Research I n s t i t u t e . B o u t o n , J . H . , S m i t h , R . L . , Schank, S . C . , B u r t o n , G . W . , T y l e r , M . E . , L i t t e l l , R . C . , Gallaner, R . N . , and Quesenberry, K . H . 1979. Response o f p e a r l m i l l e t i n b r e d s a n d h y b r i d s t o i n o c u l a t i o n w i t h Azospirillum brasilense. C r o p Science 19:12-16. Brouzes, R . , M a y f i e l d , C.L., and Knowles, R . 1971. E f f e c t o f o x y g e n p a r t i a l pressure o n n i t r o g e n f i x a t i o n a n d acetylene r e d u c t i o n i n a s a n d y l o a m s o i l a m e n d e d w i t h glucose. P l a n t a n d S o i l , S p e c i a l v o l u m e , p p . 481-494. C h a r y u l u , P . B . B . N . , N a y a k , D . N . , and R a o , V . R . 1981. 15 N2 i n c o r p o r a t i o n by rhizosphere soil: influence of rice variety, organic matter and combined nitrogen. Plant and S o i l 59:399-405. C o h e n , E . , O k o n , Y . , K i g e l , J . , N u r , I . , and H e n i s , Y . 1980. Increase i n d r y w e i g h t a n d t o t a l n i t r o g e n c o n t e n t i n Zea mays a n d Setaria italica associated w i t h n i t r o g e n f i x i n g Azospirillum s p p . P l a n t P h y s i o l o g y 66:746-749. D a r t , P.J., and D a y , J . M . 1975. N o n - s y m b i o t i c n i t r o g e n D o b e r e i n e r , J . , D a y , J . M . , a n d D a r t , P . J . 1972. N i t r o g e n - f i x a t i o n i n soils. Pages 2 2 5 - 2 5 2 i n S o i l m i c r o b i o l o g y : a ase critical notatum-Azotobacter paspali review (Walker, N., ed.). London, UK: Butterworths. activity and oxygen sensitivity association. the Paspalum Journal of of G e n - eral M i c r o b i o l o g y 71:103-116. D a r t , P . J . , a n d W a n i , S . P . 1982. N o n - s y m b i o t i c n i t r o g e n D o b e r e i n e r , J . , D a y , J . M . , a n d D a r t , P . J . 1973. R h i z o - f i x a t i o n a n d s o i l f e r t i l i t y . Pages 3-27 i n N o n - s y m b i o t i c s p h e r e a s s o c i a t i o n s b e t w e e n grasses a n d n i t r o g e n - f i x i n g nitrogen f i x a t i o n a n d organic matter in the tropics. S y m p o - b a c t e r i a : effect o f 0 2 o n n i t r o g e n a s e a c t i v i t y i n t h e r h i z o - sia p a p e r I , T r a n s a c t i o n s o f t h e 1 2 t h I n t e r n a t i o n a l C o n - sphere o f Paspalum notatum. gress o f S o i l S c i e n c e , 8-16 F e b 1982, N e w D e l h i , I n d i a . N e w t r y 5:157-159. D e l h i , I n d i a : I n d i a n A g r i c u l t u r a l Research Institute. Soil Biology and Biochemis- Eskew, D . L , Eaglesham, A . R . J . , and A p p , A . A . 1981. 15 D a y , J . M . , Harris, D . , D a r t , P.J., and van B e r k u m , Heterotrophic P. n i t r o g e n in a rice-flooded soil system. P l a n t P h y s i o l o g y 1975a. T h e B r o a d b a l k e x p e r i m e n t . A n i n v e s t i g a t i o n o f n i t r o g e n g a i n s f r o m n o n - s y m b i o t i c f i x a t i o n . Pages 7 1 - 8 4 i n Nitrogen fixation by free-living micro-organisms (Stewart, W.D.P., ed.). Cambridge, UK: Cambridge University Press. N2 fixation and distribution of newly fixed 68:48-52. F i r t h , P . , T h i t i p o c a , H . , S u t h i p r a d i t , S . , Wetselaar, R . , a n d Beech, D.F. 1973. N i t r o g e n b a l a n c e studies i n t h e C e n t r a l P l a i n o f T h a i l a n d . S o i l B i o l o g y a n d B i o c h e m i s t r y 5:41-46. D a y , J . M . , N e v e s , M . C . P . , a n d D o b e r e i n e r , J . 1975b. N i t r o g e n a s e a c t i v i t y o n t h e r o o t s o f t r o p i c a l f o r a g e grasses. S o i l B i o l o g y a n d B i o c h e m i s t r y 7:107-112. D e , P.K., and M a n d a l , K . A . free-living bacteria to higher plants using 1 5 N 2 . J o u r n a l of 1956. F i x a t i o n o f n i t r o g e n b y a l g a e i n r i c e soils. S o i l Science 8 1 : 4 5 3 - 4 5 8 . de Bont, J . A . M . G i l l e r , K . E . , D a y , J . M . , D a r t , P . J . , a n d W a n i , S . P . 1984. A m e t h o d for measuring the transfer of fixed nitrogen f r o m M i c r o b i o l o g i c a l M e t h o d s 2(6):307-316. G i l l e r , K . E . , W a n i , S . P . , a n d D a y , J . M . 1986. U s e o f 1976. B a c t e r i a l d e g r a d a t i o n o f e t h y l e n e isotope d i l u t i o n to measure nitrogen f i x a t i o n associated a n d t h e a c e t y l e n e r e d u c t i o n test. C a n a d i a n J o u r n a l o f w i t h the roots of s o r g h u m and millet genotypes. Plant a n d M i c r o b i o l o g y 22:1060-1062. S o i l 90:255-263. D e - P o l l i , H . , M a t s u i , E., Dobereiner, J . , and E. Salati, 1977. C o n f i r m a t i o n o f n i t r o g e n f i x a t i o n i n t w o t r o p i c a l grasses b y 15 N2 i n c o r p o r a t i o n . Soil B i o l o g y and Biochemis- t r y 9:119-123. D o b e r e i n e r , J. 1966. Azotobacter paspali n. s p . u m a b a c - ( I n P t . ) P e s q u i s a A g r o p e c u a r i a B r a s i l e i r a 1:357-365. J. H a r d y , R . W . F . , H o l s t e n , R . D . , J a c k s o n , E . K . , and B u r n s , R.C. t e r i a f l x a d o r a d e n i t r o g e n i o n a r h i z o s p h e r a d e paspalum. Dobereiner, G r e e n l a n d , D . J . 1962. D e n i t r i f i c a t i o n i n s o m e t r o p i c a l soils. J o u r n a l o f A g r i c u l t u r a l Science ( U K ) 5 8 : 2 2 7 - 2 3 3 . 1970. Further research on 1968. T h e a c e t y l e n e - e t h y l e n e assay f o r N 2 f i x a t i o n : laboratory a n d field evaluation. Plant Physiology 43:11851207. H a r d y , R . W . F . , a n d K n i g h t , E . J . 1967. A T P - d e p e n d e n t Azotobacter r e d u c t i o n o f azide a n d H C N b y N 2 - f i x i n g enzymes o f A z o - paspali a n d its v a r i e t y s p e c i f i c o c c u r r e n c e i n t h e r h i z o s - tobacter phere c h e m i c a e t B i o p h y s i c a A c t a 139:69-90. of Paspalum notatum, Flugge. Zentralblatt fuer Bakteriologie, Parasitenkunde, Infektionskrankheiten and H y g i e n e , I I 124:224-230. Dobereiner, J. and Clostridium pasteurianum. Bio- H a r v e y , R . G . , a n d L i n s c o t t , J . J . 1978. E t h y l e n e p r o d u c t i o n in soil c o n t a i n i n g quackgrass rhizomes a n d other plant 1977. P l a n t g e n o t y p e effects o n n i t r o g e n f i x a t i o n i n grasses. Pages 3 2 5 - 3 3 4 i n G e n e t i c d i v e r s i t y i n p l a n t s ( M u h a m m e d , A . , A k s e l , R., a n d v o n B o r s t e l , R . C , eds.). N e w Y o r k , U S A : P l e n u m Press. Dobereiner, J. vinelandii 1978. N i t r o g e n f i x a t i o n i n g r a s s - b a c t e r i a a s s o c i a t i o n s i n t h e t r o p i c s . Pages 51-68 i n I s o t o p e s i n b i o logical d i n i t r o g e n f i x a t i o n : Proceedings of an A d v i s o r y G r o u p M e e t i n g organized b y the J o i n t F A O / I A E A D i v ision o f A t o m i c E n e r g y i n F o o d a n d A g r i c u l t u r e , 21-25 N o v 1977, V i e n n a , A u s t r i a . V i e n n a , A u s t r i a : I n t e r n a t i o n a l m a t e r i a l s . S o i l Science S o c i e t y o f A m e r i c a J o u r n a l 4 2 : 7 2 1 724. Hauke-Pacewiczowa, mergues, Y . T., Balandreau, J., and Dom- 1970. F i x a t i o n m i c r o b i e n n e d e l ' a z o t e d a n s u n sol salin tunisien. ( I n Fr. S u m m a r y i n En.) S o i l B i o l o g y a n d B i o c h e m i s t r y 2:47-53. Hegazi, N.A., M o n i b , M . , Amer, H.,and Shokr, E. 1983. Response o f maize plants t o i n o c u l a t i o n w i t h azospirilla and (or) straw amendment in Egypt. Canadian Journal of M i c r o b i o l o g y 29:888-894. A t o m i c Energy Agency. H i l l , S . , a n d Postgate, J . R . 1969. Dobereiner, J . , and D a y , J . M . 1975. N i t r o g e n f i x a t i o n i n t h e r h i z o s p h e r e o f t r o p i c a l grasses. Pages 3 9 - 5 6 i n N i t r o g e n Failure of putative n i t r o g e n - f i x i n g bacteria t o f i x nitrogen. J o u r n a l o f General M i c r o b i o l o g y 58:277-283. fixation by free-living micro-organisms (Stewart, W . D . P . , ed.). C a m b r i d g e , U K : C a m b r i d g e U n i v e r s i t y Press. 17 I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics), 1983. A n n u a l r e p o r t 1982. P a t a n c h e r u , A . P . 502 324, I n d i a ; I C R I S A T . I t o , O . , C a b r e r a , D . , and W a t a n a b e , I . 1980. F i x a t i o n o f d i n i t r o g e n - I 5 associated w i t h rice plants. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 39:554-558. Jenkinson, D . S . 1977. T h e n i t r o g e n e c o n o m y o f the B r o a d b a l k e x p e r i m e n t s . I . N i t r o g e n balance i n the e x p e r i ments. R e p o r t f o r 1976, R o t h a m s t e d E x p e r i m e n t a l Stat i o n 2:103-109. K a p u l n i k , Y . , S a n g , S., N u r , I . , O k o n , Y . , Kigel, J . , and Henis, Y . 1981. Y i e l d increases i n s u m m e r cereal c r o p s o f Israel i n f i e l d i n o c u l a t e d w i t h Azospirillum, E x p e r i m e n t a l A g r i c u l t u r e 17:171-178. K a p u s t k a , L . A . , and Rice, E . L . 1978. S y m b i o t i c a n d a s y m b i o t i c N 2 - f i x a t i o n i n a t a l l grass p r a i r i e . S o i l B i o l o g y a n d B i o c h e m i s t r y 10:553-554. K a r a m a n o s , R . E . , and Rennie, D . A . 1980. Changes i n n a t u r a l 1 5 N a b u n d a n c e associated w i t h pedogenic p r o cesses i n s o i l . I I . Changes o n different slope p o s i t i o n s . C a n a d i a n J o u r n a l o f S o i l Science 60:365-372. L i n e , M . A . , and L o u t i t , M . W . 1973. Studies o n n o n s y m b i o t i c n i t r o g e n f i x a t i o n i n N e w Z e a l a n d fussock-grass l a n d soils. N e w Z e a l a n d J o u r n a l o f A g r i c u l t u r a l Research 16:87-94. Magalhase, F . M . M . , P a t r i q u i n , D . , and Dobereiner, J . 1979. I n f e c t i o n o f f i e l d g r o w n maize w i t h Azospirillum spp. R e v i s t a B r a s i l e i r a de B i o l o g i a 39:587-596. M a r t i n , J . K . 1977. F a c t o r s i n f l u e n c i n g the loss o f o r g a n i c carbon f r o m wheat roots. Soil Biology and Biochemistry 9:1-7. M o o r e , A . W . 1963. N i t r o g e n f i x a t i o n i n l a t o s o l i c s o i l u n d e r grass. P l a n t a n d S o i l 19:127-138. M o o r e , A . W . 1966. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n i n s o i l a n d s o i l - p l a n t systems. Soils a n d F e r t i l i z e r s 29:113128. Nelson, A . D . , Barber, L . E . , T j e p k e m a , J . , Russell, S . A . , Powelson, R . , Evans, H . J . , and Seidler, R . J . 1976. N i t r o gen f i x a t i o n associated w i t h grasses i n O r e g o n . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 22:523-530. N e y r a , C . A . , and Dobereiner, J . 1977. N i t r o g e n f i x a t i o n i n grasses. A d v a n c e s i n A g r o n o m y 29:1-38. Knowles, R . 1976. F a c t o r s a f f e c t i n g d i n i t r o g e n f i x a t i o n b y bacteria i n n a t u r a l a n d a g r i c u l t u r a l systems. Pages 539-555 i n Proceedings o f the F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y m a n , C.J., eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. Knowles, R . 1981. T h e measurement o f n i t r o g e n f i x a t i o n . Pages 327-333 in C u r r e n t perspectives in n i t r o g e n f i x a t i o n : proceedings o f the F o u r t h I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 1-5 D e c 1980, C a n b e r r a , A u s t r a l i a ( G i b s o n , A . K . , a n d N e w t o n , W . E . , eds.). C a n b e r r a , A u s t r a l i a : A u s t r a l i a n A c a d e m y o f Science. K o c h , B . L . , and O y a , J . 1974. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n i n some H a w a i i pasture soils. S o i l B i o l o g y a n d B i o c h e m i s t r y 6:363-367. K o y a m a , T . , and A p p , A . 1979. N i t r o g e n balance i n f l o o d e d rice soils. Pages 95-104 in N i t r o g e n a n d rice. L o s B a n o s , L a g u n a , P h i l i p p i n e s : I n t e r n a t i o n a l R i c e Research Institute. K r i s h n a m o o r t h y , K . K . , and R a v i k u m a r , T . V . 1973. P e r manent manurial experiments conducted at C o i m b a t o r e . Coimbatore, T a m i l Nadu, India: T a m i l Nadu Agricultural University. Lee, K . K . , A l i m a g n o , B . , and Yoshida, T . 1977. F i e l d t e c h n i q u e u s i n g t h e acetylene r e d u c t i o n m e t h o d t o assay nitrogenase a c t i v i t y a n d its association w i t h t h e rice r h i z o sphere. P l a n t a n d S o i l 47:519-526. 18 Nohrstedt, H . O . 1975. D e c o m p o s i t i o n o f ethylene i n soils a n d its relevance i n the measurement o f nitrogenase a c t i v i t y w i t h the acetylene r e d u c t i o n m e t h o d . G r u n d f o r b a t t r i n g 27:171-178. Nohrstedt, H . O . 1983. N a t u r a l f o r m a t i o n o f ethylene i n forest soils a n d m e t h o d s t o correct results g i v e n b y the a c e t y l e n e - r e d u c t i o n assay. S o i l B i o l o g y a n d B i o c h e m i s t r y 15(3):281-286. N u r , I . , O k o n , Y . , and Henis, Y . 1980. A n increase i n n i t r o g e n c o n t e n t of Setaria italica a n d Zea mays i n o c u l a t e d w i t h Azospirillum. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 26:482-485. O k o n , Y . 1982. Azospirillum: p h y s i o l o g i c a l p r o p e r t i e s , m o d e o f association w i t h r o o t s a n d its a p p l i c a t i o n f o r t h e benefit o f cereal a n d forage grass crops. Israel J o u r n a l o f B o t a n y 31:214-220. O k o n , Y . , Albrecht, S . L . , and Burris, R . H . 1977. M e t h o d s f o r g r o w i n g Spirillum lipoferum a n d f o r c o u n t i n g it in p u r e c u l t u r e a n d i n association w i t h plants. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 33:85-88. P a r k e r , C . A . 1957. N o n - s y m b i o t i c n i t r o g e n - f i x i n g bacter i a i n s o i l . I I I . T o t a l n i t r o g e n changes i n a f i e l d s o i l . J o u r n a l o f S o i l Science 8:48-59. P a t r i q u i n , D . G . , and Dobereiner, J . 1978. L i g h t m i c r o scopy observations o f t e t r a z o l i u m - r e d u c i n g bacteria i n t h e e n d o r h i z o s p h e r e o f m a i z e a n d o t h e r grasses i n B r a z i l . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 24:734-742. Pedersen, W . L . , C h a k r a b a r t y , K., K l u c a s , R . V . , a n d V a n - S t e y n , P . L . , a n d D e l w i c h e , C . C . 1970. N i t r o g e n f i x a t i o n diver, A . K . 1978. N i t r o g e n f i x a t i o n (acetylene r e d u c t i o n ) by non-symbiotic micro-organisms in some southern C a l i - associated w i t h r o o t s o f w i n t e r w h e a t a n d s o r g h u m i n fornia Nebraska. 4:1122-1128. Applied and Environmental Microbiology 35:129-135. soils. Environmental Science and Technology Thomas-Bauzon, D . , Weinhard, P., Villecourt, P., and 1972. T h e a c e t y l e n e r e d u c t i o n test f o r n i t r o - B a l a n d r e a u , J . 1982. T h e s p e r m o s p h e r e m o d e l . I . Its use i n g e n f i x a t i o n . Pages 343-356 i n M e t h o d s i n m i c r o b i o l o g y g r o w i n g , c o u n t i n g a n d isolating N 2 - f i x i n g bacteria f r o m Postgate, J . R . ( N o r r i s , J . R . , a n d R i b b o n s , D . W . , eds.). V o l . 6 B . L o n d o n , the rhizosphere o f rice. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y U K : A c a d e m i c Press. 28:922-928. R a o , A . V . , a n d V e n k a t e s w a r l u , B . 1986. S t u d i e s o n t h e T i e n , T . M . , Gaskins, M . H . , a n d H u b b e l l , i n t e r a c t i o n s b e t w e e n Azospirillum a n d P e a r l m i l l e t . Pages P l a n t g r o w t h substances 37-42 lense a n d t h e i r effect o n t h e g r o w t h o f p e a r l m i l l e t ( P e n n i s e - in Cereal nitrogen fixation. W o r k i n g G r o u p M e e t i n g , 9-12 O c t Proceedings of the 1984, I C R I S A T C e n - ter, I n d i a . P a t a n c h e r u , A . P . 502 324, I n d i a : I n t e r n a t i o n a l tum americanum L.). produced Applied D.H. by Azospirillum and 1979. brasi- Environmental M i c r o b i o l o g y 37:1016-1024. C r o p s Research Institute f o r the S e m i - A r i d T r o p i c s . Tjepkema, J . D . , and Burris, R . H . 1976. N i t r o g e n a s e a c t i v - R o v i r a , A . D . 1965. P l a n t r o o t e x u d a t e s a n d t h e i r i n f l u - i t y associated w i t h s o m e W i s c o n s i n p r a i r i e grasses. P l a n t ence u p o n s o i l m i c r o o r g a n i s m s . Pages 170-186 in E c o l o g y and Soil 45:81-94. of soil-borne plant pathogens: prelude to biological c o n t r o l ( B a r k e r , K . F . , a n d S n y d e r , W . C . , eds.). B e r k l e y , C a l i f o r n i a , U S A : U n i v e r s i t y o f C a l i f o r n i a Press. Rovira, A . D . T j e p k e m a , J . D . , and E v a n s , H J . associated w i t h Juncus balticus 1976. N i t r o g e n f i x a t i o n a n d other plants of O r e g a n w e t l a n d s . S o i l B i o l o g y a n d B i o c h e m i s t r y 8:505-509. 1969. P l a n t r o o t e x u d a t e s . B o t a n i c a l R e v i e w 35:35-57. T j e p k e m a , J . D . , a n d v a n B e r k u m , P . 1977. A c e t y l e n e r e d u c t i o n b y s o i l cores o f m a i z e a n d s o r g h u m i n B r a z i l . R u s c h e l , A . P . , H e n i s , Y . , and S a l a t i , E . 1975. N i t r o g e n - 1 5 t r a c i n g o f N 2 - F i x a t i o n w i t h s o i l - g r o w n s u g a r c a n e seedl i n g s . S o i l B i o l o g y a n d B i o c h e m i s t r y 7:181-182. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 33:626-639. Umali-Garcia, M., Hubbell, D.H., and Gaskins, M.H. 1978. Process o f i n f e c t i o n o f Panicum maximum b y R u s c h e l , A . P . , M a t s u i E., S a l a t i , E . , a n d V o s e , P . B . 1 9 8 1 . Spirillum lipoferum. P o t e n t i a l N 2 - f i x a t i o n b y sugar cane ( S a c c h a r u m sp.) i n o f n i t r o g e n - f i x i n g b l u e - g r e e n algae a n d a s y m b i o t i c b a c t e r i a solution culture. I I . Effect o f inoculation and d i n i t r o g e n ( G r a n h a l l , U . , ed.). Ecologica Bulletins no.26. S t o c k h o l m , f i x a t i o n as directly measured by 15 N 2 . Pages 127-132 i n Associative N 2 - f i x a t i o n : proceedings of the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - F i x a t i o n , 2-6 J u l 1979, P i r a - c i c a b a , B r a z i l ( V o s e , P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 2 . B o c a R a t o n , F l o r i d a , U S A : C R C Press. Ruschel, Y. L.). Pages 297-303 in S w e d e n : S w e d i s h N a t u r a l Science R e s e a r c h C o u n c i l . Umali-Garcia, M . , H u b b e l l , D . H . , Gaskins, M . H . , and Dazzo, F.B. Henis, Environmental role of n i t r o g e n - f i x i n g b l u e - g r e e n algae a n d a s y m b i o t i c b a c t e r i a ( G r a n h a l l , U., ed.). Ecological Bulletins no.26. S t o c k h o l m , S w e d e n : S w e d i s h N a t u r a l Science R e s e a r c h C o u n c i l . Upadhyaya, M . N . S c h a n k , S . C . , S m i t h , R . L . , a n d L i t t e l l , R . C . 1983. E s t a b o f a s s o c i a t i v e N 2 - f i x i n g systems. Proceedings, S o i l a n d C r o p Science S o c i e t y o f F l o r i d a 4 2 : 1 1 3 - 1 1 7 . Singh, P.K. 1 9 8 1 . U s e o f Azolla a n d b l u e - g r e e n algae i n r i c e c u l t i v a t i o n i n I n d i a . Pages 183-196 i n A s s o c i a t i v e N 2 f i x a t i o n : proceedings o f the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - F i x a t i o n , 2 - 6 J u l 1979, P i r a c i c a b a , B r a z i l ( V o s e P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 2 . B o c a R a t o n , 1984. R o o t associated n i t r o g e n f i x a t i o n i n f i n g e r m i l l e t ( E l e u s i n e coracana G a e r t n . ) . M . S c . thesis, U n i v e r s i t y o f A g r i c u l t u r a l Sciences, B a n g a l o r e , K a r n a t aka, India. Upadhyaya, M . N . , Hegde, S.V., R a i , P.V., and W a n i , S . P . 1986. lishment 1980. A s s o c i a t i o n o f Azospirillum w i t h grass roots. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 39:219226. A . P . , Victoria, R . L . , Salati, E., and 1978. N i t r o g e n f i x a t i o n i n s u g a r c a n e ( S a c c h a r u m offi- cinarum Pages 373-379 in E n v i r o n m e n t a l r o l e R o o t associated nitrogen fixation in finger m i l l e t . Pages 93-101 i n C e r e a l n i t r o g e n f i x a t i o n . P r o c e e d i n g s o f t h e W o r k i n g G r o u p M e e t i n g , 9-12 O c t 1984, I C R I - S A T C e n t e r , I n d i a . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I n t e r n a t i o n a l Crops Research Institute f o r the S e m i - A r i d Tropics. Vallis, I. 1973. S a m p l i n g f o r s o i l n i t r o g e n changes i n l a r g e areas o f g r a z e d p a s t u r e s . C o m m u n i c a t i o n s i n S o i l Science a n d P l a n t Analysis 4:163-170. F l o r i d a , U S A : C R C Press. S m i t h , R . M . , T h o m p s o n , D . O . , C o l l i e r , J . W . , and H e r v e y , R J. 1954. S o i l o r g a n i c m a t t e r , c r o p y i e l d s , a n d l a n d use i n v a n B e r k u m , P . , a n d B o h l o o l , B . B . 1980. E v a l u a t i o n o f nitrogen f i x a t i o n by bacteria in association w i t h roots of t r o p i c a l grasses. M i c r o b i o l o g i c a l R e v i e w s 4 4 ( 3 ) : 4 9 1 - 5 1 7 . t h e T e x a s B l a c k l a n d . S o i l Science 77:377-388. 19 van B e r k u m , P . , and D a y , J . M . 1980. N i t r o g e n a s e a c t i v i t y associated w i t h s o i l cores o f grasses i n B r a z i l . S o i l B i o l o g y a n d B i o c h e m i s t r y 12:137-140. van B e r k u m , P . , and Sloger, C. 1979. I m m e d i a t e acetylene r e d u c t i o n b y excised grass r o o t s n o t p r e v i o u s l y p r e i n c u bated a t l o w o x y g e n tensions. P l a n t P h y s i o l o g y 64:739745. van B e r k u m , P . , and Sloger, C . 1981. P h y s i o l o g y o f r o o t associated nitrogenase a c t i v i t y in Oryza saliva L. Page 490 i n C u r r e n t perspectives i n n i t r o g e n f i x a t i o n : proceedings o f the F o u r t h I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 1-5 D e c 1980, C a n b e r r a , A u s t r a l i a ( G i b s o n , A . H . , a n d N e w t o n , W . E . , eds.). C a n b e r r a , A u s t r a l i a : A u s t r a l i a n A c a d e m y o f Science. V e n k a t a r a m a n , G . S . 1975. T h e r o l e o f blue-green algae i n t r o p i c a l rice c u l t i v a t i o n . Pages 207-218 in N i t r o g e n fixat i o n b y f r e e - l i v i n g m i c r o - o r g a n i s m s ( S t e w a r t , W . D . P . , ed.). C a m b r i d g e , U K : C a m b r i d g e U n i v e r s i t y Press. V i l l e m i n , G . , Balandreau, J . , and Dommergues, Y . 1974. U t i l i s a t i o n du test de r e d u c t i o n de l'acetylene p o u r la n u m e r a t i o n des bacteries libres fixatrices d'azote. ( I n F r . ) A n n a l e s de M i c r o b i o l o g i c 24:87-94. Vlassak, K . , and Reynders, L. 1981. Azospirillum r h i z o coenoses in a g r i c u l t u r a l practice. Page 494 in C u r r e n t perspectives i n n i t r o g e n f i x a t i o n : proceedings o f the I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 1-5 Dec 1980, C a n b e r r a , A u s t r a l i a ( G i b s o n A . H . , a n d N e w t o n , W . E . , eds.). C a n b e r r a , A u s t r a l i a : A u s t r a l i a n A c a d e m y o f Science. W a t a n a b e , I. 1981. B i o l o g i c a l n i t r o g e n f i x a t i o n associated w i t h w e t l a n d rice. Pages 313-316 in C u r r e n t perspectives in n i t r o g e n f i x a t i o n : proceedings o f the F o u r t h I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 1-5 D e c 1980, C a n berra, A u s t r a l i a ( G i b s o n , A . H . , a n d N e w t o n , W . E . , eds.). C a n b e r r a , A u s t r a l i a : A u s t r a l i a n A c a d e m y o f Science. W a t a n a b e , L , and B a r r a q u i o , W . L . 1979. L o w levels o f fixed nitrogen required for isolation of free-living N 2 - f i x i n g m i c r o o r g a n i s m s f r o m rice r o o t s . N a t u r e 277:565-566. W a t a n a b e , I . , and Lee, K . K . 1977. N o n - s y m b i o t i c n i t r o gen f i x a t i o n in rice a n d rice fields. Pages 289-305 in B i o l o g i cal n i t r o g e n f i x a t i o n i n f a r m i n g systems o f the t r o p i c s ( A y a n a b a , A . , a n d D a r t , P.J., eds.). N e w Y o r k , U S A : J o h n Wiley. W a t a n a b e , L , B a r r a q u i o , W . L . , D e G u z m a n , M . R . , and C a b r e r a , D . A . 1979. N i t r o g e n - f i x i n g (acetylene r e d u c t i o n ) activity and p o p u l a t i o n of aerobic heterotrophic nitrogenf i x i n g bacteria associated w i t h w e t l a n d rice. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 37:813-819. W a t a n a b e , L , Espinas, C . R . , Berja, N . S . , and A l i m a g n o , B. V. 1977. U t i l i z a t i o n of the Azolla-Anabaena c o m p l e x as a n i t r o g e n f e r t i l i z e r f o r rice. Research P a p e r series 11-15. L o s Banos, L e g u n a , P h i l i p p i n e s : I n t e r n a t i o n a l R i c e Research I n s t i t u t e . Weaver, R . W . , W r i g h t , S . F . , V a r a n k a , M . W . , S m i t h , U . E . , and H o l t , E . C . 1980. D i n i t r o g e n f i x a t i o n ( C 2 H 2 ) r e d u c t i o n b y established forage grasses. Texas A g r o n o m y J o u r n a l 72:965-968. Vlassak, K . , P a u l , E . A . , and H a r r i s , R . E . 1973. Assessm e n t o f b i o l o g i c a l n i t r o g e n f i x a t i o n i n grassland a n d associated sites. P l a n t a n d S o i l 38:637-649. W h i t e , J . W . , H o l b e n , F . J . , and Richer, A . C . 1945. M a i n tenance level o f n i t r o g e n a n d o r g a n i c m a t t e r i n grassland a n d c u l t i v a t e d soils over p e r i o d s o f 5 4 a n d 7 2 years. J o u r n a l o f the A m e r i c a n Society o f A g r o n o m y 37:21-31. von Bulow, J . F . W . , and Dobereiner, J . 1975. P o t e n t i a l f o r n i t r o g e n f i x a t i o n i n maize genotypes i n B r a z i l . Proceedings o f the N a t i o n a l A c a d e m y o f Sciences o f the U n i t e d States o f A m e r i c a 72:2329-2393. Winogradsky, S. 1893. S u r l ' a s s i m i l a t i o n de l ' a z o t e gazeux d e l ' a t m o s p h e r e par les m i c r o b e s . ( I n F r . ) C o m p t e R e n d u H e b d o m a d a i r e des Seances de l ' A c a d e m i e des Sciences 116:1385-1388. W a l c o t t , J J . , C h a n v i r o j , M . , Chinchest, A . , Choticheny, P . , Ferraris, R . , and N o r m a n , B . W . 1977. L o n g t e r m p r o d u c t i v i t y o f intensive rice c r o p p i n g systems o n the c e n t r a l p l a i n o f T h a i l a n d . E x p e r i m e n t a l A g r i c u l t u r e 13:305-315. W i t t y , J . F . 1979. A c e t y l e n e r e d u c t i o n assay c a n overestimate nitrogen-fixation in soil. Soil Biology and Biochemist r y 11:209-210. W a n i , S.P. ( I n press.) N i t r o g e n f i x a t i o n p o t e n t i a l i t i e s o f s o r g h u m a n d m i l l e t . I n N e w trends i n b i o l o g i c a l n i t r o g e n f i x a t i o n ( S u b b a R a o , N . S . , ed.). N e w D e l h i , I n d i a : O x f o r d and I B H Publishing Co. W a n i , S.P., D a r t , P . J . , and Upadhyaya, M . N . 1983. F a c t o r s a f f e c t i n g nitrogenase a c t i v i t y ( C 2 H 2 r e d u c t i o n ) associated w i t h s o r g h u m a n d m i l l e t estimated u s i n g the s o i l core assay. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 29:10631069. W a n i , S.P., Upadhyaya, M . N . , a n d D a r t , P . J , 1984. A n i n t a c t p l a n t assay f o r e s t i m a t i n g nitrogenase a c t i v i t y ( C 2 H 2 r e d u c t i o n ) o f s o r g h u m a n d m i l l e t p l a n t s g r o w n i n pots. P l a n t a n d S o i l 82:15-29. 20 W i t t y , J . F . , D a y , J . M . , and D a r t , P . J . 1977. T h e n i t r o g e n e c o n o m y o f the B r o a d b a l k e x p e r i m e n t s . I I . B i o l o g i c a l n i t r o g e n f i x a t i o n . R e p o r t f o r 1976, R o t h a m s t e d E x p e r i m e n t a l S t a t i o n 2:111-118. Yoshida, T . , and Ancajas, R . R . 1973. N i t r o g e n - f i x i n g a c t i v i t y i n u p l a n d a n d f l o o d e d rice fields. Proceedings, S o i l Science S o c i e t y o f A m e r i c a 37:42-46. Yoshida, T . , and Y o n e y a m a , T . 1980. A t m o s p h e r i c d i n i t r o g e n f i x a t i o n i n the f l o o d e d rice rhizosphere a s determ i n e d b y the 15-N isotope t e c h n i q u e . S o i l Science a n d P l a n t N u t r i t i o n 26:551-559. Discussion H . L . S . Tandon: W h y d o y o u tag the i n o c u l a t i o n w i t h the a v a i l a b i l i t y of a seed d r i l l , w h i c h introduces a n o t h e r cost factor? F a r m e r s n o t h a v i n g a d r i l l m a y s t i l l be interested in the p r o v e n i n o c u l u m . S.P.Wani: T h e seed d r i l l is n o t a must, b u t if it is already in use we are suggesting the use of the s l u r r y i n o c u l a t o r . O t h e r w i s e h a n d a p p l i c a t i o n o f s l u r r y i s perfectly a l l right. H.L.S.Tandon: W h e n d o y o u expect the B N F t e c h n o l o g y t o enter o n - f a r m research p r o g r a m s , before it is available f o r the S A T farmers? S.P.Wani: I n o c u l a t i o n t e c h n o l o g y s h o u l d be at the o n - f a r m test stage in 3-4 years. P.Tauro: W h e n l i g h t has n o effect, w h y s h o u l d d e c a p i t a t i o n have a n effect o n A R A ? S.P.Wani: As I m e n t i o n e d in the presentation, the m e c h a n i s m of reduced a c t i v i t y soon after d e c a p i t a t i o n is n o t u n d e r s t o o d yet. Because of i n j u r y to the p l a n t , the roots m a y be secreting some c o m p o u n d s t h a t m i g h t be d e t r i m e n t a l to the bacteria, resulting in reduced activity. G.S. Jadhav: As stated in the presentation, the m o i s t u r e a n d N in the s o i l s h o u l d be kept constant. H o w e v e r , they are d y n a m i c w i t h t i m e . H o w can the response o f different strains i n the f i e l d b e c o m p a r e d , w h e n b o t h m o i s t u r e a n d N are c h a n g i n g w i t h i n the season as w e l l as between seasons? S.P.Wani: I referred to constant m o i s t u r e a n d N o n l y f o r the experiments i n v o l v i n g g e r m p l a s m screening or seasonal measurement o f nitrogenase a c t i v i t y , a n d n o t f o r the i n o c u l a t i o n experiments. I t w i l l b e impossible to o b t a i n u n i f o r m m o i s t u r e a n d N d u r i n g the season in the field. T h i s is suggested f o r c o n t r o l l e d greenhouse experiments alone. G.S.Jadhav: Has the water-suspension m e t h o d o f i n o c u l a t i o n a p p l i c a t i o n been c o m p a r e d w i t h seed i n o c u l a t i o n , soil application, and F Y M - m i x e d f u r r o w application? S.P.Wani: No. S.V.Hegde: D i d y o u e x a m i n e the r o o t s / r h i z o s p h e r e o f i n o c u lated a n d n o n i n o c u l a t e d pearl m i l l e t r e g a r d i n g the establishment of i n o c u l a t e d Azospirillum or the counts o f the b a c t e r i u m , t o p r o v e that the beneficial effects are due to i n o c u l a t e d A z o s p i r i l l u m ? S.P. W a n i : N o , i t i s n o t possible t o study the establishment o f the i n o c u l a t e d strains in the field unless we have specific m a r k e r strains a s inoculants. N e i t h e r M P N n o r o r d i n a r y p l a t i n g can give the desired results. A t present we are s t a n d a r d i z i n g the E L I S A technique, a n d if we can use this technique successfully we i n t e n d t o study the establishment a n d s u r v i v a l o f the i n o c u l a t e d s t r a i n i n the f i e l d . B . K . Konde: I t i s reported b y E g y p t i a n scientists t h a t l i q u i d i n o c u l a t i o n is superior to seed i n o c u l a t i o n in g r o u n d n u t s where the seeds are treated w i t h fungicides. In o r d e r t o a v o i d the direct contact o f fungicides w i t h r h i z o bia, l i q u i d i n o c u l a t i o n p r o v e d t o b e superior, b u t m e t h o d s o f azospirilla i n o c u l a t i o n have n o t been t r i e d a n d evaluated. T h e y , therefore, need to be studied. S.P.Wani: I agree w i t h y o u r views t h a t w o r k o n i n o c u l a t i o n methods of azospirilla needs to be done. A b o u t s l u r r y i n o c u l a t i o n a t I C R I S A T Center, D r N a m b i a r has observed t h a t f o r g r o u n d n u t s s l u r r y i n o c u l a t i o n gives better results t h a n seed c o a t i n g , a n d this is m a i n l y because the g r o u n d n u t seed cotyledons get separated because o f w e t t i n g , resulting i n reduced g e r m i n a t i o n . In a d d i t i o n , fungicides can be used at sowing along w i t h rhizobial culture application. 21 Cereal Nitrogen F i x a t i o n Research under the B N F Coordinated Project o f the I C A R N . S . Subba Rao1 Summary The paper Fixation effects obtained lacunae highlights the (BNF) project of sorghum on the existing results of the and millets isolation in our by of field Indian experiments Council Azospirillum. and establishment knowledge and carried out of Agricultural The review of A z o s p i r i l l u m the future in possibilities under Research also roots, the Biological (ICAR) on encompasses and it of research the briefly under Nitrogen inoculation initial results indicates the the project. Introduction T h e B N F c o o r d i n a t e d project has the f o l l o w i n g mandate. 1 . I n t e n s i f i c a t i o n o f research o n b i o l o g i c a l n i t r o g e n f i x a t i o n in a c o o r d i n a t e d manner. 2 . Survey a n d ecology o f N 2 - f i x i n g m i c r o o r g a nisms, e v a l u a t i o n o f benefits o f i n o c u l a t i o n a n d i n t e r a c t i o n w i t h host g e r m p l a s m , pesticides, a n d i n o r g a n i c fertilizers. 3. Genetic studies to enlarge host spectrum by m u t a t i o n , conjugation, transduction, and transformation. 4. S o m a t i c h y b r i d i z a t i o n , tissue-culture techniques, a n d fusion o f protoplasts using host plants a n d m i c r o b i a l cultures. 5. P h y s i o l o g i c a l studies to transfer available k n o w l edge at the f u n d a m e n t a l level on n i t r o g e n - f i x i n g a n d related enzymes to the a p p l i e d side. T h e project has 11 centers located a l l over I n d i a ( F i g . 1). T h e present r e p o r t summarizes the fieldwork done on cereal n i t r o g e n fixation under the project, w i t h p a r t i c u l a r reference t o s o r g h u m a n d millets. 1. INDIA Centers 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Delhi Hisar Varanasi Kalyani Jabalpur Baroda Parbhani Cuttack Bangalore ( I I S ) Bangalore (UAS) Coimbatore Figure 1. Locations of the centers of I C A R ' s coordinated project on biological nitrogen fixation. Project Director, Agro-Energy Center, Indian Agricultural Research Institute, New Delhi 110 012, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 23 Ecology of Diazotrophic Bacteria I n r o o t c o l o n i z a t i o n studies w i t h k n o w n strains o f Azospirillum i n association w i t h specially g r o w n plants, the bacteria were f o u n d i n the r o o t hairs a n d were f o u n d t o traverse u p w a r d s i n the stem, a s observed u n d e r a l i g h t m i c r o s c o p e ( L a k s h m i et a l . 1977). In wheat, Azospirillum c o u l d be isolated f r o m surface-sterilized r o o t s a n d stem segments ( K a v i m a n d a n et a l . 1978). Transverse sections of stem showed the presence o f bacteria p r o m i n e n t l y i n p r o t o x y l e m a n d often i n m e t a x y l e m vessels ( L a k s h m i e t a l . 1977). I n rice seedlings g r o w n u n d e r aseptic nitrogen-free c o n d i t i o n s , Azospirillum i n o c u l a t i o n increased r o o t biomass ( D e w a n a n d S u b b a R a o 1979). Several centers u n d e r the B N F project i n i t i a t e d w o r k o n the i s o l a t i o n a n d c h a r a c t e r i z a t i o n o f n i t r o g e n - f i x i n g bacteria f r o m rice, wheat, barley, s o r g h u m , a n d millets. Greater a t t e n t i o n was p a i d t o the i s o l a t i o n a n d c h a r a c t e r i z a t i o n of Azospirillum i n t o A. brasilense a n d A. lipoferum. Nitrogenase activities of i n t a c t c u l t i v a t e d plants a n d weeds associated w i t h t h e m were measured. Azospirillum isolates were p u r i f i e d a n d acetylene-reduction assay ( A R A ) measurements i n pure cultures were made. T h e a m o u n t o f n i t r o g e n f i x e d per g r a m o f c a r b o n source was also q u a n t i f i e d by the K j e l d a h l m e t h o d . 4800 A-Control B-Azospirillum brasilense C-40 k g N h a - 1 ( U r e a a t s o w i n g t i m e ) D-40 kg N ha-1 + A. brasilense 4400 1-Coimbatore 2-Dharwad 3-Hyderabad 4-Akola 5-Parbhani 6-Navasari 7-Indore 8-Udaipur 9-Pantnagar 10-All I n d i a mean 4000 3600 3200 2800 2400 2000 1600 1200 800 400 0 A B C D 1 A B C D 2 AB C D A B C D AB C D A BC D AB C D A B C D 3 4 5 6 7 8 AB C D 9 A B C D 10 Figure 2. Response of sorghum to inoculation with A. brasilense at different locations (average of 4 years' field trials), 1979-82. 24 Response of Crops F i g u r e 2 f o r s o r g h u m , F i g u r e 3 f o r pearl m i l l e t , a n d F i g u r e 4 f o r finger m i l l e t . F o r most crops, the y i e l d response to i n o c u l a t i o n varied between locations. I n pearl m i l l e t also, the yields were variable w i t h l o c a t i o n b u t i n o c u l a t i o n p r o v e d to be beneficial even at a basal dose of 40 kg N ha - 1 except at J o d h p u r , where fertilizer N d i d n o t p r o v i d e a d d i t i o n a l benefits i n c o n j u n c t i o n w i t h bact e r i a l i n o c u l a t i o n . I n s o r g h u m also, the yields v a r i e d w i t h locations b u t simple Azospirillum i n o c u l a t i o n s increased yields i n six locations w i t h o r w i t h o u t a d d i t i o n o f 4 0 k g N ha-1. A t f o u r locations ( A k o l a , Parbhani, Navsari, and lndore), addition of 40 kg N ha" 1 decreased the benefits due to i n o c u l a t i o n . A t t e m p t s are under w a y to understand the factors responsible f o r the negative response to i n o c u l a t i o n t o Azospirillum Inoculation H a v i n g isolated several strains of Azospirillum ( L a k s h m i k u m a r i et a l . 1976), systematic trials in the p o t - c u l t u r e house were carried o u t to determine the efficiency o f different strains i n increasing c r o p yields ( S u b b a R a o e t a l . 1979), p a r t i c u l a r l y o f s o r g h u m , p e a r l m i l l e t , finger m i l l e t (Eleucine coracana Gaertn.), a n d barley. Efficient strains of A. brasilense capable of enhancing yields of these crops were later tested under field c o n d i t i o n s under the A l l I n d i a C o o r d i n a t e d C r o p I m p r o v e m e n t Projects o f the I C A R f o r barley, s o r g h u m , a n d millets. T h e results o b t a i n e d so far have been s u m m a r i z e d in 1-Durgapura 2-Jodhpur 3-Aurangabad 4-Gwalior 2800 2600 5-Kanpur 6-Hyderabad 7-Hisar 8-Jamnagar A Noninoculated control B C D 1/2 N a p p l i c a t i o n + 1/3 N " + Full N " + + Azospirillum inoculation " " " " " " 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 A B C D A B C D A B C D A B C D A B C D A B C D A B C D 1 2 3 4 5 6 7 A B C D 8 F i g u r e 3. Response of pearl m i l l e t to i n o c u l a t i o n w i t h A. brasilense at different locations (average of 3 years' f i e l d trials), 1979-81. 25 Noninoculated was a n s w e r e d b y c o n d u c t i n g a f i e l d e x p e r i m e n t a t control Azospirillum brasilense 40 kg N ha -1 ( U r e a ) 40 kg N ha -1 + A. the P a r b h a n i center w i t h s o r g h u m a n d p e a r l m i l l e t d u r i n g t h e 1983 r a i n y season. A s u m m a r y o f t h e d a t a of the 1 9 8 2 / 8 3 e x p e r i m e n t s is presented in T a b l e s 1 brasilense a n d 2 . T h e f o l l o w i n g c o n c l u s i o n s were d r a w n . 5 T a b l e 1. R o o t mass, shoot mass, r o o t : s h o o t r a t i o , root v o l u m e , and yield of field-grown rainy-season sorghum (Sorghum bicolor), as influenced by seed inoculation with 4 Azotobacter a n d Azospirillum at different stages of crop g r o w t h in a field experiment, P a r b h a n i , rainy season 1983. 1 Non- Parameter/ 3 Days of inoculated Azoto- sampling control bacter Azospirillum CD at 5 % R o o t mass (g plant-1) 20 2 3.40 4.34 2 6.412 0.89 2 18.53 2 2.03 2.70 35 12.20 I6.41 50 16.05 20.77 2 21.77 2 65 17.82 20.47 22.86 2 3.77 80 15.20 15.90 15.26 NS3 32.66 37.60 S h o o t mass (g p l a n t - 1 ) 1 20 0 Bangalore Dholi Almora 50.93 2 7.64 2 156.26 2 15.84 35 111.80 139.33 50 165.13 184.86 2 I90.492 12.76 65 167.66 187.73 203.86 2 23.01 80 156.46 167.86 2 182.40 2 10.09 Dindori Root:shoot ratio Figure 4. Response of finger millet to inoculation w i t h A. brasilense. i n the presence o f f e r t i l i z e r N a t c e r t a i n l o c a t i o n s . Experiments under field conditions by coopera- 20 9.60 8.66 7.94 35 9.16 8.49 8.43 50 10.28 8.90 8.75 65 9.40 9.16 8.91 80 10.29 10.55 11.95 2.79 3.40 t o r s a t C o i m b a t o r e a n d H i s a r centers o f t h e p r o j e c t have also shown that Azospirillum inoculations Root volume ( m L plant-1) increased p e a r l m i l l e t y i e l d . 20 Effect of Azotobacter AzospiriUum on and Root and Shoot Measurements 35 9.05 50 13.85 4.76 2 0.89 2 13.68 2 1.62 17.09 2 17.76 2 2.20 12.21 65 14.50 16.36 19.26 2 80 13.18 14.06 13.93 NS 3237 3632 3817 NS 4581 5950 2 65152 802 Grain yield 2.11 (kg ha-1) It is n o w recognized that n o n s y m b i o t i c n i t r o g e n fixing bacteria produce g r o w t h - p r o m o t i n g substan- Fodder yield -1 ces (Tien et al. 1979) in addition to fixing ( k g ha ) a t m o s p h e r i c n i t r o g e n . O n e q u e s t i o n has o f t e n been 1 . M e a n o f f i v e p l a n t s , e a c h f r o m t h r e e r e p li c a t e d p l o t s . p o s e d : w i l l seed i n o c u l a t i o n h e l p i n i n c r e a s i n g t h e 2 . S i g n i f i c a n t i ncrease o v e r c o n tr o l . r o o t biomass under field conditions? T h i s question 3. N S = N o t s i gn i f i c a n t . 26 Table 2. S h o o t mass, root biomass, and yield of fieldgrown pearl enced by Azospirillum millet seed (Pennisetum americanum), as influinoculation with Azotobacter and at different stages of crop g r o w t h in a field experiment, P a r b h a n i , rainy season 1983. 1 Parameter/ Days of sampling control ever, Azospirillum h a d a m o r e p r o n o u n c e d effect on root biomass and shoot dry mass than Azotobacter. 2. T h e g r a i n y i e l d increase d u e to seed i n o c u l a t i o n over the n o n i n o c u l a t e d c o n t r o l was 12.2% w i t h Noninoculated biomass a t d i f f e r e n t stages o f c r o p g r o w t h . H o w - Azotobacter Azospirillum CD at 5 % Azotobacter and 17.9% with Azospirillum, but the results were n o t s i g n i f i c a n t . H o w e v e r , b o t h the o r g a n i s m s i n d i v i d u a l l y b r o u g h t a b o u t a sig- S h o o t mass n i f i c a n t increase i n f o d d e r y i e l d over the n o n i n o c - (g plant-1) ulated c o n t r o l . 20 22.27 31.65 2 32.382 35 72.46 94.412 88.00 2 9.01 50 89.38 103.432 97.78 10.48 65 67.58 86.83 78.98 NS3 80 59.66 79.752 67.662 9.44 6.62 Pearl Millet 1. Seed inoculation with either Azotobacter or Azospirillum increased s h o o t mass a n d r o o t b i o - R o o t mass mass s i g n i f i c a n t l y over the n o n i n o c u l a t e d c o n t r o l (g plant-1) a t all stages o f c r o p g r o w t h . I n p e a r l m i l l e t the 20 2.13 3.162 3.312 0.61 35 5.56 7.902 6.662 0.83 50 6.51 8.802 8.15 1.79 65 5.08 8.532 7.832 0.97 80 4.60 8.012 6.I82 0.92 response w i t h Azotobacter was better t h a n w i t h Azospirillum inoculation. 2. T h e g r a i n y i e l d increase due to seed i n o c u l a t i o n over the n o n i n o c u l a t e d c o n t r o l was 41.8 w i t h Azotobacter, and 13.4% w i t h Azospirillum i n o c - u l a t i o n , but the results were not s i g n i f i c a n t . Root:shoot ratio 20 10.45 10.01 9.78 35 13.00 11.82 13.21 50 13.72 11.75 11.99 65 13.30 10.77 10.08 80 12.96 9.95 10.94 3. Seed i n o c u l a t i o n w i t h Azotobacter or A z o s p i r i l lum s i g n i f i c a n t l y increased f o d d e r y i e l d o v e r the noninoculated control. These results i n d i c a t e t h a t bacterial i n o c u l a t i o n results in increased r o o t biomass w i t h the possible Root volume consequent i m p r o v e d u p t a k e o f n u t r i e n t s f r o m the ( m L plant-1) s o i l . T h e r e f o r e , the observed enhanced yields d u e to 20 1.96 2.612 2.732 0.58 i n o c u l a t i o n m a y be a t t r i b u t a b l e to f a c t o r s such as 35 4.38 6.582 6.032 0.83 growth-promoting 50 5.08 7.082 6.352 1.56 bacteria, i n a d d i t i o n t o t h e i r a b i l i t y t o f i x e l e m e n t a l nitrogen. 65 5.38 8.382 7.062 0.83 80 5.23 9.752 6.802 1.03 substances elaborated by the T h e a b i l i t y of A. brasilense to i m p r o v e r o o t b i o mass has also been s h o w n in p o t e x p e r i m e n t s w i t h G r a i n yield (kg 1036 1469 1175 NS ha-1) Fodder yield finger millet, tum), a n d 4497 74722 50262 kodo millet (Paspalum scrobicula- I t a l i a n m i l l e t (Setaria italica). 732 (kg ha-1) 1. Mean of five plants, each from three replicated plots. 2. Significant increase over noninoculated c ontrol. 3. NS = Not significant. Response of Pearl M i l l e t t o Inoculation with V A M Fungi and Azospirillum brasilense I n these p o t e x p e r i m e n t s the vesicular a r b u s c u l a r Sorghum m y c o r r h i z a ( V A M ) f u n g i used f o r s o i l i n o c u l a t i o n were 1. Seed i n o c u l a t i o n w i t h Azotobacter or A z o s p i r i l lum s i g n i f i c a n t l y increases s h o o t mass a n d r o o t Acaulospora Glomus fasciculatum, tions, sp, with Gigaspora A. margarita, brasilense and combina- over the n o n i n o c u l a t e d c o n t r o l . T h e d r y - 27 matter content of shoots, root biomass, and P - u p t a k e o f the c r o p were s t u d i e d ( T a b l e 3). g r a i n a n d f o d d e r y i e l d increased s i g n i f i c a n t l y d u e t o combined i n o c u l a t i o n (Table 4). T a b l e 3. Response of pearl millet to inoculation w i t h A. 1 Table 4. Influence o f A . brasilense a n d V A M ( G l o m u s brasilense a n d V A M fungi i n potted plants , I A R I , N e w fasciculatum) inoculation on root a n d shoot mass, r o o t Delhi. volume, Treatment Shoot Root Total P mass mass P uptake (g plant-1) (g plant-1) content (mg (%) plant-1) and yield of sorghum CSH 8R in a field experiment. Treatments Root Grain volume (mL yield Fodder yield plant -1 ) (kg ha-1) (kg ha -1 ) 21.5 12.6 1990 4280 4.82 23.22 13.9 2150 4610 4.3 22.32 13.1 2100 4480 6.8 2 28.12 15.4 26602 56802 0.9 NS3 390 630 Root mass1 Shoot mass1 (g plant -1 ) (g plant -1 ) 4.1 Noninoculated Noninoculated control (No V A M , no A. A. brasilense) brasilense Acaulospora sp 13.3 0.16 0.10 13.7 14.4 0.35 2 0.142 20.1 16.4 0.28 2 0.142 21.1 control A. brasilense VAM (G. G. margarita 16.4 0.25 0.142 fasciculatum) 21.2 A. brasilense + G. fasciculatum Acaulospora A. G. A. G. A. sp + 16.8 0.28 0.11 20.2 17.4 0.382 0.09 16.6 brasilense margarita (G. CD fasciculatum) (P<0.05) 0.5 1. Sampled at 80 days of plant growth. 2. Significant increase over n oninocula ted control. + 19.8 2 0.362 0,12 23.2 20.62 0.382 0.13 25.92 3. NS = Not significant. brasilense fasciculatum + Future Program brasilense L.S.D. (P<0.05) NS3 0.14 1. NS 0.14 0.012 NS NS NS 0.012 NS 0.012 NS T h e areas o f research t h a t need a t t e n t i o n w i t h r e g a r d Azospirillum t o B N F aspects o f s o r g h u m a n d m i l l e t s are: (1) T h e m o d e o f e n t r y o f the associated b a c t e r i a i n t o p l a n t 2 . V A M fungi r o o t s has t o b e c l e a r l y u n d e r s t o o d . (2) T h e p r o c e dures f o r e n u m e r a t i o n o f b a c t e r i a i n the r h i z o s p h e r e , 3. V A M x A z o - 3.12 0.10 NS 5.2 spirillum o n the r o o t surface, a n d inside the r o o t s have t o b e s t a n d a r d i z e d . (3) T h e best m e t h o d o f seed i n o c u l a t i o n has t o b e s t a n d a r d i z e d . (4) T h e r e l a t i v e benefits 1. Average of six replications. 2. Significant increase over corresponding control. 3. NS = N o t significant. b y g r o w t h factors and N 2 f i x a t i o n i n plant g r o w t h have to be q u a n t i t a t i v e l y assessed. (5) W h a t are t h e g r o w t h f a c t o r s e l a b o r a t e d b y the b a c t e r i a i n t h e r o o t system a n d i n t h e r h i z o s p h e r e , b o t h q u a l i t a t i v e l y a n d q u a n t i t a t i v e l y ? (6) A r e h o s t - c u l t i v a r responses Effect o f D u a l Inoculation with A.brasilense and VAM Fungi to inoculants repeatable at different locations a n d , l i k e w i s e , c a n the i n t r i n s i c a b i l i t y o f c u l t i v a r s t o s h o w h i g h A R A values i n i n t a c t - p l a n t systems b e r e p r o - on Sorghum Growth and Yield d u c e d u n d e r d i f f e r e n t c o n d i t i o n s ? A r e these c h a r a c - I n a f i e l d e x p e r i m e n t a t P a r b h a n i , i t was o b s e r v e d genetically to other cultivars? teristics h e r i t a b l e ? A n d , i f so, c a n t h e y b e t r a n s f e r r e d t h a t t h e m e a n r o o t a n d s h o o t mass o f s o r g h u m In developing countries such as I n d i a , where Azospirillum sorghum a n d millets are g r o w n under l o w - i n p u t c o n - a n d V A M i n o c u l a t i o n . T h e results a l s o s h o w e d t h a t d i t i o n s , even m a r g i n a l increases i n c r o p y i e l d s t o t h e plants 28 increased significantly due to equivalents o b t a i n a b l e by the a d d i t i o n of 20-30 kg N ha -1 , are indeed w o r t h w h i l e . Hence, intensive f u t u r e efforts o n B N F research aspects o f s o r g h u m a n d m i l l e t s , a t b o t h the f u n d a m e n t a l a n d a p p l i e d levels, would be rewarding. The fundamental w o r k in f u t u r e requires emphasis on the genetics a n d m o l e c u l a r b i o l o g y o f d i a z o t r o p h i c bacteria associated w i t h p l a n t r o o t s , o n experiments designed t o integrate engineered n i t r o g e n - f i x i n g bacteria w i t h p l a n t p r o toplasts a n d tissue cultures, so as to i m p a r t higher nitrogen-fixation potential to sorghum and millet cultivars. Discussion O . P . Rupela: Y o u r e p o r t t h a t a t P a r b h a n i , increase i n r o o t mass was n o t i c e d due to i n o c u l a t i o n consistently f o r 3 years. W a s it a p o t or field trial? If it was a field t r i a l , h o w was the r o o t mass recovered a n d measured? N . S . Subba R a o : Yes, it was a field t r i a l . T h e r o o t system was carefully d u g o u t a n d washed, a n d lateral r o o t s were recovered a n d measured b y displacement o f w a t e r i n a m e a s u r i n g c y l i n d e r f o r v o l u m e , a n d later d r y mass data were o b t a i n e d . Acknowledgements T h e a u t h o r wishes t o t h a n k w o r k e r s a t different centers f o r t h e i r c o o p e r a t i o n a n d , m o r e p a r t i c u l a r l y , those i n v o l v e d i n f i e l d w o r k a t the P a r b h a n i center—Drs R.S.Raut, G.B.Rudraksha, K . V . B.R. T i l a k , a n d C . S . S i n g h , a n d the project c o o r d i n a t o r s o f the s o r g h u m a n d m i l l e t p r o g r a m s o f the I C A R . References D e w a n , G . I . , and Subba R a o , N . S . 1979. Seed i n o c u l a t i o n with Azospirillum brasilense a n d Azotobacter chroococcum a n d the r o o t biomass of rice ( O r y z a sativa L . ) . P l a n t a n d S o i l 53:295-302. G.S. Jadhav: T o realize the a g r o n o m i c significance o f N 2 f i x a t i o n by n o n s y m b i o t i c bacteria it is very essential t o : 1. R e p o r t a l l s u p p l e m e n t a r y i n f o r m a t i o n , such as i n i t i a l soil f e r t i l i t y , r a i n f a l l p a t t e r n , i r r i g a t i o n , soil type, a n d v a r i e t y o r c u l t i v a r used. 2 . I n d e t e r m i n i n g responses w e s h o u l d analyze y i e l d data b o t h i n terms o f statistical significance a n d e c o n o m i c benefits, in terms of N e c o n o m y a n d y i e l d gain. 3 . A d a p t i v e trials o n farmers' f i e l d s s h o u l d b e c o n d u c t e d t o take N 2 - f i x a t i o n t e c h n o l o g y t o farmers q u i c k l y , i t b e i n g l o w cost a n d e c o n o m i c a l l y a n d ecologically profitable. K a v i m a n d a n , S . K . , S u b b a R a o , N . S . , and M o h r i r , A . V . 1978. I s o l a t i o n of Spirillum lipoferum f r o m the stems o f w h e a t a n d n i t r o g e n f i x a t i o n i n e n r i c h m e n t c u l tures. C u r r e n t Science 47:96-98. O n the basis o f present k n o w l e d g e o f i n o c u l a t i o n m e t h o d s of Azospirillum, w h i c h is the best a n d m o s t e c o n o m i c a l m e t h o d o f i n o c u l a t i o n i n pearl m i l l e t ? Lakshmi, V . , R a o , A . S . , Vijayalakshmi, K . , Lakshmikum a r i , M . , T i l a k , K . Y . B . R . , and Subba R a o , N . S . 1977. E s t a b l i s h m e n t a n d s u r v i v a l of Spirillum lipoferum. P r o ceedings o f the I n d i a n A c a d e m y o f Sciences, S e c t i o n B 86:397-405. N . S . Subba R a o : Seed i n o c u l a t i o n as practiced f o r legume i n o c u l a t i o n w i t h rhizobia. L a k s h m i k u m a r i , M . , K a v i m a n d a n , S . K . , and Subba R a o , N . S . 1976. O c c u r r e n c e o f n i t r o g e n f i x i n g Spirillum i n r o o t s o f rice, s o r g h u m , maize a n d o t h e r p l a n t s . I n d i a n J o u r n a l o f E x p e r i m e n t a l B i o l o g y 14:638-639. Subba R a o , N . S . , T i l a k , K . V . B . R . , Singh, C . S . , a n d L a k s h m i k u m a r i , M . 1979. Response o f a few e c o n o m i c species o f g r a m i n a c e o u s p l a n t s t o i n o c u l a t i o n w i t h A z o s p i rillum brasilense. C u r r e n t Science 48:133-134. T i e n , T . M . , Gaskins, M . H . , and H u b b e l l , D . H . 1979. P l a n t g r o w t h substances p r o d u c e d b y Azospirillum b r a s i lense a n d t h e i r effect o n the g r o w t h o f p e a r l m i l l e t (Pennisetum americanum L . ) . A p p l i e d and Environmental M i c r o b i o l o g y 37:1016-1024. J . V . D . K . Kumar Rao: Y o u have r e p o r t e d significant responses t o A z o s p i rillum i n o c u l a t i o n at six o u t of n i n e centers u n d e r the A l l I n d i a B N F project. W h a t i s t h e m e t h o d o f i n o c u l a t i o n used i n these trials? W h a t i s the f o r m o f i n o c u l a n t a n d the n a t u r e o f the carrier? W h a t i s the viable-cell c o u n t i n the i n o c u l a n t a n d o n the seed after i n o c u l a t i o n ? N . S . Subba R a o : Seed i n o c u l a t i o n was d o n e f r o m a finely p o w d e r e d f a r m y a r d m a n u r e a n d s o i l i n o c u l a n t i n the r a t i o o f 1 : 1 , b y m a k i n g a n aqueous s l u r r y a n d also u s i n g c a r b o x y m e t h y l cellulose as an adhesive (same as 29 r h i z o b i a l seed i n o c u l a t i o n ) . W e d i d n o t m a k e v i a b l e c e l l c o u n t s o n the seed, b u t w e m o n i t o r e d i n o c u l a n t s u r v i v a l in this carrier. It h a d 10 9 cells even after 9 m o n t h s o f storage u n d e r r o o m c o n d i t i o n s . S . V . Hegde: Y o u m e n t i o n e d nitrogenase a c t i v i t y o f some c u c u r bits i n tissue c u l t u r e i n the absence o f a n y N 2 - f i x i n g microorganisms. 1 . H o w was the c u c u r b i t microorganisms? plant made free of 2 . W h a t was the level o f a c t i v i t y i n the a x e n i c culture? N . S . Subba R a o : T h e c a l l i o f c u c u r b i t s e x h i b i t e d h i g h nitrogenase a c t i v i t y w i t h o u t a n y bacteria i n the cells. T h e possib i l i t y o f n i f gene i n c o r p o r a t i o n i n t o the c h r o m o z o m e of the p l a n t cell has been p o s t u l a t e d by P r o f . Sen a n d his students at K a l y a n i U n i v e r s i t y , West Bengal. P. Tauro: R e g a r d i n g the K a l y a n i e x p e r i m e n t , w h a t was the level o f acetylene r e d u c t i o n i n tissue culture? N . S . Subba R a o : E n d o g e n o u s ethylene p r o d u c t i o n is r u l e d o u t . S.P. W a n i : I s there a n y response? coordinated trial on inoculation N . S . Subba R a o : T h e r e are n o c o o r d i n a t e d t r i a l s . B u t w e are c o n d u c t i n g experiments at Parbhani and Coimbatore. We have no facilities f o r large-scale testing. P . A . Shinde: D u r i n g the V I I F i v e Y e a r P l a n , p o s i t i o n s o f M i c r o biologists s h o u l d b e p r o p o s e d i n M i l l e t a n d S o r g h u m projects o f the I C A R . 30 Associative Biological N i t r o g e n F i x a t i o n Research at H a r y a n a A g r i c u l t u r a l University B.S. K u n d u , K . R . D a d a r w a l , and P . T a u r o 1 Summary Several different types with sorghum, associated as determined by vary widely with 12S, has of bacteria their the been found brasilense. It pearl to also dependent nitrogen fixation. used the in cultivation with millet, the and acetylene-reduction isolates. have possesses Its of the to grown activity the several ARA and has high a ARA strong is above been The and the as C02, levels have been found quantity the isolates identified reduces to acetylene Hisar. hundred hydrogenase, insensitive reduce at (ARA), Among of conditions for tested, a and one strain optimal sorghum be fixed, A RA isolate, of A z o s p i r i l l u m carries of inorganic to nitrogen out a nitrogen nitrategenerally crops. Introduction O u r interest i n n i t r o g e n f i x a t i o n a t H a r y a n a A g r i c u l t u r a l U n i v e r s i t y ( H A U ) began i n the late 1970s w h e n we isolated a s t r a i n of Pseudomonas azotogensis f r o m the r o o t s o f pearl m i l l e t t h a t c o u l d reduce n i t r o g e n ( P r a b h a e t a l . 1980). Since t h e n this w o r k has been strengthened a s p a r t o f a n I C A R c o o r d i nated research project o n B i o l o g i c a l N i t r o g e n F i x a t i o n ( B N F ) i n the D e p a r t m e n t o f M i c r o b i o l o g y . O u r m a j o r interests are centered a r o u n d the i s o l a t i o n a n d q u a n t i f i c a t i o n o f n i t r o g e n f i x a t i o n b y the v a r i o u s bacteria f r o m the r o o t s o f s o r g h u m , p e a r l m i l l e t , a n d wheat, three m a j o r crops g r o w n i n o r a r o u n d Haryana. Nitrogen Fixation in Pearl Millet and Wheat W e c a r r i e d o u t some i n i t i a l studies t o d e t e r m i n e the t i m e o f d a y w h e n m a x i m u m n i t r o g e n f i x a t i o n occurs a n d also the stage o f c r o p g r o w t h d u r i n g w h i c h 1. ability wheat f i x a t i o n i s m a x i m u m . I n a l l studies r e p o r t e d h e r e i n , n i t r o g e n fixation was d e t e r m i n e d by m e a s u r i n g the acetylene-reduction a c t i v i t y ( A R A ) . In p e a r l m i l l e t , the in situ nitrogenase a c t i v i t y was estimated at 50 days after s o w i n g ( f l o w e r i n g stage) by the core assay m e t h o d . F o r this, s o i l cores of 15 c m d i a m e t e r a n d 2 2 c m d e p t h were r e m o v e d a l o n g w i t h the p l a n t a n d transferred to 5 L a i r t i g h t plastic buckets w i t h the p r o v i s i o n f o r i n j e c t i n g a n d s a m p l i n g acetylene. T h e cores were t h e n i n c u b a t e d i n 10% acetylene a t m o s p h e r e f o r 18 h at 3 0 - 3 2 ° C , after w h i c h gas samples were w i t h d r a w n a n d analyzed f o r the e x t e n t o f acetylene r e d u c t i o n . I n wheat, s i m i l a r s o i l cores a r o u n d the plants were t a k e n a n d the a d h e r i n g s o i l was r e m o v e d b y gentle s h a k i n g . T h e t o p was c u t , a n d the r o o t s were t r a n s f e r r e d t o 500 m L assay j a r s a n d assayed a s before f o r A R A . I n e x p e r i m e n t s t o d e t e r m i n e the d i u r n a l v a r i a t i o n in nitrogen f i x a t i o n , we found that more than 25 µ moles o f acetylene was reduced per p l a n t s o i l core in 24 h w h e n the p l a n t s were assayed a r o u n d n o o n , a n d f i x a t i o n was less either before o r after. I t was f o u n d t h a t N 2 f i x a t i o n was m a x i m u m d u r i n g t h e Associate Professor, National Fellow, and Professor of Eminence, Department of Microbiology, College of Basic Sciences and Humanities, Haryana Agricultural University, Hisar, Haryana 125 004, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502324, India: I C R I S A T . 31 p r e f l o w e r i n g stage a n d less thereafter. These parameters were f o u n d t o b e s i m i l a r i n wheat. I t was also f o u n d t h a t the extent o f A R A v a r i e d s i g n i f i c a n t l y w i t h the w h e a t v a r i e t y ; the h i g h - y i e l d i n g v a r ieties were generally ( b u t n o t always) f o u n d t o d i s p l a y a h i g h e r level o f A R A . Determination of M o s t Probable N u m b e r ( M P N ) o f Nitrogen-fixing B a c t e r i a Associated w i t h P e a r l M i l l e t and Wheat F o r the e s t i m a t i o n o f M P N , 1 0 varieties o f w h e a t a n d 3 varieties of pearl m i l l e t were selected. P l a n t samples were collected f r o m the n o n f e r t i l i z e d area o f the u n i v e r s i t y f a r m d u r i n g the p r e f l o w e r i n g stage a n d M P N estimated b o t h f r o m the r o o t washings a n d f r o m the r o o t macerates. D e t a i l s o f the procedures f o l l o w e d are available f r o m the a u t h o r s . T h e sterilized Dobereiner's semisolid m e d i u m was used ( D o b e r e i n e r e t a l . 1976) a n d the M P N was calcul a t e d f r o m the reference table o f H a r r i g a n a n d M c C a n c e (1956), T h e r o o t s were washed g e n t l y f o r r e m o v i n g the a d h e r i n g s o i l , cut i n t o 2-3 c m l o n g pieces, a n d 5-g r o o t pieces were transferred to 45 mL sterile saline a n d shaken a t r o o m t e m p e r a t u r e (283 0 ° C ) f o r l h . T h e washed r o o t pieces were t h e n macerated i n sterilized m o r t a r a n d pestle a n d the v o l u m e was made u p t o 5 0 m L . T e n - f o l d serial d i l u t i o n s f r o m r o o t w a s h i n g a n d r o o t macerate were p r e p a r e d a n d used f o r M P N using Dobereiner's semisolid m e d i u m ( D o b e r e i n e r et a l . 1976). F i v e replicated tubes f r o m each d i l u t i o n were i n c u b a t e d f o r 48 h at 3 0 ° C a n d t h e n 10% of the gas phase was replaced w i t h acetylene. I n wheat, the M P N i n r o o t washings v a r i e d f r o m 1.7 x 10 6 g - 1 of fresh r o o t s to 13 x 10 6 g - 1 , w h i l e in the r o o t macerates, the n u m b e r v a r i e d between 0.6-5.5 x 10 6 g - 1 o f fresh r o o t weight. T h e h i g h - y i e l d i n g c u l t i vars W H 147, W H 157, H D 2009, a n d P 1030 h a d a higher n u m b e r o f n i t r o g e n - f i x i n g bacteria associated w i t h t h e i r roots. I n contrast t o this, i n p e a r l m i l l e t ( a rainy-season c r o p ) , the n u m b e r o f bacteria f o u n d i n the r o o t washings were less t h a n i n the r o o t macerates s u g g e s t i n g a p o s s i b l e r e l a t i o n s h i p between the n u m b e r o f bacteria i n the r o o t zone a n d the e n v i r o n m e n t a l t e m p e r a t u r e d u r i n g the g r o w t h p e r i o d o f pearl m i l l e t . I t i s l i k e l y t h a t because o f the h i g h t e m p e r a t u r e , a greater n u m b e r of bacteria are f o u n d inside the r o o t s t h a n outside. I n w h e a t i t i s the reverse, since the g r o w t h p e r i o d corresponds to a 32 t i m e w h e n the temperatures are moderate. I n b o t h crops, however, there is a r e l a t i o n s h i p between the n u m b e r o f bacteria f o u n d , the extent o f n i t r o g e n f i x a t i o n , a n d the y i e l d p o t e n t i a l o f the v a r i e t y . These results a l l o w e d us to c o n c l u d e t h a t a large n u m b e r of bacteria associate w i t h the roots o f cereals g r o w n i n this area. F r o m the tubes t h a t showed A R A f r o m the above e x p e r i m e n t , isolations were made o n N-free agar m e d i u m , a n d 216 isolates f r o m p e a r l m i l l e t were selected based o n c o l o n y m o r p h o l o g y , o u t o f w h i c h 183 were selected f o r f u r t h e r study. S i m i l a r l y , f r o m wheat a n d s o r g h u m , a t o t a l of 146 cultures were isolated f o r f u r t h e r study. T h e isolates i n c l u d e d b o t h G r a m - p o s i t i v e a n d G r a m - n e g a t i v e bacteria b u t surp r i s i n g l y , except f o r one o r t w o cultures, a z o s p i r i l l a were conspicuously absent. These cultures were f o u n d t o v a r y w i d e l y i n t h e i r A R A , a n d the m e d i a c o n d i t i o n s r e q u i r e d f o r t h e i r o p t i m a l A R A expression also v a r i e d ( B . S . K u n d u , u n p u b l i s h e d data). T a b l e 1 shows the A R A o f some o f the b a c t e r i a l isolates f r o m the roots o f the above three crops. Isolate 12S f r o m s o r g h u m showed the highest A R A under the assay c o n d i t i o n s ; b u t the value was m u c h less t h a n the values r e p o r t e d f o r other bacteria isolated f r o m the roots o f cereals. T o check the p o t e n t i a l o f this o r g a n i s m w i t h the o t h e r cultures, standard cultures were o b t a i n e d f r o m o t h e r l a b o r a tories a n d c u l t u r e d s i m i l a r l y a l o n g w i t h the t w o best cultures f r o m each o f three crops. I t was f o u n d t h a t the level o f A R A was highest w h e n c u l t u r e d i n semis o l i d m e d i u m a n d o n the 3 r d o r 4 t h d a y o f i n c u b a t i o n ( T a b l e 2). A m o n g a l l the cultures tested, isolate 12S h a d the highest a c t i v i t y a n d was considered to be Table 1 . T h e A R A (nmoles C 2 H 4 tube - 1 d - 1 ) o f some isolates f r o m sorghum, pearl millet, a n d wheat. Pearl millet Isolate A R A P M 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B MB Sorghum Wheat 31 84 906 996 756 276 252 ND 4 ND 4 1. ND = not detected. Isolate ARA Isolate ARA W 1 12 168 12 24 19 29 17 190 20 12 14 S2 192 ND1 480 384 384 2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 12 612 552 156 300 720 2160 T a b l e 2 . A R A (nmoles C 2 H 4 tube - 1 d - 1 ) level o f various T a b l e 3. nitrogen-fixing bacteria. 1 SP7. G r o w t h rates of A. brasilense isolates 12S a n d O . D . 600 n m a f t e r A R A , days after i n o c u l a t i o n 6 d a y s at 3 0 °C Bacteria 2 3 4 5 S. itersonii 125 140 140 135 A. brasilense, 1373 2420 2005 1595 s t r a i n SP 7 A. 6 7 95 861 602 brasilense, s t r a i n 12S 1889 2595 2715 2990 1610 1365 I s o l a t e 8S from sorghum 9 30 72 82 72 24 6 11 14 6 3 2 - 3 6 5 2 8 12 74 58 42 4 50 141 161 168 - 68 Isolate 4B f r o m pearl millet Treatment 12S SP7 Control (-Malate) 0.02 0.09 +Malate 0.04 0.27 +Malate +Urea 0.05 0.38 +Malate + K N O 3 0.09 0.45 +Malate +NH4C1 0.09 0.48 Malate concentration: 5 gm L -1 ; N source: 5 µm. Isolate 22B f r o m pearl millet Isolate 2 W f r o m wheat Isolate 8 W f r o m wheat 1. Azotobacter and Rhizobia showed no A R A in this medium. a s u p e r i o r c u l t u r e . It has been subsequently tested f o r its A R A , c o m p a r e d w i t h A. brasilense SP7, a n d f o u n d superior u n d e r a l l c o n d i t i o n s . I t has been f o u n d t h a t A R A expression o f this o r g a n i s m is highest w h e n it is c u l t u r e d in a semisolid m e d i u m . F u r t h e r , f o r m a x i m a l expression the m e d i a s h o u l d c o n t a i n m a l a t e as the c a r b o n source a n d either v i t a m i n s o r yeast e x t r a c t . O p t i m u m p H s h o u l d be 6-7 a n d the o p t i m u m t e m p e r a t u r e 3 0 ° ± 2 ° C u n d e r semisolid c o n d i t i o n s . Highest A R A is detected w i t h i n 4-5 days. T o estimate the n i t r o g e n - f i x i n g p o t e n t i a l o f isolate 12S, w e have t r i e d t o g r o w i t i n l i q u i d m e d i u m f o r 24 h a n d t h e n transfer the cells to s e m i s o l i d m e d i u m . By this it was possible to use a larger cell mass a n d i n d u c e A R A earlier. U n d e r these c o n d i t i o n s , i t was possible t o r e c o r d higher A R A values, f o r b o t h SP7 a n d 12S strains. W e believe t h a t this s t r a i n has capacities higher t h a n 103 µ m o f A R A per O D , w h i c h i s considerably higher t h a n a n y o t h e r c u l t u r e tested so far. U n l i k e SP7, the isolate 12S displays p o o r g r o w t h under a l l c u l t u r a l c o n d i t i o n s ( T a b l e 3). U n t i l recently, w e had n o m e d i u m i n w h i c h this c o u l d g r o w u n i f o r m l y , b u t n o w w e have developed one c o n t a i n i n g galactose, i n w h i c h this o r g a n i s m g r o w s u n i f o r m l y as w e l l as possesses A R A a c t i v i t y ( B . S . K u n d u , u n p u b l i s h e d data). T h i s strain, l i k e other strains of a z o s p i r i l l a , also possesses a s t r o n g h y d r o g e n - o x i d i z i n g system that appears to be associated w i t h n i t r o g e n f i x a t i o n , since A R A a c t i v i t y i s enhanced b y 3 1 % i n the presence o f 10% h y d r o g e n ( T a b l e 4). T h i s c u l t u r e has also been f o u n d to s h o w a u t o t r o p h i c g r o w t h a n d the a b i l i t y t o reduce c a r b o n d i o x i d e . T h e a b i l i t y t o f i x atmospheric n i t r o g e n , o x i d i z e h y d r o g e n , as w e l l as reduce c a r b o n d i o x i d e , makes this o r g a n i s m a n ideal choice f o r f u t u r e studies in associative symbiosis. T h e o n l y p r o b l e m is its e x t r e m e l y slow rate o f g r o w t h . A s s o c i a t i v e s y m b i o n t s perhaps have a role in soils w i t h l o w n i t r o g e n levels o r under subsistence a g r i c u l t u r e . A l t h o u g h NO 3 -dependent N 2 r e d u c t i o n i s k n o w n i n this o r g a n i s m , the n i t r o g e n m e t a b o l i s m o f these o r g a n i s m s u n d e r c o n d i t i o n s of l o w s o i l N levels becomes i m p o r t a n t . W e have e x a m i n e d its a b i l i t y t o u t i l i z e different i n o r g a n i c f o r m s o f n i t r o g e n a n d its relation to nitrogen fixation. When cultured in T a b l e 4 . Enhancement o f A R A i n strain 12S a n d S P 7 o f A. brasilense by hydrogen. P h y s i o l o g i c a l Studies w i t h I s o l a t e 1 2 S Isolate 12S was subjected to v a r i o u s tests, a n d it has been f o u n d s i m i l a r to A. brasilense except in its a n t i b i o t i c resistance p a t t e r n . W h i l e strain SP7 is resistant to s t r e p t o m y c i n , s t r a i n 12S is resistant to chloramphenicol. ARA1 % increase C2H2+H2 H 2 ase 2 in A R A 4220 5570 34 31 2564 2830 15 10 Strain C2H2 12S SP7 1. A R A : nm C 2 H 4 tube -1 d - 1 2. H 2 ase: µm H 2 consumed d -1 . 33 m e d i a c o n t a i n i n g 300 p p m n i t r a t e - N , this o r g a n i s m carries o u t d e n i t r i f i c a t i o n . H o w e v e r , w h e n c u l t u r e d u n d e r l o w e r levels of nitrat e N (60 p p m ) , it n o t o n l y utilizes n i t r a t e b u t also fixes n i t r o g e n . A s c o m p a r e d t o t h i s , A R A i s n o t detected a t c o n c e n t r a t i o n s o f a m m o n i u m - N a s l o w a s 2 4 p p m . I n v i e w o f the fact t h a t soils r a r e l y c o n t a i n such levels o f either n i t r a t e o r a m m o n i c a l n i t r o g e n , w e can safely c o n c l u d e t h a t u n d e r l o w - n i t r o g e n regimes, n i t r o g e n - f i x i n g a b i l i t y of this o r g a n i s m is n o t affected. F u t u r e Research Priorities F u t u r e studies w i l l i n c l u d e e v a l u a t i o n o f strain 12S under field c o n d i t i o n s i n s o r g h u m , pearl m i l l e t , a n d wheat. A t present w e f i n d that its s u r v i v a l f o l l o w i n g seed a p p l i c a t i o n is p o o r , a n d we have h a d d i f f i c u l t i e s i n establishing its association w i t h any p a r t o f the r o o t s . W e also have plans t o c o n t i n u e o u r b i o c h e m i cal studies w i t h this o r g a n i s m a n d t o understand this o r g a n i s m genetically, w i t h a view to explore its usefulness i n the c u l t i v a t i o n o f cereals. P o t - h o u s e a n d F i e l d Studies Since isolate 12S was f o u n d to be very s i m i l a r to SP7 b u t h a d h i g h e r A R A , i t was decided t o test w h e t h e r i t c o u l d associate w i t h the r o o t s o f some o f the crops a n d f i x n i t r o g e n . I n pot-house experiments w i t h t w o varieties of pearl m i l l e t , a significant response was seen b o t h i n r o o t a n d shoot w e i g h t t o the seed a p p l i c a t i o n of these bacteria ( T a b l e 5). These observat i o n s led us to test the usefulness of this b a c t e r i u m under field c o n d i t i o n s . O u r studies have n o t s h o w n conclusively w h e t h e r these bacteria excrete a n y g r o w t h - p r o m o t i n g substances. O u r estimates o f m a l a t e i n the r o o t s o f s o r g h u m a n d pearl m i l l e t suggest a greater a c c u m u l a t i o n o f malate d u r i n g later stages o f g r o w t h w h e n nitrogen fixation is m i n i m u m . Acknowledgements T h i s research was f i n a n c e d b y the I n d i a n C o u n c i l o f A g r i c u l t u r a l Research ( I C A R ) , N e w D e l h i , a n d the authors gratefully acknowledge the f i n a n c i a l assistance. References Dobreiner, J . , M a r r e l I . E . , and N e r y , M . 1976. E c o l o g i c a l d i s t r i b u t i o n of Spirillum lipoferum B e i j e r i n c k . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 22:1464-1476. T a b l e 5. Effect of seed inoculation in pearl millet cultivars. Treatment Control Strain Strain Strain CD 12S 4B 4B+22B (P<0.05) 129 43 - 129 183 Parameter Cultivars N 2 - f i x e r s x 10 4 g - 1 HS 1 8 27 (Rhizosphere) HS 4 54 246 N 2 - f i x e r s x 10 4 g - 1 HS 1 2 16 154 12 (Rhizosplane) HS 4 134 134 162 222 HS 1 ND Root ARA 6.0 1.2 1.8 24.1 28.6 15.9 - ( C 2 H 4 g - 1 r o o t mass) HS 4 D r y matter HS 1(R)1 203 305 353 348 ( m g / 3 plants) H S 1(S) 2 580 726 883 773 HS 4(R) 435 643 570 630 72 H S 4(S) 683 900 883 953 240 12S: A. brasilense, 4B and 22B: Bacterial isolates f r o m pearl millet. 1. R = Root weight. 2. S = Shoot weight. 34 8.2 80.7 130 H a r r i g a n , W . F . , and M c C a n c e , M . E . 1956. P r o b a b i l i t y tables f o r the e s t i m a t i o n o f b a c t e r i a l n u m b e r s b y the d i l u t i o n tube technique. In L a b o r a t o r y methods in m i c r o b i o l o g y . L o n d o n , U K : A c a d e m i c Press. P r a b h a , S . , N a i r , S . K . , D a d a r w a l , K . R . , and T a u r o , P . 1980. Pseudomonas azotogensis: an associate s y m b i o n t of Pennisetum americanum. P l a n t a n d S o i l 49:657-659. Discussion C . P . Ghonsikar: W h i c h c a r b o h y d r a t e c o m p o u n d s were i d e n t i f i e d besides m a l a t e a t a t i m e o f h i g h A R A a c t i v i t y ? P. Tauro: W e estimated malate e n z y m a t i c a l l y , a n d w e were interested o n l y in malate since this c a r b o n source has been f o u n d t o s u p p o r t o p t i m u m N 2 f i x a t i o n b y Azospirillum. N . S . Subba R a o : O t h e r Kreb's cycle intermediates also need to be studied. P . Tauro: O t h e r c a r b o n sources w i l l be tested. B u t m a l a t e c a n be easily assayed e n z y m a t i c a l l y . N . N . Prasad: W h e n malate is less in r o o t extract, it increases w i t h age w h i l e nitrogenase a c t i v i t y decreases w i t h age. W h a t m a y b e the possible source o f c a r b o n f o r A z o s pirillum t o f i x a t m o s p h e r i c nitrogen? I n rice c r o p , w i t h o u t C4 p a t h w a y also, Azospirillum is effective as r e p o r t e d by T N A U . So, I feel there is a need to ascertain the n a t u r e o f c a r b o n c o m p o u n d s used b y Azospirillum to f i x a t m o s p h e r i c n i t r o g e n . P. Tauro: We d i d n ' t study these aspects. O . P . Rupela: I n y o u r presentation y o u m e n t i o n e d that there was a l o g 2 decrease i n p o p u l a t i o n o f i n o c u l a n t s t r a i n , i n pots, w i t h i n a week. C o u l d y o u please give us some figures? H o w d i d y o u estimate these p o p u l a t i o n s ? P. Tauro T h e r e was a decrease of l o g 2 ( f r o m 10 6 to 10 4 ) d u r i n g the 1st week, w h i c h f u r t h e r decreased. A t the end o f 2 weeks, the s u r v i v a l was o n l y a b o u t 10 2 . T h e bacteria i n t r o d u c e d had a c h l o r a m p h e n i c o l m a r k e r . 35 Studies on the Interactions Between Azospirillum and Pearl M i l l e t A . V . R a o and B . Venkateswarlu1 Summary Biologically seed active and stimulated by present by compounds—such root seed and in the exudates the roots A marked exhibited amounts of were found marked increase sandy loam and with in consistent A. the the pearl activity compounds. inadequate for increase in Inoculation grown nitrogenase carbon sugars, millet. exudates, exudates. inoculation/ impregnation lation, root of axenically older plants. as of pearl growth acids, and was generally related significantly enhanced millet plants, increase and in Axenically that with varied However, optimum population the growth and organic activity to the the the carbon exudation was activity observed in in the upon the compounds of various compounds more pronounced in was activity root addition in brasilense, of organic millet plants, The compounds present organism of A. of roots grown pearl of the acids—are present quantity effect cultivars. nitrogenase was and nitrogenase cell permeability brasilense. population Azospirillum amino The upon was in related the zone, as root there of sucrose. rhizoplane following the observed upon inoculation inocuto the exudates was a Maximum in a soil. Introduction Materials and Methods Pearl m i l l e t , a n i m p o r t a n t c r o p o f the semi-arid tropics ( S A T ) , has been reported to derive a g r o n o m ically significant a m o u n t s o f n i t r o g e n f r o m the Azospirillum association ( S m i t h et a l . 1976). H o w ever, results of the i n o c u l a t i o n experiments have n o t always been consistent (Barber et a l . 1979, N u r et a l . 1980, Vlassak a n d Reynders 1981, V e n k a t e s w a r l u a n d R a o 1983). T h e causes f o r the p l a n t - g r o w t h response f o l l o w i n g i n o c u l a t i o n are n o t clearly k n o w n . T h e r e is also a lack of i n f o r m a t i o n on the p h y s i o l o g i c a l interactions between the host p l a n t a n d the m i c r o s y m b i o n t . I n the present study, a n a t t e m p t has been made to investigate the interactions between the seed a n d r o o t exudates of pearl m i l l e t w i t h Azospirillum a n d its i m p l i c a t i o n s in the f o r m a t i o n o f the associative symbiosis. T h e bacterial strain used in these experiments was isolated f r o m the roots o f pearl m i l l e t a n d i d e n t i f i e d as Azospirillum brasilense, f o l l o w i n g the m e t h o d used by T a r r a n d et a l . (1978). T h e i n o c u l u m used in these studies is a pure-cell suspension of 4 - d a y - o l d A. brasilense ( O D = 0 . 4 g r o w n in n u t r i e n t b r o t h ) suspended in phosphate buffer. Seed exudates were collected by s o a k i n g surfacesterilized seeds in d i s t i l l e d water f o r 24 h a n d t h o r o u g h l y rinsed w i t h d i s t i l l e d water. T h e exudates were sterilized b y f i l t r a t i o n a n d stored a t 4 ° C . F o r c o l l e c t i o n o f r o o t exudates, 12-day-old plants, g r o w n a x e n i c a l l y in test tubes (25 x 200 m m ) c o n t a i n i n g acid-washed q u a r t z sand a n d watered w i t h Hoagland's nutrient solution containing 50 p p m a m m o n i u m n i t r a t e , were used. T h e exudates were 1. Microbiologists, Central A r i d Zone Research Institute, Jodhpur, Rajasthan 342003, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986, Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 37 collected by rinsing the roots a n d the associated sand i n d i s t i l l e d water, p o o l e d , p u r i f i e d , a n d concentrated to represent 1 mL f o r every 10 seedlings. T h e effect o f i n o c u l a t i o n w i t h A . brasilense o n the p a t t e r n o f r o o t e x u d a t i o n was studied o n 3 - d a y - o l d plants b y a d d i n g 1 m L pure-cell suspension t o each tube. T h e c o n t r o l plants received the same a m o u n t o f a u t o c l a v e d cells. R o o t exudates were p e r i o d i c a l l y collected a n d analyzed f o r organic c a r b o n b y W a l k ley a n d B l a c k r a p i d t i t r a t i o n m e t h o d , t o t a l n i t r o g e n b y m i c r o - K j e l d a h l m e t h o d , r e d u c i n g sugars b y N e l son's arseno-molybdate m e t h o d , a n d a m i n o n i t r o gen b y the n i n h y d r i n m e t h o d . T o s t u d y the effect o f seed a n d r o o t exudates o n the g r o w t h a n d nitrogenase a c t i v i t y of A. brasilense, the exudates were i n c o r p o r a t e d i n the c u l t u r e m e d i a i n different concentrations. F o r seed exudates, Dobereiner's semisolid malate m e d i u m ( D o b e r e i n e r a n d D a y 1976) w i t h 0.08% agar was used f o r g r o w t h , a n d w i t h 0.175% agar f o r nitrogenase a c t i v i t y . T h e tubes after i n o c u l a t i o n were i n c u b a t e d a t 3 0 ° C f o r 7 2 h , a n d the g r o w t h was measured a s O D a t 520 n m . F o r nitrogenase a c t i v i t y 2 days after i n c u b a t i o n , the c o t t o n plugs were replaced b y Subaseals a n d 10% o f the a i r was replaced w i t h C 2 H 2 . E t h y l e n e p r o d u c e d 2 4 h after i n c u b a t i o n was estimated b y a n A I M I L N u c o n gas c h r o m a t o g r a p h , e m p l o y i n g a P o r o p a k - T c o l u m n (2 m * 0.003 m) w i t h N 2 as c a r r i e r gas. F o r r o o t exudates, a malate l i q u i d m e d i u m , c o n t a i n i n g o n l y 5 0 % o f the m a l i c a c i d r e c o m m e n d e d b u t supplem e n t e d w i t h 5 0 p p m a m m o n i u m sulfate, was used, w h i l e f o r nitrogenase a c t i v i t y a semisolid malate m e d i u m c o n t a i n i n g 5 0 % o f the r e c o m m e n d e d level o f m a l i c a c i d was u t i l i z e d . T o study the p e r m e a b i l i t y o f pearl m i l l e t r o o t s , one set of tubes was i n o c u l a t e d w i t h 1 mL cell suspension of A. brasilense on the 3 r d day, w h i l e the c o n t r o l received the same a m o u n t o f a u t o c l a v e d cells. A t 1 5 days after s o w i n g ( D A S ) , samples o f fresh r o o t s were w r a p p e d in a cheese c l o t h a n d k e p t i n d i s t i l l e d water. T h e contents were shaken f o r 5 m i n a n d the c o n d u c t i v i t y o f the b a t h i n g s o l u t i o n was measured at 1 h intervals. F u r t h e r the r o o t m a t e r i a l f r o m c o n t r o l plants was i m p r e g n a t e d w i t h p u r e cell suspension of A. brasilense u n d e r v a c u u m , a n d the p e r m e a b i l i t y was tested as described above. T o measure nitrogenase a c t i v i t y o f p e a r l m i l l e t plants, 1 m L o f i n o c u l u m a n d 4 m L o f 1 % sucrose i n n u t r i e n t s o l u t i o n were a d d e d t o one set o f 3 - d a y - o l d seedlings in a sterilized sand a n d v e r m i c u l i t e g r o w t h m e d i u m , w h i l e the second set received the i n o c u l u m a n d 4 m L o f n u t r i e n t s o l u t i o n . Nitrogenase a c t i v i t y ( C 2 H 2 r e d u c t i o n ) o f 2 1 - d a y - o l d plants was measured 38 after i n c u b a t i o n f o r 2 4 h w i t h 10% C 2 H 2 . A p p r o priate c o n t r o l s were m a i n t a i n e d to get absolute activity. To estimate Azospirillum p o p u l a t i o n s , the 3-dayo l d plants were i n o c u l a t e d w i t h 1 m L o f cell suspens i o n ( 1 0 8 cells m L - 1 ) . T h e p o p u l a t i o n s o f Azospirillum i n b o t h the rhizosphere a n d n o n r h i z o s phere (tubes c o n t a i n i n g the g r o w t h m e d i u m b u t w i t h o u t plants) were d e t e r m i n e d at 3-day intervals by d i l u t i o n plate technique, using a malate-agar m e d i u m supplemented w i t h 500 p p m a m m o n i u m sulfate. To assess the establishment of this bacteria f o l l o w i n g i n o c u l a t i o n , the n u m b e r s of Azospirillum i n different r o o t zones, i.e., rhizosphere, r h i z o p l a n e , washed a n d crushed r o o t s , a n d surface-sterilized a n d crushed r o o t s were estimated b y the M P N m e t h o d f r o m 3 0 - d a y - o l d plants g r o w i n g i n a sandy loam soil. Results P e a r l m i l l e t seed exudates c o n t a i n e d v a r i a b l e a m o u n t s o f sugars a n d a m i n o acids, a n d the differences a m o n g c u l t i v a r s were n o t significant ( T a b l e 1). R e d u c i n g sugars were m u c h higher t h a n a m i n o acids i n a l l the c u l t i v a r s . Seed exudates s t i m u l a t e d the g r o w t h of A. brasilense ( T a b l e 2). T h e increase in g r o w t h was n o t d i r e c t l y p r o p o r t i o n a l t o the c o n c e n t r a t i o n o f the exudates. T h e g r o w t h s t i m u l a t i o n appeared t o b e due to the C a n d N c o m p o u n d s present in the e x u dates. T h e nitrogenase a c t i v i t y also increased w i t h the a d d i t i o n o f exudates u p t o 9 % ( T a b l e 2). T h e r e was a profuse g r o w t h in the semisolid m e d i u m , pos- T a b l e 1 . Biochemical composition o f seed exudates o f three pearl millet cultivars. Compound (mg/2.5 m L Pearl millet cultivars o f seed exudates) BJ 104 M 78 V.No. 2 Organic carbon 3.10 ± 0.85 1 3.60 ± 1.12 3.50 ± 1.09 0.62 ± 0.028 0.66 ± 0.024 0.52 ± 0.037 0.32 ± 0.018 0.26 ± 0.017 0.31 0.53 ± 0.031 0.47 ± 0.024 0.54 ± 0.027 Reducing sugars Amino nitrogen ± 0.021 Total nitrogen 1. Mean ± Standard deviation. T a b l e 2. Effect of seed exudates f r o m pearl millet cultivars on g r o w t h a n d nitrogenase activity of A. brasilense. Concentration Pearl millet cultivar of seed e x u d a t e s (%) Parameter Control 3 Growth (OD) 6 BJ 104 M 78 V No.2 Mean 0.22 - 0.28 0.28 0.33 0.296 0.29 0.35 0.37 0.337 9 - 0.30 0.35 0.41 0.353 12 - 0.31 0.36 0.41 0.360 Mean - 0.295 0.355 0.380 0.349 Nitrogenase activity 3 139 142 140 (nmol C2H4 6 - 160 186 198 181.3 tube-1 h-1) 9 - 14! 212 170 174.3 12 - 110 245 168 174.5 Mean - 137.5 196.0 169.0 167.6 CD (P< 0.05) 76 N 2 ase Growth 0.016 Cultivar Concentration Interaction C o n t r o l v s Rest 140.4 12.0 0.018 13.8 NS1 23.9 0.023 17.6 1. NS = Not significant. sibly due t o the presence o f considerable n i t r o g e n o u s c o m p o u n d s i n the exudates. S i m i l a r effects were observed on the g r o w t h of A. brasilense w i t h i n d i v i d u a l a m i n o acids ( R a o a n d V e n k a t e s w a r l u 1982). A t concentrations exceeding 9%, the a c t i v i t y was reduced b u t g r o w t h was unaffected, i n d i c a t i n g the repression o f the a c t i v i t y b y the a m i n o n i t r o g e n . T h i s is evident f r o m the fact t h a t the a c t i v i t y was n o t repressed even at higher concentrations w i t h c u l t i v a r M 78, whose exudates c o n t a i n e d r e l a t i v e l y less of total and amino nitrogen. T h e data i n d i c a t e d t h a t pearl m i l l e t seed exudates have a favorable effect on the g r o w t h of A. brasilense a n d m i g h t help i n the m u l t i p l i c a t i o n o f the i n o c u l a t e d bacteria on the seed. Hence, s o a k i n g seeds before i n o c u l a t i o n , as r e c o m m e n d e d f o r r h i z o b i a l i n o c u l a t i o n , m a y n o t be necessary f o r p e a r l millet. The data on exudation of various organic c o m p o u n d s b y p e a r l m i l l e t roots i n d i c a t e d t h a t m a r k e d q u a n t i t a t i v e differences exist a m o n g c u l t i v a r s i n the e x u d a t i o n p a t t e r n ( F i g . 1). T h e exudates o f c u l t i v a r B J 104 c o n t a i n e d the highest a m o u n t s o f o r g a n i c c a r b o n a n d r e d u c i n g sugars, f o l l o w e d b y c u l t i v a r M B H 110. Q u a l i t a t i v e analysis o f the exudates b y t h i n - l a y e r c h r o m a t o g r a p h y s h o w e d the presence o f a m i n o acids l i k e g l u t a m i c a c i d , t r y p t o p h a n e , cysteine, a n d asparagine, a n d sugars l i k e glucose, f r u c - BJ 1 0 4 MBH 1 1 0 MP 15 MBH 1 1 8 600 60 400 40 200 20 0 Reducing 0 Organic carbon 80 6 60 4 40 2 0 0 Total Figure sugars 1. nitrogen Amino nitrogen Chemical composition of root exudates f r o m f o u r pearl millet varieties. 39 tose, a n d sucrose. O r g a n i c acids l i k e c i t r a t e , m a l a t e , a n d succinate were also detected, b u t i n v e r y s m a l l quantities. T h e g r o w t h a n d nitrogenase a c t i v i t y of A. brasilense were s t i m u l a t e d b y the i n c o r p o r a t i o n o f r o o t exudates in a m e d i u m c o n t a i n i n g a s u b o p t i m a l level o f c a r b o n source. T h e g r o w t h enhancement v a r i e d w i t h the v a r i e t y a n d was generally related t o the a m o u n t o f c a r b o n c o m p o u n d s present i n the e x u dates ( T a b l e 3 ) . The e x u d a t i o n of organic compounds by the roots o f a x e n i c a l l y g r o w n pearl m i l l e t was greatly increased in the presence of A. brasilense ( T a b l e 4). Inoculated plants exuded m a r k e d l y higher amounts o f o r g a n i c c a r b o n , r e d u c i n g sugars, a n d t o t a l a n d a m i n o n i t r o g e n . Increased r o o t e x u d a t i o n i n the presence o f N 2 - f i x i n g bacteria has also been f o u n d i n s o r g h u m ( L e e a n d G a s k i n s 1982) a n d i n w h e a t ( B e c k a n d G i l m o u r 1983). Changes i n the p e r m e a b i l i t y a n d a l t e r a t i o n i n r o o t m e t a b o l i s m m i g h t b e some o f the reasons f o r the enhanced r o o t e x u d a t i o n u p o n i n o c u l a t i o n ( R o v i r a 1965), T h e enhancement i n the r o o t e x u d a t i o n o f v a r i o u s c o m p o u n d s i n t h e present s t u d y was essentially due to the increased p e r m e a b i l i t y o f the r o o t cells, w h i c h increased b y 8.5% o v e r the c o n t r o l , w h i l e w i t h the direct i m p r e g n a t i o n w i t h p u r e cells of A. brasilense, the increase was a b o u t 4 0 % , i n d i c a t i n g some p h y s i o l o g i c a l i n t e r a c t i o n between r o o t s a n d the b a c t e r i u m at the cellular level a n d / o r i n j u r y t o the r o o t s caused d u e t o v a c u u m impregnation. The population o f Azospirillum increased m a r k e d l y a n d r e m a i n e d m u c h higher i n the r h i z o s phere a s c o m p a r e d t o the n o n r h i z o s p h e r e , i n d i c a t i n g t h a t t h e o r g a n i c c o m p o u n d s i n the r o o t exudates aided the m u l t i p l i c a t i o n of Azospirillum. T h e nitrogenase a c t i v i t y o f p e a r l m i l l e t cultivars was gene r a l l y related t o the organic c a r b o n a n d r e d u c i n g T a b l e 3. T a b l e 4 . Changes in r o o t e x u d a t i o n pattern i n pearl millet, as influenced by inoculation w i t h A. brasilense. Compound A g e o f the plant ( D A S ) (µg/10 seedlings) 12 15 Mean 412 466 492 456.7 36.64 I n o c u l a t e d 481 548 590 539.7 49.40 Treatment 8 SD Organic carbon Control Total nitrogen1 Control 59 67 75 67.0 9.91 Inoculated 68 79 88 78.3 9.99 Control 41 52 66 53 12.07 Inoculated 58 56 75 63 10.08 Reducing sugars1 Amino nitrogen1 Control 3.9 4.8 5.6 4.77 0.97 Inoculated 4.6 5.9 6.8 5.77 1.12 1. Significant at 5% level using Kruskal Wallis test. sugars released in the r o o t exudates. H o w e v e r , these results are f r o m t w o d i f f e r e n t sets o f e x p e r i m e n t s . T h e close r e l a t i o n s h i p observed between the o r g a n i c c a r b o n i n the exudates a n d the g r o w t h o f A z o s p i r i l lum i n v i t r o a n d nitrogenase a c t i v i t y o f the i n t a c t p l a n t s emphasized the role o f r o o t exudates i n the genetic v a r i a t i o n i n nitrogenase a c t i v i t y . T h e c a r b o n c o m p o u n d s present i n the exudates were, h o w e v e r , f o u n d t o b e inadequate f o r o p t i m u m a c t i v i t y a s there was a spurt in the a c t i v i t y in a l l the 4 c u l t i v a r s w h e n an e x t r a n e o u s c a r b o n source (sucrose) was s u p p l i e d i n the r o o t zone ( T a b l e 5). S i m i l a r results have been r e p o r t e d w i t h wheat ( L e t h b r i d g e a n d D a v i d s o n 1983). Studies u n d e r field c o n d i t i o n s in a sandy l o a m soil have also i n d i c a t e d that Azospirillum establishes in the roots o f pearl m i l l e t u p o n i n o c u l a t i o n , a n d m a x i m u m M P N c o u n t s were f o u n d i n the rhizosphere G r o w t h of A. brasilense as influenced by r o o t exudates o f pearl millet cultivars. Concentration T a b l e 5. Nitrogenase activity of pearl millet cultivars, as influenced by sucrose. G r o w t h ( O D ) with cultivar of root BJ MP MBH MBH N 2 ase a c t i v i t y e x u d a t e s (%) 104 15 110 118 (nmoles C 2 H 4 h-1 tube-1) 0 (Control) 0.202 - - - 5 0.218 0.209 0.215 0.210 10 0.236 0.221 0.231 0.225 15 0.259 0.235 0.250 0.242 20 0.281 0.262 0.273 0.269 SE± 40 0.033 Without With Cultivar sucrose sucrose B J 104 21 49 M P 15 13 33 MBH 110 14 45 MBH 118 13 46 T a b l e 6. L o c a l i z a t i o n of Azospirillum in different root zones of pearl millet, as influenced by inoculation. M P N of Azospirillum (x 10 4 ) Plant-' R o o t zone g-1 d r y s o i l Rhizosphere Control Inoculated 3.46 ± 0 . 4 7 1 5.50 ± 0.93 9.17 ± 1.41 11.00 ± 2.10 Rhizoplane Control Inoculated - Washed and crushed roots Control Inoculated - Surface-sterilized crushed roots Control Inoculated - - - g-1 dry root 42.20 ± 4.57 72.60 ± 8.78 0.39 ± 0.07 4.25 ± 0.96 3.03 ± 0.58 28.30 ± 3.89 1.02 ± 0.13 6.00 ± 1.13 7.90 ± 1.03 40.10 ± 5.79 0.33 ± 0.05 0.45 ± 0.09 2.46 ± 0.39 3.01 ± 0.47 1. ± standard deviation. ( T a b l e 6). T h e p o p u l a t i o n was m u c h higher i n washed roots t h a n i n surface-sterilized roots, i n d i c a t i n g a greater c o n c e n t r a t i o n of the organisms on the r o o t surface. S i m i l a r observations were recorded in maize ( O k o n et a l . 1977). I n o c u l a t i o n s i g n i f i c a n t l y increased the n u m b e r s in a l l the r o o t zones, but the highest response was n o t e d in the r h i z o p l a n e . T h e r e was a n i n e - f o l d increase in the p o p u l a t i o n in the r h i z o p l a n e o n u n i t r o o t d r y weight basis. T h i s again indicates t h a t the p o p u l a t i o n b u i l d u p largely takes place on the r o o t surface. F r o m these results, it m a y be c o n c l u d e d t h a t the r o o t exudates o f pearl m i l l e t p l a y a n i m p o r t a n t r o l e in the establishment of A. brasilense in the r o o t zone, resulting in the successful f o r m a t i o n of the associative symbiosis. References Barber, L . E . , Russel, S . A . , a n d Evans, H . J . 1979. I n o c u l a t i o n o f m i l l e t w i t h Azospirillum. P l a n t a n d S o i l 52:49-57. Beck, S . M . , and G i l m o u r , C M , 1983. R o l e o f w h e a t r o o t exudates i n associative n i t r o g e n f i x a t i o n . S o i l B i o l o g y a n d B i o c h e m i s t r y 15:33-38. Dobereiner, J . , and D a y , J . M . 1976. A s s o c i a t i v e s y m b i oses i n t r o p i c a l grasses: c h a r a c t e r i z a t i o n o f m i c r o o r g a nisms a n d d i n i t r o g e n - f i x i n g sites. Pages 518-538 in Proceedings o f F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o gen F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y m a n , C . J . , eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. Lee, K . J . , and Gaskins, M . H . 1982. Increased r o o t e x u d a t i o n o f 1 4 C c o m p o u n d s b y s o r g h u m seedlings i n o c u l a t e d w i t h n i t r o g e n - f i x i n g bacteria. P l a n t a n d S o i l 69:391-399. Lethbridge, G . , and Davidson, M . S . 1983. R o o t associated n i t r o g e n f i x i n g bacteria a n d t h e i r r o l e i n the n i t r o g e n n u t r i t i o n o f wheat estimated b y 1 5 N - i s o t o p e d i l u t i o n . S o i l B i o l o g y a n d B i o c h e m i s t r y 15:365-374. N u r , I . , O k o n , Y . , and Henis, Y . 1980. C o m p a r a t i v e studies o f n i t r o g e n f i x i n g bacteria associated w i t h grasses i n Israel w i t h Azospirillum brasilense. C a n a d i a n J o u r n a l of M i c r o b i o l o g y 26:714-718. O k o n , Y . , Albrecht, S . L . , and Burris, R . H . 1977. M e t h o d s f o r g r o w i n g Spirillum lipoferum a n d f o r c o u n t i n g it in p u r e c u l t u r e a n d i n association w i t h plants. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 33:85-88. R a o , A . V . , and Venkateswarlu, B . 1982. N i t r o g e n f i x a t i o n by Azospirillum isolated f r o m t r o p i c a l grasses n a t i v e to I n d i a n desert. I n d i a n J o u r n a l o f E x p e r i m e n t a l B i o l o g y 20:316-318. R o v i r a , A . D . 1965. P l a n t r o o t exudates a n d t h e i r i n f l u ence u p o n soil m i c r o o r g a n i s m s . Pages 170-186 in E c o l o g y o f s o i l b o r n e p l a n t pathogens: prelude t o b i o l o g i c a l c o n t r o l ( B a k e r , K . F . , a n d Snyder, W . C . , e d s . ) . B e r k l e y , C a l i f o r n i a , U S A : U n i v e r s i t y o f C a l i f o r n i a Press. S m i t h , R . L . , B o u t o n , J . H . , Schank, S.C., Quesenberry, K . H . , Tyler, M . E . , M i l a m , J . R . , Gaskins, M . H . , and L i t tell, R . C . 1976. N i t r o g e n f i x a t i o n i n grasses i n o c u l a t e d w i t h Spirillum lipoferum. Science 193:1003-1005. T a r r a n d , J . J . , K r i e g , N . R . , and Dobereiner, J. 1978. A t a x o n o m i c study of the Spirillum lipoferum g r o u p , w i t h d e s c r i p t i o n s of a new genus Azospirillum gen. n o v . a n d t w o species, Azospirillum lipoferum ( B e i j e r i n c k ) c o m b . n o v . a n d Azospirillum brasilense sp. n o v . C a n a d i a n J o u r n a l of M i c r o b i o l o g y 24:967-980. Venkateswarlu, B . , and R a o , A . V . 1983. Response o f p e a r l m i l l e t to i n o c u l a t i o n w i t h different strains of Azospirillum brasilense. P l a n t a n d S o i l 74:379-386. Vlassak, K . , and Reynders, L . 1981. A g r o n o m i c aspects o f b i o l o g i c a l d i n i t r o g e n f i x a t i o n b y Azospirillum spp. i n t e m perate r e g i o n . Pages 93-100 in A s s o c i a t i v e N 2 - f i x a t i o n : proceedings o f the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - f i x a t i o n , 2-6 J u l 1979, P i r a c i c a b a , B r a z i l ( V o s e , P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 1 . B o c a R a t o n , F l o r i d a , U S A : C R C Press. 41 Discussion N . S . Subba R a o : W h a t w i l l be the s t o r y i n r o o t exudates o f a n y o t h e r plant? A.V.Rao: W e have n o t studied the r o o t exudates o f o t h e r plants. H o w e v e r , there are differences i n e x u d a t i o n a m o n g plants because o f the v a r i a t i o n i n p h o t o s y n thetic p a t h w a y s a m o n g these plants. P.V. Rai: W h i l e the c o n c e n t r a t i o n o f seed exudate i s l i n e a r t o Azospirillum p o p u l a t i o n increase, w h y does it i n h i b i t the nitrogenase a c t i v i t y a t 6 % c o n c e n t r a t i o n o f exudate? A.V.Rao: P r o b a b l y the n i t r o g e n c o n t e n t of seed exudate at p r o p o r t i o n s higher t h a n 6 % i s i n h i b i t o r y t o nitrogenase a c t i v i t y . Because of the N c o n c e n t r a t i o n , the p o p u l a t i o n o f Azospirillum i s m o r e b u t the nitrogenase is i n h i b i t e d . P.V.Rai: W h a t is the difference between seed exudate a n d r o o t exudate? A.V.Rao: W a s h e d seeds were soaked i n w a t e r a n d the c h e m i cals t h a t leaked f r o m seeds were called seed e x u dates. R o o t exudates were collected after germination. P . V . Rai: W h e n the Azospirillum p o p u l a t i o n is so w e l l m a i n t a i n e d b y the r o o t exudate, w h y does i t enter i n t o the root? A.V.Rao: I t i s the character o f Azospirillum t o enter a n d c o l onize the endo-rhizosphere ( H i s t o s p h e r e ) . U n l i k e Azotobacter, it is an associative s y m b i o t i c bacter i u m . T h i s o r g a n i s m i s observed u n d e r the e p i d e r m a l layers a n d w i t h i n t h e c o r t e x . B.S.Kundu: N 2 - f i x a t i o n efficiency i s n o t c o r r e l a t e d t o d r y w e i g h t b u t g r o w t h - p r o m o t i n g substance. S o w e s h o u l d l o o k f o r organisms secreting m o r e o f g r o w t h - p r o m o t i n g substance, a n d n o t f o r N 2 f i x a t i o n . 42 A.V.Rao: I n case o f Azospirillum, g r o w t h regulators i n a d d i t i o n t o N 2 f i x a t i o n are responsible f o r enhanced d r y m a t t e r a n d g r a i n y i e l d . E v e n i n legumes, there i s n o c o r r e l a t i o n between the nitrogenase a c t i v i t y at a n y stage a n d the y i e l d increase u p o n i n o c u l a t i o n . B . K . Konde: A t w h a t stage o f p l a n t g r o w t h d o y o u estimate A z o spirillum p o p u l a t i o n to d e t e r m i n e its l o c a l i z a t i o n ? A.V.Rao: A t 3 0 days o f p l a n t g r o w t h . Response of Pearl M i l l e t to Inoculation w i t h Azospirillum brasilense at V a r y i n g Levels of N i t r o g e n G.S. Jadhav, A . N . G i r i , and N . B . Pawar1 Summary Investigations carried out during 1979 to 1983 on black soils at Aurangabad and mixed red and black soils at Vaijapur revealed that Azospirillum inoculation of seed alone increased the yield of pearl millet by 14-20% over the control. A synergistic effect of Azospirillum inoculation with nitrogen on increased yield was also observed, though it was not significant. On both soil types, the highest yield increase was due to A. brasilense inoculation of seed at sowing + 40 kg N ha-1 applied in two splits. The effect of rainfall on response is discussed. The future strategy of research for realizing the agronomic significance of Azospirillum inoculation in pearl millet-based c r o p ping systems is presented. Introduction I n experiments c o n d u c t e d under the A l l I n d i a C o o r d i n a t e d M i l l e t s I m p r o v e m e n t Project ( A I C M I P ) w i t h Azospirillum brasilense, the yields of pearl m i l l e t increased s i g n i f i c a n t l y due to i n o c u l a t i o n at D u r g a p u r a , were n o n s i g n i f i c a n t a t H i s a r , a n d d i d n o t increase a t K a n p u r a n d J a m n a g a r ( A I C M I P 1982). T h u s , the results of field experiments have been e x t r e m e l y variable. T h e i n f o r m a t i o n o n pearl m i l l e t response to Azospirillum i n o c u l a t i o n is meager, especially w i t h a n d w i t h o u t N a p p l i c a t i o n i n M a h a r a s h t r a state. I n this paper, research o n p e a r l m i l l e t response to i n o c u l a t i o n w i t h A. brasilense c o n d u c t e d a t the A I C M I P Center, A u r a n g a b a d , a n d at V a i j a p u r in M a h a r a s h t r a state is presented. m i x e d red a n d b l a c k soils a t V a i j a p u r , t o study the effect of A. brasilense a n d fertilizer n i t r o g e n on g r a i n y i e l d o f pearl m i l l e t h y b r i d B J 104 a n d its e c o n o m i c s . T h e i n i t i a l s o i l - f e r t i l i t y status o f e x p e r i m e n t a l soils is given in T a b l e 1. A l l the experiments reported here were c o n d u c t e d d u r i n g the r a i n y season. E i g h t treatments ( T a b l e 2) were replicated f o u r times in a r a n d o m i z e d - b l o c k T a b l e 1 . I n i t i a l fertility status o f e x p e r i m e n t a l soils i n Aurangabad and Vaijapur, Maharashtra. Aurangabad Parameter 1979 O r g a n i c c a r b o n (%) pH Materials and Methods 1. 1981 1983 0.18 0.38 0.49 0.27 8.2 8.31 8.3 8.2 32.4 35.0 Available phosphorus ( k g ha- 1 ) F i e l d experiments were l a i d o u t d u r i n g 1979-81 o n b l a c k soils a t A u r a n g a b a d a n d d u r i n g 1982-83 o n 1980 Vaijapur 11.6 14.4 Available potassium (kg ha-1) 448 448 347 350 Agronomist, Seed Production Specialist, and Plant Pathologist, Bajra Research Station, Marathwada Agricultural University, Paithan Road, Aurangabad, Maharashtra, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 43 T a b l e 2. Effect of Azospirillum brasilense a n d nitrogen on grain yield ( k g h a - 1 ) of pearl millet at A u r a n g a b a d and V a i j a p u r , Maharashtra. Vaijapur Aurangabad Increase Increase over 1979 Treatments 1. C o n t r o l 1 2. A. 3. 13.3 k g N ha-1 brasilense 4 . 13.3 k g N ha-1 + A. brasilense 5. 20 k g N h a - ' 6. 20 k g N ha-1 + A., brasilense 7. 4 0 k g N h a - ' 8. 4 0 k g N h a - ' + A., brasilense SE CV (%) 1980 1981 over Pooled control average (%) 1982 726 1431 1861 1834 1702 — Pooled control 1983 average (%) 630 678 — 1789 2128 1882 1933 14 904 732 818 20.0 2053 1899 1998 1983 17 867 940 903 33.0 2151 2083 1825 2020 19 859 897 878 30.0 2173 2081 2254 2084 22 770 980 875 30.0 2464 2185 2102 2184 28 844 1147 996 47.0 2339 2250 2254 2284 34 807 1170 955 41.0 2421 2513 2085 2340 38 659 1250 955 41.0 ±77 ±193 ±163 ±166 6.4 15.8 16.30 — ±33 — 8.2 ±88 18.3 1. Noninoculated and no nitrogen. design. T h e c r o p was s o w n at a 45 cm x 10 cm spacing. N i t r o g e n was applied as urea in t w o e q u a l splits. H a l f the dose of N as per the treatment a n d 30 k g P 2 0 5 ha - 1 was a p p l i e d a t s o w i n g . T h e r e m a i n i n g h a l f N was a p p l i e d at t i l l e r i n g . P e a r l m i l l e t seeds were i n o c u l a t e d w i t h carrier-based i n o c u l a n t of A. brasilense p r i o r to s o w i n g (as per the procedure of S u b b a R a o 1981). C u l t u r a l operations were carried o u t as a n d w h e n r e q u i r e d . 14% over the c o n t r o l . T h e i n t e r a c t i o n o f A z o s p i r i l lum w i t h n i t r o g e n was n o t statistically significant. Seasonal r a i n f a l l at A u r a n g a b a d d u r i n g the three years ranged between 605 a n d 690 m m . H o w e v e r , the response to Azospirillum i n o c u l a t i o n a l o n g w i t h N a p p l i c a t i o n was significant o n l y d u r i n g 1979. T h i s m a y be due to the l o w organic c a r b o n a n d general l o w f e r t i l i t y of the field selected in 1979 ( T a b l e 1), as A. brasilense is active in l o w - f e r t i l i t y soil ( D o b e reiner a n d D a y 1976). Results Vaijapur Aurangabad In 1979, i n o c u l a t i o n w i t h Azospirillum w i t h o u t N a p p l i c a t i o n enhanced g r a i n y i e l d significantly over the n o n i n o c u l a t e d c o n t r o l w i t h n o n i t r o g e n . T h e a p p l i c a t i o n of 40 kg N ha - 1 + Azospirillum p r o d u c e d the highest g r a i n y i e l d , w h i c h was o n par w i t h 4 0 k g N ha -1 a n d 20 kg N ha -1 + Azospirillum i n o c u l a t i o n . I n o c u l a t i o n w i t h A. brasilense p r o d u c e d s i g n i f i c a n t l y higher g r a i n y i e l d over the respective n o n inoculated controls only in combination w i t h 20 kg N ha - 1 . W i t h few exceptions, s i m i l a r b u t n o n s i g n i f i c a n t increases in y i e l d were observed due to various treatments d u r i n g 1980 a n d 1981 ( T a b l e 2). P o o l e d data analysis f o r three years revealed t h a t the A z o s p i r i l lum i n o c u l a t i o n alone increased the g r a i n y i e l d by 44 T h e treatment differences were significant d u r i n g b o t h the years ( T a b l e 2). In 1982 Azospirillum i n o c u l a t i o n of seed at the t i m e of s o w i n g recorded the highest g r a i n y i e l d , b u t the results were rather inconsistent. D u r i n g 1983 the g r a i n yields due to 20 a n d 40 kg N ha -1 w i t h Azospirillum, as w e l l as 40 kg N ha -1 w i t h o u t Azospirillum, were c o m p a r a b l e a n d signific a n t l y higher t h a n a l l other treatments. T h o u g h there i s inconsistency i n the results, d a t a f o r t w o years indicated t h a t Azospirillum i n o c u l a t i o n of seed at the t i m e of s o w i n g p r o d u c e d 2 0 % increase in g r a i n y i e l d over the c o n t r o l ; the response to A z o s p i rillum i n o c u l a t i o n w i t h the a p p l i c a t i o n of 20 a n d 40 kg N ha - 1 was positive. T h e percent y i e l d increase due to Azospirillum i n o c u l a t i o n w i t h or w i t h o u t N a p p l i c a t i o n was m o r e m a r k e d i n the l o w - f e r t i l i t y , m i x e d red a n d black soil a t V a i j a p u r t h a n o n the relatively fertile black soil at A u r a n g a b a d . bacteria associations f o r increased yields c a n be developed. Acknowledgement Economics Inoculation of Azospirillum D a t a f r o m A u r a n g a b a d o n Azospirillum i n o c u l a t i o n reveal that, under p r e v a i l i n g prices o f different i n p u t s , a p p l i c a t i o n o f 4 0 k g N ha - 1 i n t w o equal splits + Azospirillum i n o c u l a t i o n of seed is e c o n o m i c a l ; the highest gross returns per ha (Rs 957) a n d net p r o f i t (Rs 752) were o b t a i n e d f r o m this treatment. T h u s i n o c u l a t i o n w i t h A. brasilense s i g n i f i c a n t l y increased pearl m i l l e t y i e l d i n some years b u t n o t i n others. W i t h few exceptions, the synergistic effect o f Azospirillum a n d n i t r o g e n was observed at 20 a n d 40 kg N ha - 1 . T h e i n i t i a l s o i l - f e r t i l i t y status, r a i n f a l l , soil moisture, and possibly the n i t r o g e n - t r a n s f o r m a t i o n processes in the soil are responsible f o r v a r y i n g degrees of responses observed in this study. T h e increases i n c r o p yields w h e n inoculated w i t h A z o s pirillum species a n d further increases w h e n this is supplemented w i t h 20 a n d 40 kg N ha - 1 finds s u p p o r t f r o m the studies by S m i t h et a l . (1978), S u b b a R a o (1981), a n d D a r t a n d W a n i (1982). T h e synergistic effect of Azospirillum a n d fertilizer N m a y be a t t r i b uted t o a d d i t i o n a l N 2 f i x a t i o n and possible p r o d u c t i o n of plant harmones by A. brasilense at s m a l l doses of n i t r o g e n a p p l i c a t i o n ( T i e n et a l . 1979). Problems and Future Research Needs M o s t o f the farmers i n the S A T practice different f o r m s o f i n t e r c r o p p i n g w i t h pearl m i l l e t . Pigeonpea a n d g r o u n d n u t are established intercrops w i t h p e a r l m i l l e t . T h e p o s s i b i l i t y of using Azospirillum a n d Rhizobium i n o c u l a n t s , a l o n g w i t h a basal starter dose of fertilizer n i t r o g e n , needs to be studied in m i l l e t - l e g u m e i n t e r c r o p p i n g systems. T h e m a i n a g r o n o m i c p r o b l e m w i t h the use of Azospirillum or a n y other i n o c u l a n t i s the c o m p e t i t i o n i t w i l l face f r o m physical, chemical, a n d b i o l o g i c a l factors i n field situations. T h u s , there is a need to c o n d u c t a large n u m b e r o f f a r m trials t o study the effects o f e n v i r o n m e n t a l factors o n the efficiency o f n i t r o g e n fixation by Azospirillum, so t h a t a viable a g r o t e c h n o l o g y f o r better m a n i p u l a t i o n o f these n o v e l p l a n t - T h e authors w i s h t o t h a n k I C A R , N e w D e l h i , f o r f i n a n c i a l s u p p o r t a n d the H e a d , D i v i s i o n o f M i c r o b i o l o g y , I A R I , N e w D e l h i , for s u p p l y i n g A z o s p i r i l lum culture. T h e y also acknowledge the technical assistance received f r o m S . D . D h a w a n d k a r , B . G . H i wale, a n d D . T . G a r a d . References A I C M I P ( A l l I n d i a Coordinated Millets I m p r o v e m e n t Project). 1982. Progress r e p o r t o f the A l l I n d i a C o o r d i n a t e d M i l l e t s I m p r o v e m e n t Project ( I C A R ) . P u n e , M a h a r a s h t r a , I n d i a : College o f A g r i c u l t u r e . D a r t , P J . , and W a n i , S.P. 1982. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d s o i l f e r t i l i t y . Pages 3-27 in N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d o r g a n i c m a t t e r i n the t r o p i c s . S y m p o sia paper 1 . T r a n s a c t i o n s o f the 12th I n t e r n a t i o n a l C o n gress o f S o i l Science, 8-16 Feb 1982, N e w D e l h i , I n d i a . N e w D e l h i , I n d i a : I n d i a n A g r i c u l t u r a l Research I n s t i t u t e , Dobereiner, J . , and D a y , J . M . 1976. A s s o c i a t i v e s y m b i oses i n t r o p i c a l grasses: c h a r a c t e r i s a t i o n o f m i c r o o r g a nisms a n d d i n i t r o g e n - f i x i n g sites. Pages 518-538 in Proceedings o f the F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y a m n , C . J . , eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. S m i t h , R . L . , Schank, S.C., B o u t o n , J . H . , a n d Quesenberry, K . H . 1978. Y i e l d increases o f t r o p i c a l grasses after i n o c u l a t i o n w i t h Spirillum lipoferum. Pages 380-385 in E n v i r o n m e n t a l r o l e o f n i t r o g e n - f i x i n g blue-green algae a n d a s y m b i o t i c bacteria ( G r a n h a l l , U . , ed.). E c o l o g i c a l B u l l e t ins n o . 26. S t o c k h o l m , Sweden: S w e d i s h N a t u r a l Research Council. Subba R a o , N . S . 1981. Response o f c r o p s t o Azospirillum i n o c u l a t i o n i n I n d i a . Pages 137-144 i n A s s o c i a t i v e N 2 f i x a t i o n : proceedings o f the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - f i x a t i o n , 2-6 J u l 1979, P i r a c i c a b a , B r a z i l ( V o s e , P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 1 . B o c a R a t o n , F l o r i d a , U S A : C R C Press. T i e n , T . M . , Gaskins, M . H . , a n d H u b b e l , D . H . 1979. P l a n t g r o w t h substances p r o d u c e d by Azospirillum brasilense a n d t h e i r effect o n the g r o w t h o f p e a r l m i l l e t ( P e n n i s e t u m americanum L . ) . A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 37:1016-1024. 45 Rhizosphere Ecology and Nitrogen F i x a t i o n of Azospirillum in P e a r l M i l l e t D . Purushothaman and K . Govindarajan1 Summary This paper describes the qualitative and quantitative occurrence of nitrogen-fixing bacteria, particularly A z o s p i r i l l u m , in the root environments of pearl millet. In the rhizosphere, organisms like A z o t o b a c t e r , Beijerinckia, ard D e r x i a were present in low density; however, the population of A z o s p i r i l l u m was considerably high in the rhizoplane and rhizosphere. A z o s p i r i l l u m colonized to the extent of 1-8% of the total heterotrophic bacteria. An analysis of 400 isolates of A z o s p i r i l l u m revealed that both A. l i p o f e r u m (79%) and A. brasilense (21%) were present in the root environments. The nitrogen-fixing ability of these isolates ranged from 3 to 24.8 mg N g-1 malic acid, which corresponded to 50-450 n moles of ARA. The data on the population dynamics of A z o s p i r i l l u m in the roots of pearl millet revealed that certain drug-resistant mutants were more competitive than the native strain of A z o s p i r i l l u m in colonizing the rhizoplane and rhizosphere. In general, the density of A z o s p i r i l l u m was maximum at the tillering and flowering stages of the crop. The root exudates of pearl millet contained fairly high concentrations of soluble sugars and amino nitrogen. Introduction D i v e r g e n t views have been expressed on the use of Azospirillum as an i n o c u l a n t in a g r i c u l t u r e ( B r o w n 1982). H o w e v e r , it is generally believed t h a t A z o s p i rillum, l i v i n g i n r h i z o c o e n o t i c a s s o c i a t i o n w i t h several graminaceous crops, has a considerable p o t e n t i a l f o r i m p r o v i n g yields i n extensive low-cost f a r m i n g systems i n the tropics. I n this paper, the rhizosphere ecology of Azospirillum spp a n d the n i t r o g e n - f i x i n g p o t e n t i a l of its isolates are described w i t h relevance t o pearl m i l l e t . Materials and Methods T h e drug-resistant m u t a n t s , str r a n d C A M r were developed i n o u r l a b o r a t o r y b y exposure t o the 1. c h e m i c a l m u t a g e n , e t h y l methane sulfonate ( E M S ) . T h e y were resistant to 500 µ g ml - 1 of s t r e p t o m y c i n and chloramphenicol. The nonnitrogen-fixing m u t a n t , S3, was developed f r o m the parent c u l t u r e , C D ( A T C C : 29729, a p i n k isolate) a t the M i c r o b i o l ogy a n d C e l l Science L a b o r a t o r y , U n i v e r s i t y o f Florida, USA. A large n u m b e r of A z o s p i r i l l u m cultures were isolated f r o m the r o o t tissues o f pearl m i l l e t g r o w n a t the M i l l e t Breeding S t a t i o n o f the T N A U f o l l o w i n g the e n r i c h m e n t technique detailed by D o b e r e i n e r a n d D a y (1976). Y o u n g a n d fresh r o o t bits, surface-sterilized w i t h 8 0 % e t h a n o l a n d washed w i t h sterile d i s t i l l e d water, were p l u n g e d i n t o malate semisolid m e d i u m ( B a l d a n i a n d D o b e r e i n e r 1980) a n d supplemented w i t h 5 0 m g L - 1 o f yeast extract ( N F b ) . A l o o p f u l o f the characteristic subsurface pellicle was streaked on Associate Professor and Assistant Professor, Center of Advanced Studies in Agricultural Microbiology, T a m i l Nadu Agricultural University, Coimbatore, T a m i l Nadu 641 003, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 47 N F b agar plates. T h e single colonies were p u r i f i e d f u r t h e r b y streaking o n p o t a t o agar ( B M S ) a n d the t y p i c a l p i n k , w r i n k l e d colonies were e x a m i n e d m i c r o s c o p i c a l l y a n d transferred to trypticase soyagar slants. T h e species of Azospirillum isolates were i d e n t i f i e d as per T a r r a n d et a l . (1978). E n u m e r a t i o n o f the t o t a l h e t e r o t r o p h i c bacteria i n the r o o t e n v i r o n m e n t s o f pearl m i l l e t was d o n e f o l l o w i n g the technique o f P r a m e r a n d S c h m i d t (1966). E n u m e r a t i o n of Azotobacter was done by using W a k s m a n m e d i u m no.77, o f Beijerinckia b y using Jensen's m e d i u m , a n d of Derxia sp by using C o m pelo a n d Dobereiner's m e d i u m . T h e t o t a l d i a z o t r o p h s were enumerated b y using the m e d i u m o f W a t a n a b e a n d B a r r a q u i o (1979). T h e most p r o b a b l e n u m b e r ( M P N ) technique was used f o r d e t e r m i n i n g the p o p u l a t i o n s of Azospirillum ( H e g a z i et al. 1979). E a r t h e n pots (30 cm dia) c o n t a i n i n g red s o i l : c o m post 1:1 ( v / v ) a t 14 kg pot - 1 were used f o r p o t c u l t u r e studies ( o r g a n i c c a r b o n 0.580%, t o t a l n i t r o g e n 1.12%, pH 7.0 a n d E . C . 0.46 m m h o s cm - 1 ). T h e soil received a basal dose of 20 kg ha - 1 of N, 30 kg ha - 1 of P2O5, and 30 kg ha-1 of K 2 O . T h e seeds o f the pearl m i l l e t c u l t i v a r , X 3 , were surface sterilized w i t h 0 . 1 % s o d i u m h y p o c h l o r i t e a n d treated w i t h the peat-based i n o c u l u m o f Az os pirillum ( c o n t a i n i n g ca. 10 x 10 8 cells g - 1 ), using j a g g e r y s o l u t i o n as an adhesive. A i r - d r i e d seeds were s o w n in the pots. Each p o t also received a soil i n o c u l u m of 2 g of Azospirillum at the t i m e of s o w i n g . S t a n d a r d a g r o n o m i c a n d c u l t i v a t i o n practices were f o l l o w e d . A t desired intervals, the plants were u p r o o t e d a n d rhizosphere a n d r h i z o p l a n e samples were collected ( P r a m e r a n d S c h m i d t 1966). T h e drug-resistant m u t a n t s used in the study were enumerated on O k o n ' s m e d i u m c o n t a i n i n g 500 µ g mL - 1 of the respective a n t i b i o t i c ( O k o n et a l . 1977). As S3 was a n a t u r a l l y p i n k p i g m e n t e d m u t a n t , it was easy t o c o u n t t h e m o n trypticase soy agar m e d i u m . F o r the e s t i m a t i o n o f N 2 f i x a t i o n , the isolates were g r o w n i n the N F b semisolid m e d i u m (supplemented w i t h 100 m g o f g l u t a m i c a c i d L - 1 ) f o r 7 days a t 30° C . T o t a l n i t r o g e n was d e t e r m i n e d b y the m i c r o K j e l d a h l m e t h o d ( H u m p h r i e s 1956). Acetylene r e d u c t i o n a c t i v i t y ( A R A ) o f 3-day-old cultures, g r o w n i n 3 0 m l o f N free-semisolid malate m e d i u m , was estimated b y i n c u b a t i n g the cultures u n d e r 1 % acetylene f o r 6 h . I n the case o f the r o o t associated A R A , freshly collected r o o t s free f r o m soil particles were t a k e n in the flasks a n d the assay c o n d u c t e d s i m i l a r l y ( P u r u s h o t h a m a n et a l . 1979). R o o t exudates were collected by the m e t h o d desc r i b e d b y D a z z o a n d H r a b a k ( 1 9 8 1 ) . A f t e r 7 , 14, a n d 48 21 days of seed g e r m i n a t i o n , the s o l u t i o n was aseptically collected, clarified by c e n t r i f u g a t i o n , a n d the v o l u m e was suitably reduced. T o t a l sugars a n d a m i n o n i t r o g e n i n the r o o t exudate were d e t e r m i n e d f o l l o w i n g the methods o f Nelson (1944) a n d M o o r e a n d Stein (1948). Results A n u m b e r of organisms l i k e Azotobacter, Beijerinckia, Derxia, a n d Azospirillum were observed in the rhizosphere o f pearl m i l l e t . E x c e p t i n g A z o s p i r i l lum, the p o p u l a t i o n s of Azotobacter, Beijerinckia, a n d Derxia were very p o o r in the rhizosphere a n d in the r h i z o p l a n e ( T a b l e 1). Azospirillum was f o u n d to occupy the roots in the rhizosphere a n d the r h i z o plane to the extent of 8% ( T a b l e 2). T h e r h i z o p l a n e had higher c o l o n i z a t i o n by Azospirillum t h a n the rhizosphere. Perhaps the a b u n d a n t m u c i g e l on the r o o t surface i s helpful i n the a t t a c h m e n t o f m i c r o o r ganisms on to the rhizoplane. One of the reasons f o r the intense m i c r o b i a l a c t i v i t y in the r o o t zone is the e x u d a t i o n o f energy-rich and g r o w t h - p r o m o t i n g organic c o m p o u n d s ( N e w m a n 1978, B r o w n 1982). I t has been estimated t h a t 12-18% of the p h o t o s y n t h e t i c a l l y fixed c a r b o n is released as organic c o m p o u n d s i n the r o o t e x u d a t i o n (Beck a n d G i l m o u r 1983). I n o u r study, the a m o u n t o f t o t a l soluble sugars i n the r o o t exudates ranged f r o m 0.6 to 2.25% a n d the a m i n o n i t r o g e n varied f r o m 0.21 to 0.43%. It is evident f r o m the study t h a t the rhizosphere a n d r h i z o p l a n e are p o t e n t i a l sites f o r the c o l o n i z a t i o n of Azospirillum. T h e p o p u l a t i o n s o f d i a z o t r o p h s i n general a n d Azospirillum in p a r t i c u l a r , were h i g h at the t i l l e r i n g a n d f l o w e r i n g stages o f the c r o p . T h e species d i s t r i b u t i o n of Azospirillum in the Table 1. Distribution o f nitrogen-fixing organisms i n pearl millet at flowering. N o . o f bacteria g-1 d r y wt. Organisms Azotobacter Azospirillum Beijerinckia sp sp sp Rhizosphere Rhizoplane (soil) (roots) 7.27 x 103 2.8 x 103 5 12.8 x 10.5 103 26.4 x 103 6.30 14.2 x 10 x x 102 1.3 x 102 Others (unidentified) 15.25 x 105 6.8 x 105 Total heterotrophs 28.6 x 107 4 2 . 0 x 106 Derxia sp 2.6 T a b l e 2. Percentage distribution of Azospirillum a n d other diazotrophs to total bacteria in the roots of pearl millet. G r o w t h phase o f c r o p Root environment Seedling Tillering Flowering Harvest 6.14 0.69 Mean Rhizosphere Azospirillum 2.39 1.6 Other diazotrophs 22.7 24.9 39.8 24.6 2.70 28.0 Rhizoplane Azospirillum 0.8 4.2 8.62 Other diazotrophs 3.8 12.6 18.12 roots of pearl m i l l e t revealed t h a t A. lipoferum c o n stituted 7 9 % a n d A. brasilense 2 1 % . B o t h n i r + a n d n i r strains were present a n d the n i r + isolates predominated (Fig.1). A b o u t 8 0 % o f the isolates had very p o o r N 2 - f i x i n g capacity (3-10 mg N g - 1 m a l i c acid)); w h i l e f o r 0.8% isolates N 2 f i x e d was i n the range o f 21-25 m g N g - 1 o f m a l i c acid ( T a b l e 3). T h e A R A , w h i c h also varied considerably f r o m 5 0 t o 450 nmoles C 2 H 4 isolate - 1 h - 1 , was l o w i n 7 9 % o f the isolates a n d h i g h i n o n l y 9% isolates. T h e drug-resistant m u t a n t s in general e x h i b i t e d a m u c h higher c o l o n i z i n g a b i l i t y b o t h i n the r h i z o sphere a n d i n the r h i z o p l a n e ( T a b l e 4). T h e native p o p u l a t i o n was p o o r i n c o m p e t i t i v e c o l o n i z a t i o n i n the rhizosphere; however, on the r h i z o p l a n e t h e i r n u m b e r was f a i r l y h i g h . It is of interest to observe that the n o n n i t r o g e n - f i x i n g m u t a n t , S3, also possessed a m u c h better c o l o n i z i n g a b i l i t y t h a n the Azospirillum A. 0.22 3.46 11.33 10.8 native isolates. T h e root-associated A R A o f p e a r l m i l l e t inoculated w i t h C A M r i s also f o u n d t o b e significantly higher ( T a b l e 5). Recently, increased c o l o n i z a t i o n of Rhizobium phaseoli in the rhizosphere of bean has been achieved b y the use o f fungicide-resistant strains a n d T a b l e 3 . N i t r o g e n f i x a t i o n a n d A R A b y 4 0 0 isolates o f Azospirillum spp f r o m the roots of pearl millet. N2 fixation Distri- range ( m g N bution g-1 malic acid) (%) 1 1-5 II 6-10 III IV Group V Isolates lipoferum ARA Distri- (n mol C 2 H 4 butrion tube-1 h-1) <%) 56.8 10-50 46.5 21.6 51-100 33.0 11-15 12.5 101-200 12.5 16-20 8.3 201-400 6.8 21-25 0.8 401-500 2.2 (400) A. (79%) brasilense (21%) nir+ nir- nir+ nir- (58%) (21%) (10%) (11%) nir + : Converts NO3 to NO2 and beyond NO2 n i r - : C o n v e r t s NO3 to NO2 and n o t beyond Figure 1. Distribution of Azospirillum spp in the rhizosphere of pearl millet. 49 also b y a p p l y i n g fungicides t o the s o i l ( M e n d e z C a s t r o a n d A l e x a n d e r 1983). T h e s t r i k i n g increase i n the root-associated A R A o f p e a r l m i l l e t , i n o c u l a t e d w i t h the m u t a n t strains, i s n o d o u b t due t o the increased c o l o n i z a t i o n o f the r o o t e n v i r o n m e n t w i t h efficient n i t r o g e n - f i x i n g strains. T h i s opens up newer hopes f o r e x p l o i t i n g the potentials o f Azospirillum i n n i t r o g e n f i x a t i o n . T h o u g h w e c o u l d n o t trace the n u t r i e n t release i n the r o o t exudates over a l o n g p e r i o d , the data collected over 21 days clearly illustrate the a v a i l a b i l i t y of an a b u n d a n t energy source i n the v i c i n i t y o f roots. Recent studies o n the surface c o l o n i z a t i o n o f r o o t b y m i c r o o r g a n i s m s have indicated t h a t o n l y 4-10% o f the r o o t area is c o l o n i z e d by m i c r o o r g a n i s m s ( R u s sel 1977). Table 4. Percent colonization of rhizosphere and rhizoplane of pearl millet by drug-resistant mutants and native Azospirillum. Locus and stage o f c r o p Rhizosphere seedling tillering flowering harvest Mean Native isolate Drug-resistant mutants Strr C A M r N 2 ase-S3 M e a n 0.20 3.60 3.60 0.31 14.24 14.92 14.92 12.19 13.26 29.09 27.12 14.30 3.7 5.5 43.1 25.0 1.92 14.06 20.94 19.32 Rhizoplane seedling tillering flowering harvest 2.7 14.8 17.8 6.9 24.2 61.4 44.7 25.0 3.7 58.9 40.2 24.6 4.3 20.5 10.0 3.7 Mean 10.55 28.82 31.85 9.62 7.85 13.27 22.18 12.95 17.05 19.85 23.72 15.05 Table 5. T h e A R A of pearl millet root as influenced by inoculation w i t h different Azospirillum strains. Strain CAM ARA ( n moles C 2 H 4 g-1 root h-1) r Strr S3 Noninocuiated control 1. Significantly different from the control (P<0.05). 50 168.76 1 185.80 1 22.60 23.35 References Baldani, V . L . , and Dobereiner, J . 1980. H o s t p l a n t specif i c i t y i n the i n f e c t i o n o f cereals w i t h Azospirillum spp. S o i l B i o l o g y a n d B i o c h e m i s t r y 12:433-439. Beck, S . M . , and G i l m o u r , C . M . 1983. R o l e o f w h e a t r o o t exudates i n associative n i t r o g e n f i x a t i o n . S o i l B i o l o g y a n d B i o c h e m i s t r y 15:33-38. B r o w n , M . E . 1982. N i t r o g e n f i x a t i o n b y f r e e - l i v i n g bacteria associated w i t h plants: fact or fiction? Pages 25-41 in Bacteria a n d plants ( R h o d e s - R o b e r t , M . E . , a n d S k i n n e r , F . A . , eds.). L o n d o n , U K : A c a d e m i c Press. D a z z o , F . B . , and H r a b a k , E . M . 1981. Presence o f T r i f o l i n - A , a Rhizobium b i n d i n g l e c t i n in c l o v e r r o o t e x u d a t e . Journal of Supermolecular Structure and Cellular B i o c h e m i s t r y 16:133-138. Dobereiner, J . , and D a y , J . M . 1976. A s s o c i a t i v e s y m b i oses i n t r o p i c a l grasses: c h a r a c t e r i s a t i o n o f m i c r o o r g a nisms a n d d i n i t r o g e n - f i x i n g sites. Pages 518-538 in Proceedings o f the F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y m a n , C.J., eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. H e g a z i , N . A . , A m e r , H . , and M o n i b , M . 1979. E n u m e r a tion of N 2 - f i x i n g spirilla. Soil Biology and Biochemistry 11:437-438. H u m p h r i e s , E . C . 1956. M i n e r a l c o m p o n e n t s a n d ash a n a l ysis. Pages 468-502 in M o d e r n m e t h o d s of p l a n t analysis (Paech, K . , a n d T r a c e y , M . V . , eds.). V o l . 1 . B e r l i n , F e d e r a l Republic of Germany: Springer Verlag. Mendez-Castro, F . A . , and Alexander, M . 1983. M e t h o d f o r establishing a b a c t e r i a l i n o c u l u m o n c o r n r o o t . A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 45:248-254. M o o r e , S., and Stein, W . H . 1948. A p h o t o m e t r i c a d a p t a t i o n o f n i n h y d r i n m e t h o d f o r use i n the c h r o m a t o g r a p h y o f a m i n o acids. J o u r n a l o f B i o l o g i c a l C h e m i s t r y 176:367-388. Nelson, N . 1944. A p h o t o m e t r i c a d a p t a t i o n o f S o m o g y i m e t h o d f o r the d e t e r m i n a t i o n o f glucose. J o u r n a l o f B i o l o g i c a l C h e m i s t r y 153:375-380. N e w m a n , E . I . 1978. R o o t m i c r o o r g a n i s m s , t h e i r s i g n i f i cance in the ecosystem. B i o l o g i c a l Reviews 53:521-554. O k o n , Y . , Houchins, J . P . , Albrecht, S.A., and Burris, R . H . 1977. G r o w t h o f Spirillum lipoferum a t c o n s t a n t p a r t i a l pressures o f o x y g e n , a n d the p r o p e r t i e s o f its nitrogenase i n cell-free extracts. J o u r n a l o f G e n e r a l M i c r o b i o l o g y 98:87-93. P r a m e r , D . , and Schmidt, E X . 1966. E x p e r i m e n t a l s o i l m i c r o b i o l o g y . M i n n e a p o l i s , M i n n e s o t a , U S A : Burgess Publishing Co. Purushothaman, D . , Gunasekaran, S., and Oblisami, G . 1979. N i t r o g e n f i x a t i o n b y Azospirillum i n some t r o p i c a l plants. Proceedings o f the I n d i a n N a t i o n a l Science A c a d e m y , P a r t B 46:713-717. Russell, R . S . 1977. P l a n t r o o t systems: t h e i r f u n c t i o n a n d i n t e r a c t i o n w i t h the soil. L o n d o n , U K : M c G r a w H i l l . 298 pp. T a r r a n d , J . J . , K r i e g , N . R . , and Dobereiner, J. 1978. A t a x o n o m i c s t u d y o f t h e Spirillum lipoferum g r o u p , w i t h descriptions of a new genus Azospirillum gen. n o v . a n d t w o species, Azospirillum lipoferum ( B e i j e r i n c k ) c o m b . n o v . a n d Azospirillum brasilense sp. n o v . C a n a d i a n J o u r n a l of M i c r o b i o l o g y 24:967-980. W a t a n a b e , I . , and Barraquio, W . L . 1979. L o w levels o f fixed nitrogen required for isolation of free-living N 2 - f i x i n g m i c r o o r g a n i s m s f r o m rice r o o t s . N a t u r e 277: 565-566. 51 Response of S o r g h u m a n d P e a r l M i l l e t Genotypes to Azospirillum a n d Azotobacter Inoculations C . P . Ghonsikar, R . S . R a u t , and G.B. Rudraksha1 Summary Sorghum and pearl millet genotypes were tested in afield trial for their response to A z o s p i r i l l u m and A z o t o b a c t e r inoculations. A z o s p i r i l l u m inoculation increased grain yield of sorghum by 18% over the control as compared to 12% yield increase with A z o t o b a c t c r . Fodder yields in sorghum and pearl millet reflected a significant influence of A z o t o b a c t e r and A z o s p i r i l l u m inoculations. Sorghum hybrid CSH 9 and pearl millet genotypes MP 21 and Bangaon showed relatively better response to A z o t o b a c t e r and A z o s p i r i l l u m inoculation than other genotypes. The results imply that nitrogen-fixing organisms like A z o t o b a c t e r and A z o s p i r i l l u m showed an ability to enhance biomass production in sorghum and pearl millet. However, it is necessary to locate specificity of interaction between an isolate and host-plant species. Introduction N i t r o g e n s u p p l y t o s o r g h u m a n d pearl m i l l e t i s gene r a l l y a l i m i t i n g factor, p a r t i c u l a r l y w h e n they are g r o w n o n l o w - f e r t i l i t y soils, a n d the e x p l o i t a t i o n o f rhizospheric n i t r o g e n f i x a t i o n m a y p r o v e beneficial f o r c r o p i m p r o v e m e n t . F i e l d e x p e r i m e n t s have p r o v i d e d l i m i t e d i n f o r m a t i o n a n d there is a great v a r i a b i l i t y i n the responses t o i n o c u l a t i o n s . I n o c u l a t i o n resulted i n increased yields, a l t h o u g h such responses were v a r i a b l e d e p e n d i n g on the N status of the soil a n d v a r i e t y o f the c r o p p l a n t e d . T h i s paper reports the effect of Azotobacter a n d Azospirillum i n o c u l a t i o n o n g r o w t h ( r o o t a n d s h o o t mass) a n d y i e l d o f s o r g h u m a n d pearl m i l l e t u n d e r f i e l d conditions. i n o c u l a t e d either w i t h Azotobacter chroococcum or Azospirillum brasilense, a n d n o n i n o c u l a t e d plants served as a check t r e a t m e n t . T h e c r o p received 40 kg N ha - 1 a n d 60 kg P 2 O 5 ha - 1 at the t i m e of s o w i n g . In a n o t h e r f i e l d t r i a l , pearl m i l l e t c u l t i v a r s B a n g a o n , B J 104, B K 560, a n d M P 2 1 were p l a n t e d w i t h s i m i l a r treatments. T h e c r o p received 25 kg N ha - 1 a n d 50 kg P 2 O 5 ha - 1 . These t w o trials were c o n d u c t e d d u r i n g the r a i n y season ( J u n - O c t ) in 6.0 m x 4.5 m plots o r g a n i z e d i n a f a c t o r i a l R B D w i t h three replicates. R o o t a n d s h o o t masses were measured p e r i o d i c a l l y t o assess biomass p r o d u c t i o n . R o o t v o l u m e was d e t e r m i n e d b y displacement o f w a t e r v o l u m e i n a m e a s u r i n g c y l i n d e r . F i n a l l y , g r a i n a n d f o d d e r yields were recorded at harvest. Results Materials and Methods Sorghum cultivars C S H 1, C S H 5, C S H 6, C S H 9, a n d S P V 297 were s o w n o n a t y p i c V e r t i s o l f i e l d w i t h p H 8.2, O . C . 0.62%, C . E . C . 4 2 m e q 100 g - 1 s o i l a n d h i g h m o i s t u r e - r e t e n t i o n capacity. T h e seeds were 1. Sorghum I n o c u l a t i o n o f s o r g h u m plants w i t h Azospirillum increased r o o t mass by 2 9 % , s h o o t mass by 3 0 % , a n d r o o t v o l u m e b y 3 9 % over the respective n o n i n o c u lated c o n t r o l s . T h e Azotobacter i n o c u l a t i o n i n - Associate Dean, PG School, and Microbiologists, Department of Microbiology, Marathwada Agricultural University, Parbhani, Maharashtra 431 402, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502324, India: I C R I S A T . 53 Table 1. spiriiium on Effect of inoculation with Azotobacter a n d Azothe growth of sorghum during the rainy Table 2. Effect o f inoculation w i t h Azotobacter a n d A z o - spirillum o n the g r o w t h o f pearl m i l l e t , P a r b h a n i , rainy season. season. Days after sowing 35 50 65 Days after sowing Treatment 20 80 No inoculation 3.4 12.2 16.0 17.8 15.2 4.3 16.4 20.7 20.5 15.9 Treatment M e a n r o o t mass ( g p l a n t - 1 ) Azotobacter chroccoccum brasilense CD (P<0.05) 18.5 21.7 22.9 15.3 0.89 2.0 2.7 3.7 NS1 No inoculation 32.6 111.8 165.1 167.6 156.0 chroccoccum 37.6 139.3 184.8 187.3 167.8 brasilense CD (P<0.05) CD (P<0.05) 156.2 190.5 203.8 182.5 7.6 15.8 12.7 23.0 10.1 2.1 5.5 6.5 5.1 4.6 3.2 7.9 8.8 8.5 8.01 3.3 0.6 6.6 0.83 8.1 1.72 7.8 0.99 6.18 0.91 — M e a n s h o o t mass ( g p l a n t - 1 ) — No inoculation 22.3 72.7 89.4 67.6 59.6 31.6 94.4 103.4 86.8 79.7 32.4 8.6 88.0 9.0 97.8 10.4 78.9 NS1 67.6 9.4 chroccoccum Azospirillwn 50.9 80 hrasilense Azotobacter Azospirillum 65 chroccoccum M e a n s h o o t mass ( g p l a n t - 1 ) - - - - - - - - - - - - - Azotobacter 50 M e a n r o o t mass ( g p l a n t - 1 ) Azospirillum 6.4 35 No inoculation Azotobacter Azospirillum 20 brasilense CD (P<0.05) 1, NS = Not significant. 1. NS = Not significant. creased the r o o t mass by 18%, s h o o t mass by 15%, a n d r o o t v o l u m e b y 14% over the c o n t r o l ( T a b l e 1). T h e observed enhancement i n r o o t a n d s h o o t mass o f s o r g h u m , p a r t i c u l a r l y i n e a r l y g r o w t h stages a s a result of Azotobacter a n d Azospirillum i n o c u l a t i o n , m a y b e ascribed t o g r o w t h - p r o m o t i n g substances ( L a k s h m i k u m a r i et a l . 1976, Shende et a l . 1977). T h e 12.2% increase i n g r a i n y i e l d o f s o r g h u m b y A z o t o bacter a n d 18.0% increase w i t h Azospirillum i n o c u l a t i o n was, however, statistically n o n s i g n i f i c a n t . T h e m e a n increases i n f o d d e r y i e l d o f s o r g h u m genotypes d u e to Azotobacter ( 3 2 % ) a n d Azospirillum ( 4 3 % ) i n o c u l a t i o n s were s i g n i f i c a n t l y greater t h a n n o n i n o c u l a t e d s o r g h u m p l o t s . A p p a r e n t l y Azotobacter a n d Azospirillum i n o c u l a t i o n s influence biomass p r o d u c t i o n greatly, b u t i t i s n o t s i g n i f i c a n t l y reflected i n the g r a i n y i e l d . addition to their k n o w n nitrogen-fixing ability. A z o tobacter i n o c u l a t i o n in general p r o d u c e d 0.23 t h a - 1 a d d i t i o n a l g r a i n over its n o n i n o c u l a t e d check, w h i l e Azospirillum gave 0.14 t ha -1 a d d i t i o n a l g r a i n . T h i s a d v a n t a g e h o w e v e r , was n o t s t a t i s t i c a l l y s i g n i f i c a n t . Azotobacter i n o c u l a t i o n increased f o d d e r y i e l d of pearl m i l l e t s i g n i f i c a n t l y a n d its effect was better t h a n t h a t o f Azospirillum. T h i s r e p o r t has s h o w n p o s i t i v e effects o f A z o t o bacter a n d Azospirillum i n o c u l a t i o n s to s o r g h u m a n d p e a rl m i l l e t . I t m a y b e necessary t o i d e n t i f y specificity between an isolate a n d h o s t - p l a n t species t o realize the p o t e n t i a l o f r h i z o s p h e r i c n i t r o g e n f i x ers f o r increasing c r o p yields. Pearl Millet B o t h the bacteria s t i m u l a t e d r o o t g r o w t h s i g n i f i c a n t l y a n d the effect o f Azotobacter o n r o o t mass was m o r e t h a n t h a t o f Azospirillum ( T a b l e 2 ) . T h e i n o c u l a t e d p l a n t s also reflected h i g h e r r o o t v o l u m e t h a n noninoculated plants. T h e inoculated plants p r o d u c e d n e a r l y 1 4 % h i g h e r s h o o t mass t h a n n o n i n o c u l a t e d checks. T h e benefits f r o m such m i c r o o r ganisms m a y b e v i e w e d a s effects o f p l a n t g r o w t h substances ( M i s h u s t i n a n d S h i l i n i k o v a 1969), i n 54 References L a k s h m i k u m a r i , M . , K a v i m a n d a n , S . K . , and S u b b a R a o , N . S . 1976. O c c u r r e n c e o f n i t r o g e n f i x i n g Spirillum i n roots of rice, s o r g h u m , maize a n d other plants. I n d i a n J o u r n a l o f E x p e r i m e n t a l B i o l o g y 14:638-639. Mishustin, E . N . , and S h i l n i k o v a , V . K . 1969. T h e b i o l o g i cal fixation of atmospheric nitrogen by free-living bacteria. Pages 82-109 i n S o i l b i o l o g y : reviews o f research. P a r i s , France: U N E S C O . Shende, S . T . , A p t e , R . G . , a n d Singh, T . 1977. I n f l u e n c e o f Azotobacter o n g e r m i n a t i o n o f rice a n d c o t t o n seeds. C u r r e n t Science 46:675. Research o n Cereal N i t r o g e n F i x a t i o n a t I C R I S A T S.P. Wani1 Summary The acetylene-reduction assay for nitrogenase activity has shown that the roots of sorghum and pearl millet stimulate N2 fixation, A soil-core assay used for measuring nitrogenase activity of field-grown plants showed large plant-to-plant variability. An improved core assay (planted core assay) developed at ICRISAT Center showed higher activity than that recorded by regular core assay. In greenhouse assay methods plants with shoots sustained higher activity than the ones whose tops were cut before the assay, Nitrogenase activity varied throughout the day, as well as over the season. Activity was maximum at the late flowering or early grain-filling stage and it was related to the ontogenetic development of the plant. Activity was favored in moist, warm (ca 35° C) soil and decreased with high levels of fertilizer N. Genotypic variation in sorghum and pearl millet lines for stimulating rhizospheric nitrogenase activity was observed. Out of 284 pearl millet lines tested, 18 lines stimulated high nitrogenase activity (>460 nmol C2H4 h-1 15 cm diam core-1) in the rhizosphere. Two lines, Gam 73 and J 1407, were consistently active over several seasons. Similarly, 28 of 334 sorghum lines tested had high nitrogenase activity (>460 nmol C2H4 h-1 15 cm diam core-1). At ICRISAT Center, pot-culture experiments with sorghum and pearl millet grown in a low-fertility Alfisol, or in unsterilized washed vermiculite, showed substantial positive balances for N. Long-term N balance studies in the field with sorghum and pearl millet cultivars are continuing. Using l5N2 it has been shown that 20-days-old sorghum seedlings fix N2 in the rhizosphere, and part of it is taken up by the plant within 3 days after exposure. The 15N isotope dilution technique has been evaluated for studying genotypic variation in sorghum and pearl millet cultivars for N2 fixation. Many different kinds of bacteria closely associated with the roots of sorghum and pearl millet plants show nitrogenase activity. Responses to inoculation in terms of increased dry-matter production and N uptake have been observed in pot experiments with sorghum and pearl millet grown in Alfisols and vermiculite. In five out of nine field trials with pearl millet cultivars, inoculations with N2-fixing bacteria significantly increased the grain and plant dry-matter yields in all the cultivars. Introduction T h e s e m i - a r i d t r o p i c s ( S A T ) p r o d u c e 6 0 % o f the w o r l d ' s s o r g h u m , a n d 9 5 % o f the w o r l d ' s m i l l e t s , f r o m a t o t a l c r o p p e d area o f a b o u t 7 0 m i l l i o n h a . B o t h cereals r e s p o n d t o i n p u t s o f N , yet a l m o s t a l l the p r o d u c t i o n i s w i t h o u t the use o f fertilizer. T h e s o i l f e r t i l i t y w i t h respect t o N depends o n the rate o f b i o l o g i c a l t u r n o v e r o f n i t r o g e n a n d the a m o u n t s o f nitrogen added to soil t h r o u g h fertilizer, manure, 1. Microbiologist, Pearl Millet Improvement Program, I C R I S A T , Patancheru, A . P . 502 324, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation, Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502324, India: I C R I S A T . 55 and biological nitrogen fixation. T h e o v e r a l l objectives o f the I C R I S A T research p r o g r a m t h a t concentrates o n b i o l o g i c a l N 2 f i x a t i o n associated w i t h s o r g h u m a n d m i l l e t are 1 . T o q u a n t i f y the a m o u n t s o f N 2 - f i x a t i o n a n d t o gauge its i m p o r t a n c e i n r e l a t i o n t o o t h e r N i n p u t s t h a t sustain cereal c r o p p r o d u c t i o n i n the S A T . 2 . T o seek ways o f e n h a n c i n g this a c t i v i t y b y genetic, a g r o n o m i c , o r m i c r o b i o l o g i c a l m e t h o d s . Development of Acetylene Reduction Assay ( A R A ) f o r M e a s u r i n g Nitrogenase Activity C e n t r a l t o o u r research i s the d e v e l o p m e n t o f suitable assay techniques to measure nitrogenase activity. A soil-core assay m e t h o d has been s t a n d a r d i z e d f o r measuring acetylene-reduction activity ( A R A ) associated w i t h f i e l d - g r o w n plants. S o i l cores c o n t a i n i n g p l a n t r o o t s are t a k e n i n m e t a l c y l i n d e r s (15 c m diameter, 2 2 c m length) w i t h a s l i t t l e soil d i s t u r bance as possible, a n d i n c u b a t e d in sealed 6 L plastic vessels u n d e r an atmosphere of ca 15% acetylene in a i r ( F i g . 1). Gas samples are t a k e n after 1 a n d 6 h a n d later analyzed f o r ethylene p r o d u c t i o n b y gas c h r o m a t o g r a p h y . T h e a c t i v i t y o f such cores i s u s u a l l y linear w i t h l i t t l e o r n o l a g p e r i o d p r i o r t o the onset o f nitrogenase a c t i v i t y . W i t h t h i s assay t e c h n i q u e , w e e n c o u n t e r e d large p l a n t - t o - p l a n t v a r i a b i l i t y i n nitrogenase a c t i v i t y . W e have s t u d i e d the factors responsible f o r such p l a n t - t o - p l a n t v a r i a b i l i t y a n d m o d i f i e d o u r techniques a c c o r d i n g l y . M e c h a n i c a l disturbance. T h e cores s a m p l e d a n d t r a n s p o r t e d w i t h p r e c a u t i o n s h a d t h r e e - f o l d greater a c t i v i t y t h a n the cores sampled a n d t r a n s p o r t e d normally. T i m e l a g between severing t h e p l a n t t o p s a n d injecti n g C 2 H 2 . T h e highest a c t i v i t y was r e c o r d e d w h e n the t i m e l a g was least, i.e., a t 0.5 h . A n increase i n the t i m e t a k e n t o inject t h e C 2 H 2 s i g n i f i c a n t l y reduced the a c t i v i t y r e c o r d e d , w i t h a s i g n i f i c a n t negative correlation (r = -0.421, P < 0 . 0 1 ) . Temperature. M o s t a c t i v i t y was r e c o r d e d w h e n the s o i l cores were i n c u b a t e d a t 3 5 ° C ( W a n i e t a l . 1983). Core size. The activity varied f r o m field to field a n d the cores t a k e n o v e r t h e c r o w n o f t h e p l a n t 56 c o n t a i n e d between 1 3 a n d 5 0 % o f the t o t a l a c t i v i t y o f the p l a n t d e p e n d i n g o n its age ( R a o a n d D a r t 1981). T i m e o f sampling. T h i s s i g n i f i c a n t l y affected nitrogenase a c t i v i t y o f f i e l d - g r o w n p e a r l m i l l e t h y b r i d N H B 3 . N i t r o g e n a s e a c t i v i t y increased f r o m 0915 to 1815 h d u r i n g the p h o t o p e r i o d a n d t h e n declined d u r i n g the n i g h t u n t i l 0715 h the n e x t m o r n i n g . T h e a c t i v i t y changed l i t t l e between 0915 a n d 1500 h. H o w e v e r , s i g n i f i c a n t l y higher nitrogenase a c t i v i t y was r e c o r d e d f o r the plants sampled between 1715 a n d 2115 h t h a n at 1115 h. Soil moisture. T h e effect o f s o i l m o i s t u r e o n nitrogenase a c t i v i t y was s t u d i e d i n t w o ways: (1) b y u s i n g the line-source i r r i g a t i o n system a n d (2) b y a d d i n g w a t e r t o cores j u s t before assay. B o t h m e t h o d s gave significant c o r r e l a t i o n s between s o i l m o i s t u r e a n d nitrogenase a c t i v i t y . O b v i o u s l y , i t i s necessary t o c o n t r o l a s m a n y o f the a b o v e variables a s possible i f a n assay o f f i e l d - g r o w n plants is to w o r k . T h e a c t i v i t y r e c o r d e d w i t h the i m p r o v e d soil-core assay t e c h n i q u e was s i g n i f i c a n t l y h i g h e r t h a n t h a t r e c o r d e d w i t h the r e g u l a r soil-core assay t e c h n i q u e . Nitrogenase activity of field-grown pearl millet h y b r i d N H B 3 estimated b y b o t h the assay m e t h o d s i n d i c a t e d t h a t activities o f m o s t o f the plants estim a t e d by the r e g u l a r core assay ranged f r o m 0 to 20 n m o l C 2 H 4 p l a n t - 1 h - 1 c o m p a r e d w i t h 100-250 n m o l C 2 H 4 p l a n t - 1 h - 1 , f o r the i m p r o v e d p l a n t e d - c o r e assay. M e a n a c t i v i t y recorded f o r p l a n t e d cores was 167 n m o l C 2 H 4 p l a n t - 1 h - 1 , s i g n i f i c a n t l y h i g h e r t h a n the r e g u l a r core a c t i v i t y o f 1 8 n m o l C 2 H 4 p l a n t - 1 h - 1 . A s plants aged, a c t i v i t y o f the r e g u l a r cores d e c l i n e d m o r e t h a n t h a t o f p l a n t e d cores ( W a n i e t a l . 1983). S i m i l a r results were o b t a i n e d w i t h s o r g h u m lines a s s h o w n i n T a b l e 1 ( I C R I S A T 1983). Because soil-core assays are t i m e c o n s u m i n g a n d s o m e w h a t v a r i a b l e , w e have d e v e l o p e d a l t e r n a t i v e assay systems — one where seedlings are g r o w n in test tubes, a n d a n o t h e r where p l a n t s are g r o w n i n pots. T h e test t u b e c u l t u r e t e c h n i q u e has been develo p e d m a i n l y t o test the effect o f host g e n o t y p e a n d b a c t e r i a l c u l t u r e o n nitrogenase a c t i v i t y . P l a n t s are g r o w n i n 2 5 m m x 200 m m tubes, w i t h a s m a l l t u b e a t t a c h e d t o t h e side near the b o t t o m . T h e tubes are f i l l e d w i t h 20-25 m L o f g r o w t h m e d i u m , s o i l , sand, s a n d : F Y M , v e r m i c u l i t e , o r nitrogen-free agar, covered a n d p a i n t e d t o keep l i g h t f r o m the r o o t m e d i u m . P l a n t s are g r o w n inside the t u b e , w h i c h i s p l u g g e d w i t h c o t t o n w o o l u n t i l t h e assay, t h e n w i t h a Figure 1. Steps in the soil-core assay technique for measuring nitrogenase activity of field-grown plants: (a) cutting plant at ground level and scraping of algal growth on soil surface; (b) driving metal core around plant roots; (c) lifting out soil-root core from the ground; (d) putting the soil core in plastic container; and (e) sealing container with P V C tape and injecting acetylene gas for incubation. 57 T a b l e 1 . Nitrogenase activity (nmoles C 2 H 4 p l a n t - 1 h - 1 ) o f sorghum cultivars as estimated by regular-core a n d p l a n t ed-core assay methods a t I C R I S A T Center. 1 Cultivar Regular-core Planted-core assay assay I S 1057 24 IS 2207 41 2101 253 IS 9180 33 295 I S 2638 33 316 I S 2391 38 682 I S 3951 37 448 I S 3949 30 267 CSV 5 61 335 Soil 20 119 35 b 535 c Mean 1. Average of 4 replicated cores. L o g transformation (of nmoles C 2 H 4 + 1) used to analyze data. Figures appended with letters vary significantly ( P < 0 . 0 5 ) f r o m each other. r u b b e r S u b a seal; the side t u b e is also closed w i t h a S u b a seal. A c e t y l e n e gas, e q u i v a l e n t t o 15% o f the free v o l u m e in the tube, is injected t h r o u g h the b o t t o m S u b a seal. Eleven lines o f pearl m i l l e t were s o w n a n d one c o n t r o l tube w i t h o u t seed i n o c u l a t e d w i t h a r h i z o spheric extract of field-grown m i l l e t to p r o v i d e a m i x e d i n o c u l u m . Differences between cultivars i n s t i m u l a t i n g nitrogenase a c t i v i t y were a p p a r e n t by 20 days after s o w i n g ( D A S ) a n d r a n k i n g s were s i m i l a r i n different g r o w t h media. T h e nitrogenase a c t i v i t y associated w i t h pearl m i l l e t seedlings g r o w n i n verm i c u l i t e test tubes varies w i t h the c u l t u r e o f o r g a nisms used. A t 1 4 D A S a m a x i m u m a c t i v i t y o f 2 1 nmoles C 2 H 4 p l a n t - 1 d - 1 was o b t a i n e d w i t h a c u l t u r e o f Derxia sp. T h e v a r i a b i l i t y a m o n g plants i n this system was m u c h less t h a n f o r f i e l d - g r o w n p l a n t s . I t m a y b e possible t o screen pearl m i l l e t lines m o r e r e l i a b l y f o r differences i n their a b i l i t y t o s t i m u l a t e nitrogenase a c t i v i t y in such a system. S i m i l a r l y , the a c t i v i t y o f s o r g h u m C S H 6 seedlings i n o c u l a t e d w i t h Azospirillum lipoferum. A, brasilense, Azotobacter chroococcum, a n d Derxia spp a t 8 D A S was e x a m i n e d . T h e highest a c t i v i t y o f 364 n m o l C 2 H 4 p l a n t - 1 d - 1 was o b t a i n e d w i t h plants inoculated with Azotobacter chroococcum. The a c t i v i t y in the n o n i n o c u l a t e d c o n t r o l plants was 1.2 n m o l C 2 H 4 p l a n t - 1 d - 1 ( I C R I S A T 1980). T h e a b o v e t e c h n i q u e was f u r t h e r i m p r o v e d b y a l l o w i n g the shoots t o g r o w outside t h e test t u b e . A t assay t i m e , S u b a seal a n d silicone r u b b e r were used 58 t o seal the gas phase a r o u n d the r o o t m e d i u m , w i t h the s h o o t r e m a i n i n g free i n the a i r . T h i s m e t h o d a g a i n p e r m i t t e d differences to be detected between pearl m i l l e t lines b y 2 0 D A S . L i k e w i s e , m a x i m u m f i e l d a c t i v i t y o f nine pearl m i l l e t lines recorded w i t h r e g u l a r soil-core assays over three to six seasons a n d the a c t i v i t y recorded w i t h seedlings g r o w n i n tubes f i l l e d w i t h sand:farmyard m a n u r e (97:3 w / w ) a n d v e r m i c u l i t e were p o s i t i v e l y correlated ( r = 0 . 6 5 , r = 0 . 6 7 , P < 0 . 0 5 ) ( I C R I S A T 1984). We have also developed a nitrogenase assay m e t h o d f o r i n t a c t plants i n pots, where o n l y the r o o t system i n the p o t i s exposed t o acetylene. Q u i c k e r a n d better d i f f u s i o n o f C 2 H 2 a n d several times greater nitrogenase a c t i v i t y was observed w h e n acetylene was injected at the b o t t o m of the p o t t h a n at the t o p . I n t a c t - p l a n t assays w i t h s o r g h u m a n d m i l l e t showed linear rates of C 2 H 4 p r o d u c t i o n up to 16 h w i t h a s m a l l l a g i n the b e g i n n i n g ( F i g . 2). T h e t i m e course assays i n d i c a t e d the f e a s i b i l i t y of m e a s u r i n g C 2 H 2 r e d u c t i o n b y intact s o r g h u m a n d m i l l e t plants g r o w n in pots. A f t e r 16 h C 2 H 4 p r o d u c t i o n increased s l i g h t l y , suggesting that the i n c u b a t i o n p e r i o d f o r e s t i m a t i n g A R A b y i n t a c t - p l a n t assays s h o u l d b e less t h a n 16 h. In o u r assays we use 6-h i n c u b a t i o n f o r e s t i m a t i n g A R A . T h e i n i t i a l lag p e r i o d f o r C 2 H 4 p r o d u c t i o n was possibly because o f the t i m e 70 60 50 40 30 20 10 0 5 20 10 15 Incubation time (h) 25 30 F i g u r e 2. Relationship between ethylene production a n d i n c u b a t i o n t i m e ( h ) d u r i n g t h e assay o f i n t a c t s o r g h u m plants. Bars represent ± S E . r e q u i r e d f o r C 2 H 2 d i f f u s i o n t h r o u g h o u t the r o o t m e d i u m i n the p o t . H i g h e r A R A was associated w i t h the i n t a c t plants t h a n w i t h decapitated plants. M e a n nitrogenase a c t i v i t y of 4 9 - d a y - o l d plants across the 15 s o r g h u m c u l t i v a r s w i t h i n t a c t shoots was 625 nmoles C 2 H 4 p l a n t - 1 h - 1 s i g n i f i c a n t l y higher ( P < 0 . 0 5 ) t h a n the a c t i v i t y w i t h decapitated plants (247 nmoles C 2 H 4 p l a n t - 1 h - 1 ) . T h e r e was n o significant i n t e r a c t i o n between the assay methods a n d the s o r g h u m c u l t i vars. There was a 26-times r e d u c t i o n in the a c t i v i t y o f these c u l t i v a r s due t o d e c a p i t a t i o n o f t h e i r shoots w i t h 7 6 - d a y - o l d plants as c o m p a r e d w i t h 2.5 times r e d u c t i o n w i t h 4 9 - d a y - o l d plants. T h i s h i g h e r a c t i v i t y m i g h t be due to a c o n t i n u o u s s u p p l y of p h o t o s y n thate to the roots f r o m the intact shoot, or the p h y s i o l o g i c a l processes of the roots m i g h t have been d i s t u r b e d because o f d e c a p i t a t i o n . F u r t h e r studies w i l l be required ( W a n i et a l . 1984). W i t h plants g r o w n i n sand, higher nitrogenase a c t i v i t y was observed w i t h increasing F Y M concent r a t i o n s . T h e increased a c t i v i t y m a y be due to better p l a n t g r o w t h , w i t h increased F Y M c o n c e n t r a t i o n s p r o v i d i n g m o r e root-surface area a n d m o r e r o o t exudates (derived f r o m an increased r o o t mass) f o r c o l o n i z a t i o n b y N 2 - f i x i n g bacteria. F u r t h e r e x p e r i m e n t a t i o n i s required t o understand the role o f F Y M i n s t i m u l a t i n g nitrogenase a c t i v i t y associated w i t h plants. Increased a c t i v i t y was recorded w i t h the temperature increasing f r o m 2 7 ° C t o 3 3 ° C . S o i l m o i s t u r e had a large effect on nitrogenase a c t i v i t y of s o r g h u m a n d m i l l e t i n the i n t a c t - p l a n t assay. T h e i n t a c t - p l a n t assay was tested f o r e s t i m a t i n g nitrogenase a c t i v i t y associated w i t h 15 s o r g h u m c u l tivars, a n d w e c o u l d differentiate c u l t i v a r s w i t h h i g h a n d l o w associated a c t i v i t y . T h e v a r i a b i l i t y between plants g r o w n a n d assayed in pots was m u c h less t h a n between f i e l d - g r o w n plants ( W a n i et a l . 1984). T h i s suggested the p r o m i s e of using this technique f o r screening s o r g h u m a n d m i l l e t c u l t i v a r s f o r t h e i r potential to fix atmospheric nitrogen biologically, after s t u d y i n g the r e l a t i o n s h i p between i n t a c t - p l a n t assay a n d field assay methods. It p e r m i t s a study of the a c t i v i t y a t different g r o w t h stages o f the p l a n t , c o l l e c t i o n of selfed seed f r o m the plants, a n d crossi n g between plants t h a t c o u l d be used f o r p r o d u c i n g test h y b r i d s . M a x i m u m expressions o f the a c t i v i t y c o u l d b e o b t a i n e d b y g r o w i n g plants i n 3 % F Y M m i x e d w i t h sand o r A l f i s o l s o i l , b y w a t e r i n g the plants t o 60-70% w a t e r - h o l d i n g capacity ( W H C ) , b y m a i n t a i n i n g the t e m p e r a t u r e o f the p l a n t g r o w t h m e d i u m a t a r o u n d 33° C , a n d b y n o t d e c a p i t a t i n g the shoot. H o s t Genetic Differences in Promoting N2-fixation D i f f e r e n t genotypes o f b o t h s o r g h u m a n d p e a r l m i l l e t s h o w differences i n s t i m u l a t i n g nitrogenase a c t i v i t y . A t I C R I S A T Center, 135 o u t o f the 284 m i l l e t lines tested s t i m u l a t e d nitrogenase a c t i v i t y t h a t was m o r e t h a n t w i c e t h a t o f soil w i t h o u t p l a n t roots. Eighteen lines s t i m u l a t e d h i g h nitrogenase a c t i v i t y ( > 4 6 0 n m o l C 2 H 4 1 5 c m d i a m core - 1 h - 1 ) . T w o lines, G a m 73 a n d J 1407, were consistently active over several seasons ( I C R I S A T 1978, 1980, 1981; D a r t a n d W a n i 1982). Large p l a n t - t o - p l a n t v a r i a b i l i t y i n nitrogenase a c t i v i t y was observed i n the E x - B o r n u p o p u l a t i o n , r a n g i n g f r o m 0 to 1900 n m o l C 2 H 4 p l a n t - 1 h - 1 . W o r k o n s t a b i l i z i n g the character o f h i g h a n d l o w nitrogenase a c t i v i t y i n this p o p u l a t i o n i s under w a y t o study the inheritance o f this t r a i t ( I C R I S A T 1984). I n s o r g h u m , 2 8 o u t o f 334 f i e l d - g r o w n lines tested had h i g h nitrogenase a c t i v i t y ( > 4 6 0 n m o l C 2 H 4 1 5 c m d i a m core - 1 h - 1 ) associated w i t h t h e i r roots. T h e active lines came f r o m I n d i a (12 o u t of 104 tested), West A f r i c a ( 6 o f 36), East a n d C e n t r a l A f r i c a ( 5 o f 63), S o u t h A f r i c a ( 6 o f 29), U S A ( 2 o f 39), T h a i l a n d (1 of 2), a n d J a p a n (1 of 3). H o w e v e r , 167 lines s t i m u l a t e d nitrogenase a c t i v i t y of at least 100 n m o l C 2 H 4 core - 1 h - 1 , w h i c h was m o r e t h a n t w i c e the m e a n a c t i v i t y o f soil cores w i t h o u t p l a n t roots (range 0-40 n m o l C 2 H 4 core - 1 h - 1 ) . Fifteen lines have been c o n sistently active in three or m o r e seasons, t h o u g h they are n o t consistently active on each assay occasion d u r i n g the season ( I C R I S A T 1978, D a r t a n d W a n i 1982). Several lines of m i n o r millets i n c l u d i n g Eleusine coracana, Panicum sp, P. miliaceurn, a n d Setaria italica have been screened f o r nitrogenase a c t i v i t y . T h e p r o p o r t i o n o f active lines i n m i n o r m i l l e t s was m o r e t h a n t h a t w i t h pearl m i l l e t lines ( I C R I S A T 1979, 1980). Several t r o p i c a l grasses b e l o n g i n g to the genera Brachiaria, Cenchrus, Chloris, Cymbopogon, Dicanthium, Euchlaena, Panicum, Pennisetum, Setaria, a n d Sorghum have been g r o w n w i t h o u t a d d i t i o n o f a n y n i t r o g e n fertilizer over 7 years i n a n o b s e r v a t i o n p l o t . T h i r t y - f o u r o u t o f 4 8 entries were very active in s t i m u l a t i n g N 2 - f i x a t i o n , as observed f r o m the data o b t a i n e d f r o m soil-core assays w i t h these grasses. Some of the entries, e.g., Pennisetum purpureum a n d a cross between P. p u r pureum a n d P. americanum ( N a p i e r bajra), h a d r e m a r k a b l y h i g h nitrogenase a c t i v i t y , reaching as m u c h as 300 g N ha -1 d -1 ( I C R I S A T 1978). 59 Measurement of N2-fixation Use o f 15 N techniques 15 N 2 Incorporation. I n the 1 5 N 2 i n c o r p o r a t i o n techn i q u e a p l a n t enclosed in a c o n t a i n e r is exposed to 15 N 2 , a n d after i n c u b a t i o n , p l a n t tissues are e x a m i n e d f o r a b o v e - n o r m a l c o n c e n t r a t i o n s o f the heavy isotope. S o r g h u m C S H 5 seedlings g r o w n i n tubes i n s a n d : F Y M ( 9 7 : 3 w / w ) m i x t u r e using a n i n t a c t - t u b e assay system were exposed t o I 5 N 2 , b y e x c h a n g i n g the gas i n the r o o t m e d i u m i n the test tubes b y w a t e r displacement ( I C R I S A T 1983). T h e o x y g e n c o n t e n t o f the r o o t zone was m o n i t o r e d a n d m a i n t a i n e d a t 2 0 % . A f t e r e x p o s i n g 2 0 - d a y - o l d seedlings t o labelled 15 N 2 in this f a s h i o n f o r 3 days, I 5 N was detected in the g r o w t h m e d i u m (0.005 1 5 N a t o m % excess). Seven days after the l a b e l l e d gas was r e m o v e d , the 1 5 N a t o m % excess in the plants h a d increased considerab l y w i t h 0.029 1 5 N a t o m % excess i n the r o o t s a n d 0.019 I 5 N a t o m % excess in shoots ( I C R I S A T 1983). V a r i a t i o n i n I 5 N due t o differences i n b o t h n a t u r a l a b u n d a n c e a n d a n a l y t i c a l errors can a c c o u n t f o r a t the m o s t ± 0.010 a t o m % I 5 N excess (Bergersen 1970). A n a p p a r a t u s has been developed t o i n t r o d u c e gas m i x t u r e i n t o the r o o t - g r o w t h c h a m b e r b y p u r g i n g w i t h C O 2 f o l l o w e d b y a b s o r p t i o n o f the C O 2 w i t h soda l i m e ( G i l l e r et a l . 1984) as suggested by W i t t y a n d D a y (1978), thus a v o i d i n g f l o o d i n g the r o o t zone w i t h w a t e r t o transfer the gas used i n the prev i o u s e x p e r i m e n t . U s i n g this device 2 4 - d a y - o l d s o r g h u m seedlings were exposed t o I 5 N 2 . T h e results c l e a r l y d e m o n s t r a t e d t h a t (1) detectable a m o u n t s o f I5 N2 were f i x e d i n the rhizosphere o f s o r g h u m seed- T a b l e 2. I5 lings a n d that (2) f i x e d 1 5 N was i n c o r p o r a t e d i n t o the p l a n t r o o t s a n d shoots w i t h i n 3 days o f i n i t i a l e x p o sure to the gas ( T a b l e 2). A f t e r a f u r t h e r week of g r o w t h the i n c o r p o r a t i o n o f I 5 N i n the r o o t s a n d i n the shoots h a d a l m o s t d o u b l e d . T h e a c t u a l a m o u n t of I 5 N 2 fixed d u r i n g the exposure p e r i o d a n d the a m o u n t w h i c h was i n c o r p o r a t e d i n t o the p l a n t r o o t s a n d shoots can be estimated by c o n v e r t i n g the results i n t o µ g N fixed, using the f o l l o w i n g f o r m u l a : N fixed (µ g) = 15 N a t o m % excess in p l a n t T o t a l plant N (µ g) x 15 N a t o m % excess in gas phase l5 N dilution. T h e isotope d i l u t i o n p r i n c i p l e has been used in p o t e x p e r i m e n t s f o r d i f f e r e n t i a t i n g lines of sorghum and millet for their potential to fix a t m o s p h e r i c n i t r o g e n . S i x lines each o f s o r g h u m a n d m i l l e t were g r o w n i n pots i n a washed v e r m i c u l i t e :sand m i x t u r e (1:1 w / w ) a n d watered w i t h 1 0 p p m N s o l u t i o n w i t h 10 I 5 N a t o m % excess d a i l y as r e q u i r e d . T h e percentage o f N 2 f i x e d b y a n i n d i v i d u a l line was c a l c u l a t e d b y c o m p a r i n g i t t o the line s h o w i n g the highest I 5 N a t o m % c o n t e n t a s c o n t r o l ( I C R I S A T 1984, G i l l e r et a l . 1986). S o r g h u m l i n e IS 801 d e r i v e d 2 7 % , a n d m i l l e t line D 180 17%, of t o t a l p l a n t N f r o m B N F , i n c o m p a r i s o n w i t h l o w nitrogenase s t i m u l a t i n g s o r g h u m l i n e I S 3003 a n d p e a r l m i l l e t I C H 107. H o w e v e r , i n these e x p e r i m e n t s considerable d i l u t i o n o f a d d e d I 5 N was observed i n a l l the lines i n c o m p a r i son w i t h the I 5 N c o n t e n t o f the s o l u t i o n a d d e d , suggesting t h a t a source o f 1 4 N o t h e r t h a n f i x a t i o n m a y b e present i n the system (seed o r v e r m i c u l i t e ) . I t was n o t e d t h a t I 4 N released f r o m v e r m i c u l i t e d i l u t e d N incorporated into 21-day-old sorghum C S H 5 plants after exposure of r o o t systems to N 2 1 for 72 h. Fixed N2 P l a n t age D r y mass Total N (mg plant-1) ( m g plant-1) at harvest (days) I5 Atom% I5 N excess incorporated (µg plant-1) 24 7.2 3 10 ± 1.2 Shoot 264 ± 7.0 ± 0.28 0.056 ± 0.006 Root 2 4 6 ± 17.4 4.2 ± 0.26 0.056 ± 0.003 Total 5 1 0 ± 19.1 11.2 ± 0.33 Shoot 4 0 0 ± 13.4 5.9 ± 0.54 0.102 ± 0.022 16 ± 4 . 7 Root 673 ± 56.5 5.8 ± 0.52 0.073 ± 0.016 11 ± 3 . 2 Total 1073 ± 62.7 11.7 ± 0.96 6 ±0.5 16 ± 1.5 33 I5 1. Mean enrichment 40.3 atom % 2. 3. Calculated as total N x atom % I5 N excess in the plant divided by atom % I 5 N excess in gas. Values are means of five and four replicates for the 24- and 33-day harvests, respectively, ± S.E. 60 N excess. 27 ± 7.9 15 N added. Therefore, the c o m p a r i s o n was m a d e t o the line w i t h the highest I 5 N content. I n such e x p e r i ments e x t r a care has to be t a k e n to prevent the systems g e t t i n g c o n t a m i n a t e d w i t h 1 4 N f r o m o t h e r sources such a s w a t e r o r the g r o w t h m e d i u m . A n a l t e r n a t i v e a p p r o a c h is to use u n i f o r m l y I 5 N labelled s o i l i n pots f o r g r o w i n g lines t o screen f o r t h e i r potential to fix atmospheric nitrogen ( I C R I S A T 1983). N i t r o g e n - b a l a n c e Studies A n o t h e r aspect o f o u r w o r k deals w i t h measurement o f N 2 f i x a t i o n associated w i t h s o r g h u m , m i l l e t , a n d related species, a n d transferred to the c r o p . We are a p p r o a c h i n g this b y experiments using 1 5 N e n r i c h m e n t , b y nitrogen-balance experiments i n p o t c u l ture, a n d b y the m u c h m o r e d i f f i c u l t , l o n g - t e r m field experiments. Pot Experiments W e have concentrated s o far o n establishing n i t r o gen balances associated w i t h s o r g h u m , m i l l e t , a n d N a p i e r bajra (Pennisetum purpureum x P. americanum) g r o w n i n p o t c u l t u r e i n v e r m i c u l i t e media w i t h a n d w i t h o u t added N fertilizer, a n d i n soil l o w i n n i t r o g e n . These e x p e r i m e n t s have established t h a t there is a s m a l l b u t measurable N 2 f i x a t i o n by bacteria associated w i t h the roots of these plants, w h i c h is t a k e n u p b y the p l a n t d u r i n g the g r o w i n g season, a n d some o f w h i c h also remains i n the r o o t i n g m e d i u m . I n one e x p e r i m e n t s o r g h u m was g r o w n t o m a t u r i t y w i t h o u t f e r t i l i z e r N i n washed v e r m i c u l i t e . T h e plants were r a t o o n e d t w i c e a n d g r a i n harvests t a k e n , w i t h t o t a l d r y - m a t t e r p r o d u c t i o n of 195 g p o t - 1 of 10 plants o r i g i n a l l y s o w n . I n a n o t h e r e x p e r i m e n t w i t h s o r g h u m g r o w n i n v e r m i c u l i t e f o r 4 9 days, the N balance s h o w e d a considerable increase in N in p l a n t e d b u t n o t i n u n p l a n t e d pots ( D a r t a n d W a n i 1982, I C R I S A T 1980). T h e p o s i t i v e N balance across a l l i n o c u l a t i o n treatments was 269 m g p o t - 1 o f five p l a n t s w h e n no fertilizer N was a p p l i e d , a n d 124 mg p o t - 1 w h e n 53 mg N p o t - 1 was a p p l i e d . A substantial p r o p o r t i o n of this N was g a i n e d by the r o o t m e d i u m ( 3 3 % o f the t o t a l N balance f o r z e r o - N t r e a t m e n t ) , a l t h o u g h this m a y result f r o m f i n e r o o t s missed f r o m the r o o t sample. In another pot experiment w i t h sorghum C S H 5 g r o w n i n a n unsterilized A l f i s o l w i t h three different levels of a d d e d n i t r o g e n , a considerable balance f o r N due to i n o c u l a t i o n over the c o n t r o l was observed ( T a b l e 3). A m a x i m u m m e a n balance across the n i t r o g e n levels f o r N over u n p l a n t e d t r e a t m e n t of 331 m g p o t - 1 was observed i n case o f i n o c u l a t i o n w i t h A. lipoferum ( I C M 1001). A d d i t i o n of 20 kg N ha - 1 equivalen t resulted in h i g h e r balance f o r N across the i n o c u l a t i o n treatments c o m p a r e d to no N a d d i t i o n a n d a d d i t i o n of 40 kg N ha - 1 equivalent ( I C R I S A T 1984). P e a r l m i l l e t g r o w n i n v e r m i c u l i t e i n p o t s also a t t a i n e d a p o s i t i v e N balance of 109 mg p o t - 1 c o n t a i n i n g five plants w i t h o u t a d d e d N fertilizer. T h e r e was a p o s i t i v e N balance o f 9 6 m g p o r - 1 w i t h n i t r o g e n a d d e d equivalent to 20 kg N ha - 1 ( D a r t a n d W a n i 1982). S i m i l a r l y , in a p o t t r i a l w i t h m i l l e t BJ 104 g r o w n in an unsterilized A l f i s o l there was a signific a n t l y higher positive n i t r o g e n balance ( o v e r u n p l a n t e d treatments) due t o i n o c u l a t i o n w i t h N 2 fixing bacteria over the n o n i n o c u l a t e d c o n t r o l . A T a b l e 3. N i t r o g e n balance w i t h sorghum C S H 5 inoculated w i t h nitrogen-fixing bacteria. 1 Total dry Culture Nitrogen in Net total dry nitrogen G r a i n mass matter matter balance (g p o t 1 ) (g pot-1) (mg pot-1) (mg pot-1) Azospirillum lipoferum 13.9 79.9 307 331 Azotobacter chroococcum 12.1 75.4 259 226 14.9 79.9 270 150 11.6 66.9 223 113 Napier bajra root extract ( N B R E ) Control (noninoculated) SE± c v % 1. 0.64 16.8 2.52 11.6 8.7 11.8 56.5 95 Plants were grown in the greenhouse in pots containing nonsterilized Alfisol. A l o n g with inoculation with bacteria, three nitrogen levels (0, 20, and 40 kg N ha -1 ) were used and each treatment was replicated four times. 61 positive n i t r o g e n balance o f 322 m g p o t - 1 over a n u n p l a n t e d c o n t r o l was r e c o r d e d in a t r e a t m e n t i n o c ulated w i t h Azospirillum lipoferum across the n i t r o gen levels. A m a x i m u m N balance of 240 mg p o t - 1 was observed across the i n o c u l a t i o n t r e a t m e n t s t h a t received 2 0 k g N h a - 1 equivalent. A d d i t i o n o f 4 0 k g N ha - 1 reduced the balance s i g n i f i c a n t l y ( I C R I S A T 1984). These f i n d i n g s i n d i c a t e d that a d d i t i o n o f n i t rogen a t l o w e r rates enhanced N 2 f i x a t i o n t h a t resulted i n h i g h e r positive balance, a n d higher rates of N application inhibited N2 fixation. C u t t i n g s o f the N a p i e r bajra h y b r i d N B 2 1 were g r o w n in vermiculite and an A l f i s o l . The cuttings g r e w w i t h o u t added N f e r t i l i z e r t o a b o u t 150 c m i n 7 2 days before being r a t o o n e d . A t f i n a l harvest a t 194 days, the e x t r a N a c c u m u l a t e d in the s o i l a m o u n t e d t o 216 m g N p o t - 1 f o r a single p l a n t w i t h o u t a d d e d N w i t h t o t a l p o s i t i v e balance o f 539 m g N , a n d 368 mg N p l a n t - 1 w i t h 20 kg ha - 1 added N w i t h the t o t a l positive balance o f 657 m g N . F o r the vermiculite rooting medium, N accumulation w i t h zero N t r e a t m e n t was 167 mg N in the m e d i u m a n d 361 m g N p o s i t i v e o v e r a l l balance ( D a r t a n d W a n i 1982). Field Experiments A l o n g - t e r m field e x p e r i m e n t was started in 1978 in c o l l a b o r a t i o n w i t h the S o i l C h e m i s t r y a n d F e r t i l i t y s u b p r o g r a m to measure the N balance in s o r g h u m p r o d u c t i o n in an A l f i s o l under rainfed conditions. T h e same eight c u l t i v a r s w i t h either h i g h nitrogenase a c t i v i t y o r h i g h N u p t a k e u n d e r l o w f e r t i l i t y , are g r o w n each year on the same plots. F e r t i l i z e r N is added a t the rate o f 0 , 20, a n d 4 0 k g ha - 1 . M e a n i n i t i a l N c o n t e n t o f the t o p 0-15 c m o f the s o i l w i t h o u t fertilizer N was 0.040% N , 0.056% i n the 15-30 c m zone, a n d 0.053% a t 30-90 c m . A l l a b o v e g r o u n d p l a n t m a t e r i a l is r e m o v e d at harvest. T h e r e were significant differences between the c u l t i v a r s i n g r a i n y i e l d a n d N u p t a k e f r o m the second season o n w a r d s . D u r i n g the 6 t h year o f this e x p e r i m e n t ( r a i n y season 1983), c u l t i v a r s also v a r i e d s i g n i f i c a n t l y across the N levels in t o t a l d r y - m a t t e r p r o d u c t i o n . D u r i n g the 7 t h year o f the e x p e r i m e n t ( r a i n y season 1984), a u n i f o r m c r o p of pearl m i l l e t was g r o w n . The total dry-matter yield of pearl millet on plots where c u l t i v a r s C S H 5 a n d I S 2333 were g r o w n p r e v i o u s l y was at p a r across the n i t r o g e n levels. T h e c u m u l a t i v e n i t r o g e n u p t a k e t h r o u g h aboveg r o u n d p l a n t parts f r o m 1978 to 1983 (except 1981) 62 i n d i c a t e d t h a t highest n i t r o g e n u p t a k e a m o n g s t the s o r g h u m c u l t i v a r s across t h e a p p l i e d n i t r o g e n levels was i n the case o f C S H 5 (230 k g ha - 1 ) a n d t h e l o w e st was i n the case o f I S 2333 (180 k g ha - 1 ) ( I C R I S A T 1985). These results suggest t h a t s o r g h u m c u l t i v a r s do vary for their N 2 - f i x i n g ability. However, we w i l l have a clearer p i c t u r e of this w h e n s o i l - N changes over the first years of the e x p e r i m e n t are measured. Samples are c u r r e n t l y b e i n g processed. L e a c h i n g losses a n d i n p u t s of N t h r o u g h r a i n f a l l are l i k e l y to be s m a l l . I n another long-term N-balance trial a t I C R I S A T Center, several t r o p i c a l grasses are g r o w n f o r 7 years w i t h o u t a d d i n g a n y fertilizer N . T h e c r o p receives 4 0 k g P 2 O 5 h a - 1 a - 1 a n d i s i r r i g a t e d d u r i n g the d r y season. T h e m a x i m u m d r y - m a t t e r p r o d u c t i o n has been o b t a i n e d w i t h the N a p i e r bajra h y b r i d N B 2 1 where an equivalent of 370 t ha - 1 d r y m a t t e r , c o n t a i n i n g an equivalent of 2752 kg N have been harvested in 7 years ( T a b l e 4). A p r e l i m i n a r y s o i l s a m p l i n g up to a d e p t h of 90 cm after 5.5 years showed n o difference i n N content o f the s o i l f r o m the p l o t s where N B 2 1 was g r o w n a n d where the l o w d r y - m a t t e r - p r o d u c i n g e n t r y was g r o w n . These results suggest that entries l i k e NB 21 are d e r i v i n g some o f t h e i r r e q u i r e m e n t o f N t h r o u g h B N F i n a d d i t i o n t o the s o i l - N p o o l . T h o r o u g h soil s a m p l i n g i n these plots w i l l a l l o w c o m p u t a t i o n o f the exact a m o u n t s of N fixed by these entries over the years. C o n t r i b u t i o n to N B a l a n c e by Blue-green Algae Crusts of blue-green algae develop on the soil surface o f m a n y c r o p p e d f i e l d s d u r i n g the r a i n y season a n d after i r r i g a t i o n ( D a r t a n d W a n i 1982, I C R I S A T 1983). T h e p r e d o m i n a n t heterocystous algae, seen f o r m i n g mats o n fields a t I C R I S A T Center, were t w o Anabaena species a n d Nostocmuscorum. O t h e r Nostoc species as w e l l as algae b e l o n g i n g to the genera Calothrix, Aphanothece, Microsystis, Lyngbya, a n d Oscillatoria were also observed ( I C R I S A T 1983). O n A l f i s o l s , the g r o w t h a n d N 2 - f i x i n g a c t i v i t y o f those algae u n d e r s o r g h u m a n d m i l l e t was genera l l y l o w , b u t u n d e r t r o p i c a l grasses such as Pennisetum purpureum, the mats m a y be very active, d e p e n d i n g o n the wetness o f the s o i l surface, a n d the extent o f the p l a n t canopy. A c t i v i t y decreases r a p i d l y as the s o i l surface dries o u t , v i r t u a l l y ceasing 3 days after w e t t i n g of the s o i l surface if the r a d i a t i o n levels are h i g h . Nitrogenase a c t i v i t y of these a l g a l T a b l e 4. D r y - m a t t e r p r o d u c t i o n and nitrogen u p t a k e by forage grass spp in l o n g - t e r m nitrogen-balance t r i a l . 1 Grass Pennisetum P. P. x P. purpureum NB JVM-2 squamulatum Cenchrus Panicum Setaria Chloris Panicum Pennisetum 21 Production Nitrogen Uptake cumulative per d a y cumulative per day (years) (t ha-1) ( k g ha-1) ( k g ha-1) ( k g ha-1) 6.94 370.7 146.3 2752 1.09 6.94 211.0 83.3 1760 0.69 6.94 165.5 65.3 1189 0.47 ciliaris 6.94 164.3 64.9 1235 0.49 maximum 6.00 152.0 69.0 1080 0.49 6.94 119.0 47.0 836 0.33 6.94 98.9 39.0 617 0.24 6.31 96.3 41.8 706.6 0.31 antidotale 6.5 43.0 18.1 318 0.13 rupellii 6.5 41.7 17.6 312 0.13 anceps Pennisetum 1. americanum purpureum D r y matter Age mezinium gayana Estimated f r o m 6 m 2 net harvest area, harvested 19 times, crop is irrigated during the dry season and 40 kg P 2 O 5 ha -1 is added every year. mats w h e n e x t r a p o l a t e d to a surface-area basis ranged f r o m 24 to 119 mg N f i x e d m - 2 d - 1 , c o m p a r e d w i t h o n l y 0.5 to 1.6 mg N m - 2 d - 1 f o r surface soil w i t h o u t visible algal g r o w t h . T h e algal m a t covered u p t o 2 9 % o f the soil surface ( D a r t a n d W a n i 1982), a t w h i c h level this extrapolates t o a n u p p e r estimate of f i x a t i o n of 28 kg N ha - 1 a - 1 , assuming 80 days at the a b o v e level o f a c t i v i t y f o r a n i r r i g a t e d p e r e n n i a l grass c r o p . observed between the a m o u n t o f exudate a n d r o o t a n d / o r shoot g r o w t h o f seedlings g r o w n i n axenic l i q u i d c u l t u r e , a n d the r a n k i n g o f the cultivars i n o c u lated w i t h A. lipoferum for nitrogenase a c t i v i t y d i d n o t correlate w i t h the a m o u n t s o f s o l u b l e e x u d a t e measured. S i m i l a r l y , this r a n k i n g also differed f r o m that f o r g r o w t h and a c t i v i t y of A. lipoferum in synthetic m e d i a ( I C R I S A T 1984). Combined Nitrogen F a c t o r s A f f e c t i n g Associative N 2 Fixation N i t r o g e n f i x a t i o n associated w i t h s o r g h u m a n d m i l l e t is affected by p l a n t g e n o t y p e , r o o t exudates, seasonal a n d d i u r n a l v a r i a t i o n , soil type, s o i l m o i s ture, t e m p e r a t u r e , levels o f c o m b i n e d n i t r o g e n , a n d o r g a n i c c a r b o n i n the s o i l . S o m e o f these factors have been discussed u n d e r v a r i o u s assay techniques a n d o n l y those n o t discussed earlier are described below. Root Exudates Q u a l i t a t i v e differences i n the soluble exudates o f seedlings o f d i f f e r e n t s o r g h u m genotypes were d e m o n s t r a t e d b y v a r i a t i o n i n g r o w t h a n d nitrogenase a c t i v i t y o f a given bacterial c u l t u r e in semisolid synthetic m e d i a c o n t a i n i n g r o o t exudates as the sole c a r b o n source. O n l y the a z o s p i r i l l a cultures g r e w w e l l ; the o t h e r organisms tested grew p o o r l y , w i t h l i t t l e nitrogenase a c t i v i t y . N o c o r r e l a t i o n was T h e presence of c o m b i n e d N affects the enzyme nitrogenase. W i t h s o r g h u m plants g r o w n i n tubes filled w i t h washed sand, nitrogenase a c t i v i t y was d r a s t i c a l l y reduced w h e n the plants were fed w i t h above 15 p p m N in s o l u t i o n ( I C R I S A T 1984). Nitrogenase a c t i v i t y o f s o r g h u m plants i n the f i e l d was s t i m u l a t e d due to a d d i t i o n of 20 kg N ha - 1 over the n o - N a d d i t i o n t r e a t m e n t , b u t 40 kg N ha - 1 reduced the a c t i v i t y . W i t h m i l l e t BJ 104 plants g r o w n i n pots f i l l e d w i t h A l f i s o l , mean nitrogenase a c t i v i t y t h r o u g h o u t the g r o w t h p e r i o d was signific a n t l y h i g h e r w h e n the plants were watered w i t h 10 a n d 2 5 p p m N i n s o l u t i o n d a i l y , t h a n w i t h the plants w h i c h received no n i t r o g e n a n d also at 100 p p m N s o l u t i o n d a i l y . A p p l i c a t i o n o f a basal dose o f 20, 40, a n d 80 kg N ha - 1 equivalent d i d n o t affect the a c t i v i t y significantly. Nitrogen-fixing Bacteria T h e m a r k e d differences i n nitrogenase a c t i v i t y o f s o r g h u m a n d m i l l e t between fields m a y be p a r t l y due 63 t o differences i n t h e i r m i c r o b i a l p o p u l a t i o n s , suggesting t h a t i t m a y b e possible t o o b t a i n responses t o i n o c u l a t i o n w i t h bacteria. W e c o m p a r e d different m e t h o d s o f e s t i m a t i n g bacterial p o p u l a t i o n s a n d isol a t i n g N 2 - f i x i n g bacteria f r o m r o o t o r soil samples. T h e N-free m e d i a t h a t c o n t a i n e d sucrose a n d m a l a t e as the c a r b o n source were used to c o m p a r e three m e t h o d s o f i s o l a t i n g a n d q u a n t i f y i n g the bacteria. C o u n t s o f p r e s u m p t i v e n i t r o g e n fixers (4.5 x 10 8 i n sucrose a n d 2.5 x 10 8 i n malate m e d i a g - 1 o f r o o t ) were h i g h e r u n d e r the d i l u t i o n plate c o u n t m e t h o d t h a n counts estimated b y most p r o b a b l e n u m b e r ( M P N ) m e t h o d i n semisolid media ( 5 x 10 5 i n sucrose a n d 5 x 10 4 g - 1 r o o t in malate m e d i u m ) , a n d higher t h a n axenic p l a n t tubes (5 x 10 5 g - 1 r o o t ) . Recovery o f nitrogenase-positive bacterial isolates was 4 3 % higher w i t h sucrose a n d 3 0 % higher w i t h malate b y the M P N m e t h o d . Recovery o f nitrogenase-positive bacterial isolates f r o m M P N w i t h axenic plants was 3 7 % using malate m e d i u m ( T a b l e 5 ; I C R I S A T 1984). I n the p l a n t e n r i c h m e n t c u l t u r e technique f o r isol a t i n g N 2 fixers, sterile seedlings o f s o r g h u m o r m i l l e t are g r o w n o n a c a r b o n a n d N-free m e d i u m i n test tubes, a n d i n o c u l a t e d w i t h a d i l u t i o n series o f the s o i l o r c u l t u r e u n d e r test. M o s t p r o b a b l e n u m b e r estimates o f N 2 - f i x i n g bacteria are m a d e f r o m the A R A T a b l e 5 . E s t i m a t i o n a n d isolation o f n i t r o g e n - f i x i n g bacteria f r o m r o o t samples by different methods. 1 Number of Total Method counts isolates Total Active Dilution and plating Sucrose m e d i u m 4.5 x 108 10 0 Malate medium 2.5 x 108 10 0 M P N i n semisolid m e d i u m Sucrose 5 x 105 7 3 Malate 5 x 104 10 3 4 0 5 0 8 3 6 1 M P N w i t h plants 5 x 105 Isolations on Sucrose m e d i u m Malate medium 1. Roots of active Ex-Bornu plants were macerated and serial dilutions were used for plating or inoculating semisolid media in bottles containing 6 mL medium or Ex-Bornu plants grown on Fahraeu's medium. The plants were grown i n 6 m L Fahraeu's medium in 25 x 200 mm plant tubes. 64 o f these tubes, a n d f r o m direct p l a t i n g o f the highest positive d i l u t i o n s . A second or t h i r d selection f r o m this p o p u l a t i o n can be made by a g a i n g o i n g t h r o u g h the process o f d i l u t i o n a n d r e i n o c u l a t i o n o f sterile seedlings. W i t h this technique, w i t h the increasing e n r i c h m e n t d u r i n g each generation, the n u m b e r o f c o l o n y types decreased a n d the p r o p o r t i o n o f nitrogenase-positive bacteria increased. L a r g e p o p u l a t i o n s o f bacteria capable o f g r o w i n g i n a i r o n N-free m e d i a exist i n s o i l . Use o f the acetylene-reduction assay indicated nitrogenase a c t i v i t y f o r a b o u t 6 0 % o f these p r e s u m p t i v e N 2 f i x ers. T h e n u m b e r o f c o l o n y types a n d the p o p u l a t i o n sizes depended on the selection of m e d i a a n d v a r i e d w i t h the c a r b o n source. A b o u t f o u r times a s m a n y bacteria g r e w on a sucrose-based m e d i u m t h a n on a malate-based m e d i u m . A d d i n g a s m a l l a m o u n t o f yeast extract (100 m g L - 1 ) d o u b l e d t h e i r n u m b e r o n b o t h the media. T h e n u m b e r i n the t o p 4 0 c m o f s o i l was a b o u t 10 times greater t h a n t h a t in the 40-to-60 cm zone. T h e r e were over a m i l l i o n E n t e r o b a c t e r i a ceae g - 1 s o i l , several species of w h i c h are k n o w n to f i x n i t r o g e n anaerobically. S t i m u l a t i o n o f p r e s u m p t i v e , aerobic N 2 fixers occurs i n the rhizosphere o f several plants. T h e n u m b e r o f easily recognizable types o f bacteria f r o m the r o o t surface t h a t grew on N-free media was 10 times greater t h a n the p o p u l a t i o n g r o w i n g i n the s o i l a w a y f r o m the roots. A selection f o r p a r t i c u l a r types o f bacteria also occurred i n the r o o t zone, r e s u l t i n g i n less t h a n h a l f the types f o u n d i n the b u l k s o i l . S o m e bacteria were f o u n d very closely b o u n d t o the r o o t a n d perhaps even i n the r o o t tissues. A f t e r s h a k i n g the r o o t w i t h glass beads to r e m o v e surfaceattached bacteria a n d t h e n t h o r o u g h l y s t e r i l i z i n g the r o o t surface w i t h 1% c h l o r o m i n e T f o r 1 h, we recovered m o r e t h a n 400 000 bacteria g - 1 o f fresh r o o t f r o m the r o o t macerate ( D a r t a n d W a n i 1982). A survey of 200 sites in the t r a d i t i o n a l pearl m i l l e t g r o w i n g areas i n n o r t h w e s t e r n I n d i a i n d i c a t e d t h a t t o t a l p o p u l a t i o n o f organisms capable o f g r o w i n g o n a N-free sucrose m e d i u m supplemented w i t h 50 mg L - 1 yeast extrac t ( Y E ) , ranged f r o m 10 7 to 10 8 g - 1 s o i l ( D a r t a n d W a n i 1982). Nitrogenase a c t i v i t y was detected i n 4 2 % o f the 3760 isolates made f r o m the h i g h e s t - d i l u t i o n plates. E v e r y soil c o n t a i n e d o r g a nisms w h i c h p r o d u c e d pellicles a n d reduced C 2 H 2 o n a malate m e d i u m , w i t h a M P N o f N 2 fixers v a r y i n g f r o m 10 3 t o 10 5 g - 1 s o i l . S o m e o f these soils d i d n o t c o n t a i n Azospirillum, a n d Enterobacteriaceae a n d Pseudomonas were c o m m o n l y isolated f r o m the malate e n r i c h m e n t cultures. T h e isolates f r o m the sucrose-based m e d i u m c o u l d be classified i n t o at least seven different genera of N 2 - f i x i n g bacteria, i n c l u d i n g types w h i c h are s t i l l to be i d e n t i f i e d . Enterobacter cloacae was the m o s t - c o m m o n isolate. S o m e Pseudomonas types were also nitrogenase positive. T h e r e were at least 10 6 a c t i m o n y c e t e - l i k e organisms g - 1 soil i n every sample a n d o f the 229 isolates, 70 had nitrogenase a c t i v i t y on sucrose + YE m e d i u m b u t o n subsequent p u r i f i c a t i o n they lost the a c t i v i t y . T h e isolates o b t a i n e d f r o m this s t u d y c o u l d be classified on c o l o n y m o r p h o l o g y i n t o at least 22 different g r o u p s . H o w e v e r , they represent o n l y the m o s t - n u m e r o u s organisms able t o g r o w o n t w o m e d i a ( D a r t a n d W a n i 1982, I C R I S A T 1982). S o m e o f these cultures lose a c t i v i t y d u r i n g p u r i f i c a t i o n a n d s u b c u l t u r i n g . In l a b o r a t o r y studies a synergistic effect on nitrogenase a c t i v i t y was f o u n d w h e n t w o l o w - f i x i n g p u r e cultures were m i x e d together. C u l t u r e s of Erwinia herbicola a n d Enterobacter cloacae each g r e w on N-free m e d i a , b u t were inactive w h e n assayed f o r C 2 H 2 r e d u c t i o n a c t i v i t y . W h e n b o t h cultures were g r o w n together, a h i g h a c t i v i t y was measured b y C 2 H 2 r e d u c t i o n (101 nmoles C 2 H 4 b i j o u b o t t l e - 1 h - 1 ) ( I C R I S A T 1982). S i m i l a r l y , Azotobacter chroococcum in p u r e c u l t u r e alone h a d nitrogenase a c t i v i t y o f 5 0 nmoles C 2 H 4 b i j o u - 1 h - 1 , b u t w h e n it was g r o w n w i t h Erwinia herbicola the a c t i v i t y increased to 121 nmoles C 2 H 4 b i j o u - 1 h - 1 ( I C R I S A T 1982). season. I n o c u l a t i o n o f s o r g h u m c u l t i v a r s w i t h n i t r o g e n - f i x i n g bacteria resulted i n 2-10% increase i n g r a i n yields across the c u l t i v a r s o v e r the n o n i n o c ulated c o n t r o l . H o w e v e r the increases were n o t stat i s t i c a l l y significant. A s i m i l a r t r e n d was observed f o r t o t a l d r y - m a t t e r p r o d u c t i o n ( I C R I S A T 1985). D u r i n g 1982-1984, nine f i e l d trials were c o n d u c t e d a t I C R I S A T Center a n d d i f f e r e n t l o c a t i o n s i n I n d i a t o study t h e response o f m i l l e t c u l t i v a r s t o i n o c u l a t i o n w i t h n i t r o g e n - f i x i n g bacteria. I n a l l the t r i a l s i n o c u l a t i o n increased the g r a i n a n d t o t a l d r y m a t t e r yields o f m i l l e t . H o w e v e r significant y i e l d increases due t o i n o c u l a t i o n were observed i n five trials ( T a b l e 6). T h e s u m m a r y table indicates t h a t u p t o 3 0 % increase i n m e a n y i e l d over the c o n t r o l was observed i n the test c u l t i v a r s due t o i n o c u l a t i o n w i t h N 2 - f i x i n g bacteria. I n a l l the experiments, p l a n t d r y - m a t t e r yields also f o l l o w e d trends s i m i l a r t o t h a t o f g r a i n y i e l d . I n o c u lations increased p l a n t N u p t a k e i n a l l the e x p e r i ments except where A. brasilense ( S P 7) was used. In a few cases g r a i n N c o n t e n t was increased d u e to i n o c u l a t i o n s . I n a l l the t r i a l s , trends f o r host c u l t i v a r and bacterial strain interactions for grain and plant d r y - m a t t e r yields were observed; however, s i g n i f i cant i n t e r a c t i o n f o r g r a i n a n d p l a n t d r y - m a t t e r yields was observed i n one t r i a l each o n l y . Responses t o I n o c u l a t i o n Acknowledgements I n p o t - c u l t u r e studies, the response o f s o r g h u m a n d m i l l e t t o i n o c u l a t i o n w i t h N 2 - f i x i n g bacteria varied w i t h the g r o w t h m e d i u m a n d a m o u n t o f N fertilizer added. T h e responses o f s o r g h u m g r o w n i n pots i n nonsterile A l f i s o l , t o i n o c u l a t i o n w i t h Azospirillum lipoferum a n d N B R E , a m i x e d c u l t u r e , were a g r a i n y i e l d increase o f 2 2 % a n d t o t a l d r y m a t t e r increase o f 2 9 % . T h e y i e l d increase o c c u r r e d even w h e n the e q u i v a l e n t o f 4 0 k g N h a - 1 was a d d e d ( I C R I S A T 1982). N i t r o g e n - b a l a n c e studies i n d i c a t e d a p o s i t i v e N balance over the c o n t r o l due to i n o c u l a t i o n s ( T a b l e 3). I n a f i e l d t r i a l o n a n A l f i s o l w i t h the three sorghum hybrids C S H 1, C S H 5, and C S H 9 inoculated w i t h l i q u i d peat c u l t u r e suspension o f N 2 - f i x i n g bacteria, we observed increased d r y - m a t t e r p r o d u c t i o n ( P < 0 . 1 ) o f a l l three h y b r i d s i n o c u l a t e d w i t h A . lipoferum ( I C M 1001) a n d a N B R E c u l t u r e ( I C R I S A T 1983). A n o t h e r field t r i a l w i t h three s o r g h u m c u l t i v a r s C S H 5 , C S H 9 , a n d S P V 351 a n d 1 0 i n o c u l a t i o n treatments was c o n d u c t e d d u r i n g the 1984 r a i n y D r P.J. D a r t i n i t i a t e d the Cereal M i c r o b i o l o g y p r o gram at I C R I S A T and Drs R . V . Subba Rao, D . B . Godse, a n d J . A . K i p e - N o l t i n i t i a t e d some o f the studies discussed in this paper. T h e results f o r N balances f r o m e x p e r i m e n t s are p a r t o f a c o l l a b o r a t i o n w i t h D r s K . L . Saharawat, T . J . R e g o , a n d F . R B i d i n g e r . E x c e l l e n t technical assistance was received f r o m S. Chandrapalaiah, U . K . A v a l a k k i , M . N . Upadhyaya, and K. Prakash Hebbar. References Bergersen, between F . J . 1970. nitrogen The fixation quantitative relationship a n d the a c e t y l e n e - r e d u c t i o n assay. A u s t r a l i a n J o u r n a l o f B i o l o g i c a l Sciences 23:10151025. D a r t , P . J . , and W a n i , S.P. 1982. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d s o i l f e r t i l i t y . Pages 3-27 in N o n - s y m b i o t i c nitrogen fixation and organic matter in the tropics. S y m p o - 65 T a b l e 6. A s u m m a r y of p e a r l millet i n o c u l a t i o n experiments conducted at different locations d u r i n g 1 9 8 2 - 8 4 . Location and season Soil type I C R I S A T Center Alfisol Cultivars 2 . I P 2787 4. Percentage treatment increase1 A.lipoferum (1) A.brasilense I C M S 7819 S u m m e r 1982 Inoculation 6.05 (SP 7) -6.5 Remarks For plant dry matter significant interaction ( P = 0 . 0 5 ) between cultivar NBRE and culture was noted. I C R I S A T Center Alfisol 3 . I P 2787 6. I C M S 7703 R a i n y 1982 A.lipoferum A.lipoferum W C C 75 3. B J 104 MBH For grain Nb content, significant 6.0 A.brasilense I C R I S A T Center Alfisol 14.5 21.02 NBRE A.chroococcum S u m m e r 1983 (1) ( I C M 1001) 5. 110 M E B H 23/81 (ICM (SP A.lipoferum 2001) 7) -11.8 (1) 3. B J 104 MBH R a i n y 1983 5. (ICM 1001) A.chroococcum (ICM 2001) 1001) (ICM 4 . B J 104 7. 5.5 - A.lipoferum ( I C M 1001) A.brasilense (1) W C C 75 A.brasilense (2) I C M S 7703 A b l + Ab2 B K 560 R a i n y 1984 6.0 2001) NBRE I C R I S A T Center Alfisol 6.0 - (1) (ICM A.chroococcum M E B H 23/81 A.chroococcum 10.7 2 0.7 (ICM 2001) R a i n y 1984 Bhavanisagar M i x e d Red and black Alfisol R a i n y 1984 Parbhani4 Vertisol R a i n y 1984 4 . B J 104 5. R a i n y 1984 Vertisol ( I C M 1001) B K 560 W C C 75 A.chroococcum I C M S 7703 NBRE 4 . B J 104 5. (2) 7.6 yield between cultivars a n d inoculants was 11.6 2 A.lipoferum W C C 75 A.chroococcum I C M S 7703 NBRE 7. 6.1 (ICM 6.1 (SL A.lipoferum 16.5 2 33) (ICM 18.7 2 2001) ( I C M 1001) 6,1 . 24.52 M P 21 A.brasilense (1) 19.3 2 W C C 75 A.brasilense (2) 29.52 4 . B K 560 Ab1 5. + Ab2 10.5 A.chroococcum 30.62 NBRE 27.8 2 A.lipoferum ( I C M 1001) RHR 1 A.brasilense W C C 75 A.chroococcum I C M S 7703 NBRE 1. Increase in mean grain yield across the cultivars. 2. Significantly (P = 0.05) higher over the control. (SL (ICM 3. In cooperation wi t h G.S. Jadhav, Marathwada Agricultural University, Parbhani. In cooperation with N.S. Subba Rao and K.V.B.R. Tilak, I A R I , New Delhi. 5. In cooperation w ith S.D. Ugale, Mahatma Phule Agricultural University, Rahuri. 9.4 7.1 33) 4. 66 2001) ( I C M 1001) A.brasilense 4 . B J 104 25.62 17.4 B K 560 I C M S 7703 Rahuri5 A.lipoferum A.brasilense 2001) Significant interaction for grain 4.8 NBRE Vaijapur3 cultures was observed. 12.4 A.lipoferum AMpoferum 110 interaction between cultivars and 5.0 A.lipoferum NBRE I C R I S A T Center Alfisol 14.0 13.9 6.7 noted. sia papers 1 . T r a n s a c t i o n s o f the 1 2 t h I n t e r n a t i o n a l C o n gress o f S o i l Science, 8-16 F e b 1982, N e w D e l h i , I n d i a . N e w D e l h i , I n d i a : I n d i a n A g r i c u l t u r a l Research I n s t i t u t e . Giller, K . E . , D a y , J . M . , D a r t , P . J . , and W a n i , S.P. 1984. A m e t h o d f o r m e a s u r i n g t h e transfer o f f i x e d n i t r o g e n f r o m free-living bacteria t o higher plants using 15 N 2 . Journal of M i c r o b i o l o g i c a l M e t h o d s 2(6):307-316. Giller, K . E . , W a n i , S.P., and D a y , J . M . 1986. Use o f i s o t o p e d i l u t i o n t o measure n i t r o g e n f i x a t i o n associated w i t h t h e r o o t s o f s o r g h u m a n d m i l l e t genotypes. P l a n t a n d S o i l 90:255-263. I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1978. A n n u a l r e p o r t 1977-78. P a t a n - W a n t , S . P . , U p a d h y a y a , M . N . , a n d D a r t , P . J . 1984. A n i n t a c t p l a n t assay f o r e s t i m a t i n g n i t r o g e n a s e a c t i v i t y ( C 2 H 2 reduction) of sorghum a n d millet plants g r o w n in pots. P l a n t a n d S o i l 82:15-29. W i t t y , J . F . , a n d D a y , J . M . 1978. Use o f 1 5 N 2 i n e v a l u a t i n g a s y m b i o t i c N 2 f i x a t i o n . Pages 135-150 i n I s o t o p e s i n b i o logical d i n i t r o g e n f i x a t i o n : proceedings o f a n A d v i s o r y G r o u p M e e t i n g organized b y the J o i n t F A O / I A E A D i v i s i o n o f A t o m i c E n e r g y i n F o o d a n d A g r i c u l t u r e , 21-25 N o v 1977, V i e n n a , A u s t r i a . V i e n n a , A u s t r i a : I n t e r n a t i o n a l A t o m i c Energy Agency. Discussion c h e r u , A . P . 502 324, I n d i a : I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1979. A n n u a l r e p o r t 1978. P a t a n c h e r u , A . P . 502 324, I n d i a : I C R I S A T . P.Tauro: C o n s i d e r i n g t h a t m i l l e t s are g r o w n w i t h m i n i m u m a g r o n o m i c practices, w h a t i n o c u l a t i o n t e c h n i q u e w o u l d y o u recommend? I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1980. A n n u a l r e p o r t 1979. P a t a n cheru, A . P . 502324, India: I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1981. A n n u a l r e p o r t 1980. P a t a n c h e r u , A . P . 502 324, I n d i a : I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1982. A n n u a l r e p o r t 1981. P a t a n c h e r u , A . P . 502 324, I n d i a : I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1983. A n n u a l r e p o r t 1982. P a t a n cheru, A . P . 502324, India: I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1984. A n n u a l r e p o r t 1983. P a t a n cheru, A . P . 502324, India: I C R I S A T . I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1985. A n n u a l r e p o r t 1984. P a t a n c h e r u , A . P . 502 324, I n d i a : I C R I S A T . S.P.Wani: Seed i n o c u l a t i o n i s t h e best, b u t i f w e f i n d t h a t s l u r r y i n o c u l a t i o n is s u p e r i o r w e w i l l h a v e t o o p t f o r i t . A t present we are comparing various methods of inoculation. P.Tauro: I s a n y t h i n g k n o w n a b o u t the N-scavenging a b i l i t y o f d i f f e r e n t grasses? S.P.Wani: N o . But w i t h t h o r o u g h soil sampling we should be in a p o s i t i o n t o f i n d o u t t h e status o f N s o u r c e i n t h e soil. P.Tauro: C o u l d N r e c o v e r y u p t o 2000 k g / 5 y r b e m o r e d u e t o scavenging t h a n due t o B N F ? R a o , R . V . S . , and D a r t , P . J . 1981. N i t r o g e n f i x a t i o n assoc i a t e d w i t h s o r g h u m a n d m i l l e t . Pages 169-177 i n A s s o c i a t i v e N 2 - f i x a t i o n : proceedings o f the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - f i x a t i o n , 2-6 J u l y 1979, P i r a c i c a b a , B r a z i l ( V o s e , P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 1 . B o c a R a t o n , F l o r i d a , U S A : C R C Press. S.P.Wani: N o . A s the i n i t i a l s o i l s a m p l i n g a n d s a m p l i n g a f t e r 5 years h a v e n o t s h o w n N differences t o t h i s e x t e n t , w e c a n i n f e r t h a t s o i l N was n o t t h e source. R e m o v a l o f 2000 k g N f r o m the s o i l w i l l be easily d e t e c t e d b y W a n i , S . P . ( I n press.) N i t r o g e n f i x a t i o n p o t e n t i a l i t i e s o f K j e l d a h l analysis. s o r g h u m a n d m i l l e t . In N e w trends in biological nitrogen f i x a t i o n ( S u b b a R a o , N . S . , ed.). N e w D e l h i , I n d i a : O x f o r d and 1BH Publishing Co. W a n i , S.P., D a r t , P . J . , a n d U p a d h y a y a , M . N . 1983. F a c t o r s a f f e c t i n g n i t r o g e n a s e a c t i v i t y ( C 2 H 2 r e d u c t i o n ) associated w i t h s o r g h u m and m i l l et estimated using the soil c o r e assay. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 29:10631069. P.Tauro: Have you noticed any negative response to inoculation? S.P.Wani: Yes, in the case of inoculation with Azospirillum brasilense. 67 B . K . Konde: W h a t a d d e d advantages d i d y o u observe f r o m s l u r r y i n o c u l u m o v e r seed i n o c u l a t i o n ? S.P.Wani: I d o n ' t t h i n k so, as generally basal dressings w i t h P 2 O 5 are d o n e i n a l l the t r i a l s . S.P.Wani: Joseph Thomas: I a m impressed b y the p a i n s t a k i n g e x p e r i m e n t s w i t h i m p r o v e d f i e l d techniques. T h e q u a n t i t y o f n i t r o g e n recovered b y N a p i e r grass w o r k s o u t t o 465 k g ha - 1 . D o y o u have a n y 1 5 N d a t a t o substantiate this? B y u s i n g s l u r r y i n o c u l a t i o n (peat c u l t u r e suspended in water), more bacterial i n o c u l u m can be added in the f i e l d a s c o m p a r e d t o seed i n o c u l a t i o n . A n o t h e r advantage i s t h a t i n d r o u g h t - p r o n e areas, this a d d i t i o n a l m o i s t u r e helps i n the establishment o f the p l a n t s in the early stage. S u c h an effect has been observed at V a i j a p u r w h e r e there were no rains at a l l after s o w i n g , a n d o n the e n t i r e s t a t i o n o n l y the i n o c u l a t i o n t r i a l w h e r e l i q u i d suspension was a p p l i e d has c o m e u p w e l l , whereas a l l o t h e r trials s o w n i n the n o r m a l w a y resulted i n p a t c h y p l a n t establishment. B.K.Konde: W h e n d o y o u i n o c u l a t e the plants? S.P.Wani: G e n e r a l l y a t the t i m e o f s o w i n g i f the t r i a l i s h a n d s o w n , o t h e r w i s e s o o n after emergence, i.e., 5-6 days after s o w i n g , i f the t r i a l i s t r a c t o r s o w n . G . Oblisami: W h a t i s the cost o f l i q u i d i n o c u l a t i o n o f A z o s p i r i l lum t o s o r g h u m w h e n c o m p a r e d t o seed inoculation? S.P.Wani: W e have n o t w o r k e d o u t the exact costs o f s l u r r y inoculation, but if sowing is done by a bullockd r a w n i m p l e m e n t , the cost w i l l b e a b o u t R s . 30-40. A s i m p l e , inexpensive device has been d e v e l o p e d by o u r F a r m P o w e r a n d E q u i p m e n t scientists f o r t h i s p u r p o s e i n g r o u n d n u t , a n d i t c a n b e used f o r o t h e r c r o p s also. O . P . Rupela: I n c o n t i n u a t i o n o f D r . T a u r o ' s questions, was t h e negative effect s t a t i s t i c a l l y significant? S.P.Wani: T h e negative effects w i t h A. brasilense ( S P 7) i n o c u l a t i o n were consistent i n t w o t r i a l s w h e r e 4 c u l t i v a r s were t r i e d , a n d i n one t r i a l t h e r e d u c t i o n was s t a t i s t i c a l l y significant. G.S. M u r t h y : W h e n t h e r e i s n o increase i n t h e g r a i n y i e l d b u t there i s a n increase i n t o t a l biomass y i e l d , perhaps o t h e r n u t r i e n t s such a s p h o s p h o r u s a n d z i n c are b e c o m i n g l i m i t i n g factors. 68 S.P.Wani: No. S . V . Hegde: D i d y o u have a n u n p l a n t e d s o i l system f o r N balance study? W h a t was the N g a i n due to p l a n t i n g per se? S.P.Wani: Yes, w e d o m a i n t a i n a n u n p l a n t e d c o n t r o l i n a l l N - b a l a n c e t r i a l s . T h e N g a i n due to p l a n t i n g a l o n e was 113 mg N p o t - 1 s o w n w i t h s o r g h u m , a n d 27 mg N p o t - 1 s o w n w i t h m i l l e t . These gains are across the 3 N levels used. S.V.Hegde: I s i t a p p r o p r i a t e s c i e n t i f i c a l l y t o use N a p i e r bajra r o o t e x t r a c t ( N B R E ) , w h i c h i s a m i x t u r e o f several m i c r o o r g a n i s m s a n d w h i c h c o u l d also change every t i m e the c u l t u r e i s o b t a i n e d f r o m bajra r o o t ? Instead c a n w e n o t isolate the o r g a n i s m o r o r g a n i s m s responsible i n p u r e c u l t u r e a n d use them? S.P.Wani: I agree w i t h y o u t h a t N B R E i s a c o m p l e x c u l t u r e a n d there w i l l b e p r o b l e m s i n p r o d u c i n g a n d m a i n t a i n i n g the q u a l i t y of such a c o m p l e x i n o c u l u m . I d o n ' t t h i n k N B R E c a n b e r e c o m m e n d e d f o r general use. We started u s i n g N B R E as a test m i x t u r e a n d as it gave p o s i t i v e responses w e c o n t i n u e d w i t h i t . I t c a n n o t b e used unless k n o w n bacteria f r o m N B R E m i x e d t o g e t h e r p e r f o r m e q u a l l y w e l l . W e are s t u d y i n g the c o m p o s i t i o n o f N B R E i n terms o f m i c r o b i a l c o m p o n e n t s a n d there are at least 14-15 d i f f e r e n t bacteria i n v o l v e d w h i c h s h o u l d b e e q u a l l y g o o d i n performance. This w i l l take m o r e time and I am not sure w h e t h e r i n the near f u t u r e i t w i l l be possible o r n o t . C o m i n g t o t h e q u e s t i o n o f m a i n t a i n i n g the same c o m p o s i t i o n , w e a l w a y s use the s t a r t i n g m a t e r i a l f o r preparing N B R E f r o m our long-term N-balance t r i a l a n d t i l l n o w w e have observed p o s i t i v e responses w i t h N B R E p r e p a r e d a t d i f f e r e n t t i m e s . Y i e l d a n d N i t r o g e n Gains of S o r g h u m as Influenced by Azospirillum brasilense N . S . Subba R a o , K . V . B . R . T i l a k , C.S. Singh, and P . V . N a i r 1 Summary Initial pot experiments on seed inoculation brasilense demonstrated increased better than CSH In field years, the mean nitrogen) also afield in soil and with P inoculation spora rilium in that treatments low inoculation Growth to experiment, pronounced at seed increase was equivalent noticed In 6. margarita, grain with A. with the brasilense. The to on a nine centers in 14.6 to 21.7 mycorrhizal fasciculatum), in combination were significant with the kg Azospirilium CSH in 5 responding India for four noninoculated ha-1. N N increased successive control (no This trend was kg uptake, A. which N uptake was by plants more due to -1 N ha . phosphorus-deficient vesicular-arbuscular responses over increased the nonsterile, with cultivar application. general, varied from the of 15-20 of N resulted In bicolor) with inoculation levels of sorghum sorghum and G l o m u s due at the application nitrogen. brasilense of by conducted increasing of applied uptake yield obtainable (Sorghum production, experiments inoculation levels of sorghum dry-matter soil (VAM) fungi were (Acaulospora, with seed inoculation brasilense + improved G. with margarita by GigaAzospiand A. brasilense + G. f a s c i c u l a t u m . Introduction D o b e r e i n e r (1975) a n d S u b b a R a o e t a l . ( 1 9 7 9 a ) . T h e s t r a i n s w e r e i d e n t i f i e d as A. brasilense a c c o r d - T h e present s t u d y was c o n d u c t e d t o (1) e v a l u a t e t h e i n g t o T a r r a n d e t a l . (1978). T h e n i t r o g e n - f i x i n g response a b i l i t y o f d i f f e r e n t strains of sorghum to Azospirilium brasilense inoculation, alone and i n c o m b i n a t i o n w i t h graded was e s t i m a t e d by the m i c r o - K j e l d a h l m e t h o d ( J a c k s o n 1967). levels o f f e r t i l i z e r n i t r o g e n i n p o t s a n d i n f i e l d c o n d i - Seeds o f s o r g h u m h y b r i d s C S H 5 a n d C S H 6 w e r e t i o n s a n d (2) t o f i n d o u t the c o m b i n e d effects o f seed i n o c u l a t e d w i t h a carrier-based ( s o i l + F Y M 1:1) i n o c u l a t i o n w i t h A. c u l t u r e of A. brasilense c o n t a i n i n g e f f i c i e n t s t r a i n s , brasilense a n d s o i l i n o c u l a t i o n w i t h V A M fungi o n the g r o w t h a n d P uptake o f f o l l o w i n g the m e t h o d o u t l i n e d b y Subba R a o e t a l sorghum. ( 1 9 7 9 a , b ) . N o n i n o c u l a t e d seeds w e r e c o a t e d w i t h s t e r i l i z e d ( h e a t - k i l l e d ) carrier-based c u l t u r e . T w o p o t culture experiments were conducted Materials and Methods u s i n g 1 2 k g n o n s t e r i l i z e d a l l u v i a l s o i l o f p H 7.3. Azospirilium was i s o l a t e d f r o m t h e r o o t s o f 1 8 c u l t i - s o r g h u m cultivars ( C S H 5 a n d C S H 6) w i t h three v a t e d s o r g h u m varieties g r o w n i n breeders' p l o t s b y s t r a i n s of A. brasilense (S 3 S 1 2 , a n d S 1 8 ) s i n g l y a n d in f o l l o w i n g the methods described b y v o n B u l o w a n d c o m b i n a t i o n w a s s t u d i e d . A b a s a l dose o f 2 0 k g N I n the f i r s t experiment, a n interaction o f t w o 1. Project Director, Agro-Energy Center, Senior Microbiologist, Scientist, and P h D Student, Division of Microbiology, Indian Agricultural Research Institute, New D e l h i 110 012, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 69 ha - 1 was a p p l i e d to a l l the t r e a t m e n t s . P h o s p h o r u s ( P 2 O 5 ) a n d p o t a s s i u m ( K 2 O ) was a p p l i e d a t the rate o f 4 0 k g h a - 1 . I n the second e x p e r i m e n t , t h e effect o f i n o c u l a t i o n o n C S H 6 was studied w i t h five levels o f f e r t i l i z e r N (0, 20, 40, 60, a n d 80 kg ha - 1 ) a p p l i e d at seeding. I n the t h i r d e x p e r i m e n t , the c o m b i n e d effects of seed i n o c u l a t i o n w i t h A. brasilense a n d s o i l i n o c u l a t i o n w i t h different V A M f u n g i ( A c a u l o s p o r a sp, Gigaspora margarita, a n d Glomus fasciculatum) were s t u d i e d o n s o r g h u m c u l t i v a r C S H 5 . N i t r o g e n was a p p l i e d a t the rate o f 2 0 k g ha - 1 , a n d p o t a s h ( K 2 O ) a t 6 0 k g ha - 1 , a t t h e t i m e o f seeding. I n a l l p o t experiments, d r y matter produced by 75-day-old p l a n t s ( p r e f l o w e r i n g stage) was d e t e r m i n e d . I n a l l e x p e r i m e n t s , N was a p p l i e d as urea, P 2 O 5 as single superphosphate ( S S P ) , a n d K 2 O as p o t a s s i u m chloride. F i e l d e x p e r i m e n t s were c o n d u c t e d a t d i f f e r e n t locations in I n d i a on a simple randomized-block design. T h e effect o f seed i n o c u l a t i o n o f s o r g h u m c u l t i v a r C S H 5 w i t h a carrier-based ( s o i l : F Y M - 1 : 1 ) c u l t u r e of A. brasilense was tested at a l l l o c a t i o n s . T h e i n o c u l a t i o n effects were s t u d i e d i n the presence a n d absence o f g r a d e d levels o f N a t the t i m e o f sowing. Phosphorus (P2O5) and potassium ( K 2 O ) were a p p l i e d as single superphosphate a n d potass i u m c h l o r i d e a t the rate o f 4 0 k g h a - 1 each a t t h e t i m e o f s o w i n g . G r a i n a n d s t r a w yields a t the t i m e o f c r o p m a t u r i t y (120 days after s o w i n g ) were determ i n e d . A t the D e l h i center also, a f i e l d e x p e r i m e n t was l a i d o u t o n a s a n d y - l o a m s o i l o f p H 7.3. T h e p l o t size was 10 m 2 (4 x 2 . 5 m ) a n d the t r e a t m e n t s were r e p l i c a t e d f o u r times. E n u m e r a t i o n o f t h e Azospirillum was d o n e 2 0 days after s o w i n g i n t h e r h i z o s p h e r e - s o i l samples a n d r o o t s separately, f o l l o w i n g the m o s t - p r o b a b l e n u m b e r ( M P N ) m e t h o d a s per the tables r e p r o d u c e d b y A l e x a n d e r (1965). T h e nitrogen content in root, shoot, and grain samples was d e t e r m i n e d b y the m o d i f i e d K j e l d a h l m e t h o d ( J a c k s o n 1967) a n d expressed as a percentage o n o v e n - d r y basis. T h e m a x i m u m m e a n y i e l d increase was r e c o r d e d by the c u l t u r e S 1 2 , closely f o l l o w e d by S 3 +S 1 2 , even t h o u g h there was n o s i g n i f i c a n t difference between these t w o treatments. S i m i l a r l y , n o s i g n i f i c a n t d i f ference c o u l d be n o t e d a m o n g t h e t r e a t m e n t s S 3 , S 18 , S 3 +S 1 8 , S 1 2 +S 1 8 , a n d S 3 +S 1 2 +S 1 8 , i n d i c a t i n g t h a t there was n o a d d e d effect o n the g r o w t h o f s o r g h u m p l a n t s by using a m i x e d i n o c u l u m containing more than one isolate of Azospirillum. T h e response of c u l t i v a r C S H 5 to Azospirillum i n o c u l a t i o n was better t h a n t h a t o f C S H 6 . T h i s t y p e o f g e n o t y p i c differences have a l r e a d y been r e p o r t e d w i t h lines o f m a i z e ( v o n Bulow and Dobereiner 1975) and Digitaria decumbens a n d Panicum maximum ( S m i t h et a l . 1978). T h e response o f s o r g h u m t o N was l i n e a r u p t o 8 0 kg N ha - 1 u n d e r n o - i n o c u l a t i o n t r e a t m e n t s w h i l e w i t h i n o c u l a t i o n , y i e l d increases were n o t i c e d o n l y up to the 60 kg N ha - 1 level ( T a b l e 1). No differences c o u l d b e n o t i c e d between the i n o c u l a t e d a n d n o n i n o c u l a t e d t r e a t m e n t s u n d e r the highest level of N (80 k g h a - 1 ) , suggesting the p o s s i b i l i t y o f a n i n t e r f e r ence w i t h f u n c t i o n i n g o f nitrogenase i n the presence o f c o m b i n e d N ( D a y e t a l . 1975, W e i e r 1980). T h e d a t a i n T a b l e 1 i n d i c a t e t h a t the increased d r y m a t t e r y i e l d o b t a i n e d b y the a p p l i c a t i o n o f 2 0 k g N ha - 1 c o u l d also be achieved by inexpensive inoculation. Inoculations w i t h azospirilla brought about an 8 - f o l d increase i n its r h i z o s p h e r i c p o p u l a t i o n ( T a b l e 2). S i m i l a r l y p l a n t r o o t s o f i n o c u l a t e d p l a n t s c o n t a i n Table 1 . D r y m a t t e r ( g p o t - 1 ) o f s o r g h u m a s affected b y inoculation with fertilizer Azospirillum strains in c o m b i n a t i o n w i t h nitrogen. 1 Nitrogen ( k g ha-1) Treatment 0 20 40 60 80 Mean Without inoculation 135 147 158 166 173 156 146 152 172 178 170 164 2 165.0 172.0 171.5 With inoculation Results Mean levels of nitrogen A t o t a l of 18 strains (S 1 -S 1 8 ) were isolated f r o m t h e roots of different sorghum cultivars using semisolid m a l a t e m e d i u m . T h e efficiency o f N 2 f i x a t i o n a m o n g t h e isolates r a n g e d f r o m 8 to 17 mg N g - 1 c a l c i u m malate. M a x i m u m N 2 f i x a t i o n rate o f 16.8 m g N g - 1 c a l c i u m m a l a t e was estimated i n three c u l t u r e s S 3 , S12, and S18 g r o w n for 72 h. 70 CD 140.5 149.5 (P<0.05) CV(%) 12.60 5.68 7.3 1. Average of four r e p l i c a t i o n . 2. Significantly (P < 0 . 0 5 ) different f r o m corresponding noninoculated controls. Table 2. Numbers of Azospirillum associated with the rhizosphere a n d roots of s o r g h u m as affected by inoculation w i t h Azospirillum strain S 1 2 . M P N g - 1 soil Treatment Rhizosphere N0 101 2.8 x 103 2 2.2 x 104 N0 11 Root N0 10 (nonsterilized) 2.1 x 104 N0 10 (sterilized) 1.8 x 10 2 N 0 1 1 (nonsterilized) 3.5 x 105 N0 11 (sterilized) 3.5 x 102 1. 2. N 0 1 0 : Noninoculated control w i t h o ut fertilizer nitrogen. N 0 1 1 : Without fertilizer N but inoculated with Azospirillum. 17-fold h i g h e r bacterial p o p u l a t i o n t h a n the r o o t s o f n o n i n o c u l a t e d plants. S t e r i l i z a t i o n o f the r o o t s w i t h c h l o r a m i n e - T f o r 3 0 m i n s h a r p l y decreased the n u m b e r o f Azospirilla, i n d i c a t i n g t h a t m a n y o f the bacteria were associated w i t h the r o o t tissue. T h a t t h i s decrease was o f the o r d e r o f a 1000-fold i n treated p l a n t s as against a 100-fold in n o n t r e a t e d ones s h o w e d t h a t the r o o t s o f i n o c u l a t e d p l a n t s h a r b o r e d a s u b s t a n t i a l n u m b e r o f b a c t e r i a l cells o n the o u t e r r o o t tissue. T h e evidence f r o m this s t u d y i n d i c a t e d t h a t A z o spirillum m a y b e f a v o r e d i n the r h i z o p l a n e o f a n Table 3. i n o c u l a t e d s o r g h u m c r o p . I t i s a d m i t t e d t h a t the c r i t e r i a f o r i d e n t i f y i n g t h e o r g a n i s m was n o t perfect i n the absence o f a c e t y l e n e - r e d u c t i o n assay ( A R A ) o r fluorescence a n t i b o d y ( F A ) techniques. B u t t h e o v e r a l l analysis o f d a t a p o i n t s t o the p o s s i b i l i t y o f increasing the p o p u l a t i o n s o f n i t r o g e n - f i x i n g A z o spirillum in the rhizosphere as w e l l as in the r o o t s of a s o r g h u m c r o p b y p o p u l a t i o n o f selected strains. I n m u l t i l o c a t i o n a l trials u n d e r different a g r o c l i m a t i c c o n d i t i o n s o f I n d i a , the increase i n y i e l d d u e t o i n o c u l a t i o n was significant at 4 o u t of 9 centers d u r i n g the years 1979-1982 ( T a b l e 3). T h e m e a n increase i n g r a i n y i e l d due t o seed i n o c u l a t i o n o v e r the c o n t r o l , averaged o v e r a l l t r i a l s o v e r 4 years, a m o u n t e d t o 18.7%, a l m o s t e q u i v a l e n t t o the a p p l i c a t i o n of 15-20 kg N ha - 1 as urea. I n o c u l a t i o n in the presence of 40 kg N ha - 1 s i g n i f i c a n t l y increased g r a i n y i e l d over the c o r r e s p o n d i n g c o n t r o l a t t w o o u t o f n i n e centers ( C o i m b a t o r e a n d P a n t n a g a r ) . In a field t r i a l at D e l h i , 60 kg N ha - 1 + i n o c u l a t i o n was f o u n d s u p e r i o r t o a l l o t h e r t r e a t m e n t s ( T a b l e 4 ) . I n o c u l a t i o n c o u l d n o t b r i n g significant benefits i f n o N was a p p l i e d . S t o v e r y i e l d i n s o r g h u m o b t a i n e d w i t h 20 kg N ha - 1 a p p l i c a t i o n c o u l d also be achieved by Azospirillum i n o c u l a t i o n . It was also o b s e r v e d t h a t i n o c u l a t i o n a l o n g w i t h g r a d e d levels o f N resulted i n 7.6-13.5% increase i n stover y i e l d s . T h e effect was m o r e significant (15.6%) i n c o m b i n a t i o n w i t h 20 kg N ha - 1 . Several w o r k e r s r e p o r t e d N gains by f r e e - l i v i n g G r a i n y i e l d ( k g h a - 1 ) o f s o r g h u m C S H 5 a s a f f e c t e d b y i n o c u l a t i o n w i t h Azospirillum brasilense a n d f e r t i l i z e r N a t nine locations in India. 4 0 k g N ha-1 + Noninoculated Location control Azospirillum Azospirillum brasilense 4 0 k g N ha-1 CD brasilense (P<0.05) 3250 Udaipur 2640 31901 4480 4580 Coimbatore 31901 34101 4170 47801 475 Dharwad 1650 20701 3020 3160 405 Hyderabad 3410 4010 4340 4390 875 690 770 2070 1990 250 880 1150 2510 2180 285 1670 1830 1960 1860 350 Akola Parbhani Navsari Indore 1470 1660 2450 2180 450 Pantnagar 1950 2400 2430 2810 375 Mean 1920 2280 3050 3110 - CV(%) 9.5 1. Significant increase over corresponding noninoculated control. 71 T a b l e 4. G r a i n a n d stover yields ( k g h a - 1 ) of s o r g h u m , as affected by i n o c u l a t i o n with Azospirillum in c o m b i n a t i o n w i t h fertilizer n i t r o g e n , I A R I , N e w D e l h i . Nitrogen ( k g ha-1) Treatment Parameter Grain yield 0 60 Mean Without inoculation 3260 3920 4460 5119 4190 W i t h inoculation 3400 47901 53801 58201 48501 3330 4360 4920 5469 Mean Stover yield 40 20 CD (P<0.05) CV (%) 1.62 325 14.5 Without inoculation 7120 9110 10240 11460 9480 With inoculation 7990 105301 11 370 t 12340 105501 7550 9810 10810 11890 Mean CD (P<0.05) CV (%) 481 961 11.5 1. Significantly different f r o m corresponding noninoculated treatments. bacteria r a n g i n g f r o m 34-165 kg N ha - 1 a - 1 ( B a l t e n sperger e t a l . 1978). T h e basic questions w i t h r e g a r d t o the c o n t r i b u t i o n o f Azospirillum t o the increased N status of i n o c u l a t e d plants s t i l l r e m a i n to be satisf a c t o r i l y answered. T h e d a t a d o i n d i c a t e t h a t N u p t a k e was m o r e i n i n o c u l a t e d s o r g h u m t h a n i n t h e c o r r e s p o n d i n g n o n i n o c u l a t e d ones, a n d this effect was m o r e p r o n o u n c e d i n c o m b i n a t i o n w i t h 2 0 k g N ha -1 ( T a b l e 5). A m a x i m u m g a i n of 21.7 kg N ha - 1 by the p l a n t was o b t a i n e d by i n o c u l a t i o n w i t h 20 kg N ha - 1 over the c o r r e s p o n d i n g n o n i n o c u l a t e d t r e a t m e n t . I n o c u - T a b l e 5. l a t i o n also resulted in a g a i n of a b o u t 15 kg N ha - 1 b o t h u n d e r the the zero N a n d 60 kg N levels. T h o u g h the above figures represent o n l y a p p r o x i m a t e values, these rates o f N 2 f i x a t i o n c o u l d v e r y w e l l be c o r r e l a t e d w i t h the N savings n o t e d f r o m increased g r a i n yields due t o i n o c u l a t i o n . S o i l i n o c u l a t i o n w i t h m y c o r r h i z a l f u n g i increased the d r y m a t t e r o f r o o t s , shoots, p h o s p h o r u s c o n c e n t r a t i o n in plants, and phosphorus uptake by s o r g h u m . Seed i n o c u l a t i o n w i t h A. brasilense in c o n j u n c t i o n w i t h Gigaspora margarita or Glomus fasciculatum produced significantly more dry- T o t a l n i t r o g e n u p t a k e in s o r g h u m under different c o m b i n a t i o n s of Azospirillum brasilense a n d fertilizer n i t r o g e n , I A R I , New Delhi. Increase i n Nitrogen uptake (kg ha ) Treatment kg N ha -1 N u p t a k e by -1 A. brasilense Root Stover Grain inoculation Total ( k g ha-1) 0 N1 3.0 31.9 41.6 76.5 - 0 I2 3.7 40.2 47.2 91.1 14.6 20 N 3.8 48.5 53.3 105.6 - 20 I 4.1 57.5 65.7 127.3 21.7 40 N 4.0 55.9 61.8 121.7 - 40 I 3.8 63.1 73.8 141.7 20.0 60 N 4.5 69.00 73.7 147.1 - 60 I 5.2 70.75 86.3 162.3 15.2 1, N = Noninoculated. 2. I = Inoculated. 72 T a b l e 6. Response of sorghum C S H 5 to inoculation w i t h Treatment Azospirillum brasilense a n d V A M f u n g i . S h o o t mass R o o t mass Total phosphorus content (g plant-1) (g plant-1)1 (%) Phosphorus uptake ( m g plant-1) 14.5 0.18 0.10 14.5 18.5 17.2 17.5 17.8 17.8 0.32 2 0.12 0.15 0.15 2 0.16* 0.15 2 0.15 2 0.17 2 21.9 Noninoculated control (no V A M and no A. brasilense) A. brasilense Acaulospora sp Gigaspora margarita Glomus fasciculatum Acaulospora + A. brasilense G. margarita + A. brasilense G. fasciculatum + A. brasilense 20.52 20.8 2 0.22 0.25 0.22 0.25 0.34 2 0.37 2 Azospirilium brasilense V A M fungi A.brasilense x V A M f u n g i i n t e r a c t i o n NS3 NS 2.12 CD 0.12 NS 0.11 25.8 25.5 26.7 26.5 28.52 32.52 (P<0.05) NS 0.04 0.03 NS NS 5.3 1. Average of six replicated pots; each pot had four plants. 2. Significant increase over corresponding control. 3. NS = Not significant. m a t t e r c o n t e n t o f r o o t s , shoots, P c o n t e n t o f shoots, a n d P u p t a k e o f s o r g h u m t h a n the n o n m y c o r r h i z a l treatments ( T a b l e 6). Azospirillum i n o c u l a t i o n has been s h o w n to increase the r o o t biomass ( D e w a n a n d S u b b a R a o 1979) a n d therefore, t h e significant increase i n d r y m a t t e r p r o d u c t i o n a n d r o o t biomass b y a c o m b i n a t i o n of seed i n o c u l a t i o n w i t h A. brasilense a n d s o i l i n o c u l a t i o n w i t h Gigaspora margarita a n d / o r G l o mus fasciculatum c o u l d be a t t r i b u t e d to an increased P t r a n s p o r t by the m y c o r r h i z a l fungus a i d e d by an increased r o o t biomass ( T a b l e 6). References A l e x a n d e r , M . 1965. M o s t - p r o b a b l e - n u m b e r m e t h o d f o r m i c r o b i a l p o p u l a t i o n s . Pages 1467-1472 i n M e t h o d s o f s o i l analysis, ( B l a c k , C . A . , E v a n s , D . D . , W h i t e , J . L . , E n s m i n ger, L . E . , a n d C l a r k , F . E . , eds.). [ I n P t . ] M a d i s o n , W i s c o n sin, U S A : A m e r i c a n Society o f A g r o n o m y . Baltensperger, A . A . , Schank, S . C . , S m i t h , R . L . , L i t t e l l , R . C , B o u t o n , J . H . , a n d D u d e c k , A . E . 1978. Effect o f inoculation w i t h Azospirillum a n d Azotobacter on t u r f t y p e b e r m u d a genotypes. C r o p Science 18:1043-1045. D a y , J . M . , H a r r i s , D . , D a r t , P J . , and van B e r k u m , P . 1975. T h e B r o a d b a l k e x p e r i m e n t . A n i n v e s t i g a t i o n o f n i t r o g e n gains f r o m n o n - s y m b i o t i c f i x a t i o n . Pages 71-84 i n Nitrogen f i x a t i o n by free-living micro-organisms (Stewart, W.D.P.,ed.). Cambridge, U K : Cambridge University Press. D e w a n , G . I . , a n d Subba R a o , N . S . 1979. Seed i n o c u l a t i o n with Azospirillum brasilense a n d Azotobacter chroococcum a n d the r o o t b i o m a s s of rice (Oryza sativa L . ) . P l a n t a n d S o i l 53:295-302. Jackson, M X . 1967. S o i l c h e m i c a l analysis. N e w D e l h i , I n d i a : Prentice H a l l . S m i t h , R . L . , Schank, S . C . , B o u t o n , J . H . , and Quesenberry, K . H . 1978. Y i e l d increases o f t r o p i c a l grasses after i n o c u l a t i o n w i t h Spirillum lipoferum. Pages 380-385 in E n v i r o n m e n t a l r o l e o f n i t r o g e n - f i x i n g blue-green algae a n d a s y m b i o t i c b a c t e r i a ( G r a n h a l l , U . , ed.). E c o l o g i c a l B u l l e t i n s n o . 2 6 . S t o c k h o l m , S w e d e n : S w e d i s h N a t u r a l Science Research C o u n c i l . Subba R a o , N . S . , Tilak, K . V . B . R . , Lakshmikumari, M . , and Singh, C . S . 1979a. Azospirillum a n e w b a c t e r i a l f e r t i l izer. I n d i a n F a r m i n g 30:3-5. S u b b a R a o , N . S , T i l a k , K . V . B . R . , Singh, C . S . , a n d L a k s h m i k u m a r i , M . 1979b. Response o f a f e w e c o n o m i c species o f g r a m i n a c e o u s p l a n t s t o i n o c u l a t i o n w i t h Azospirillum brasilense. C u r r e n t Science 48:133-134. 73 T a r r a n d , J.J., Krieg, N . R . , and Dobereiner, J. 1978. A t a x o n o m i c study of the Spirillum lipoferum g r o u p , w i t h descriptions of a new genus, Azospirillum gen. n o v . a n d t w o species, Azospirillum lipoferum ( B e i j e r i n c k ) c o m b . n o v . a n d Azospirillum brasilense sp. n o v . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 24:967-980. von Bulow, J . F . W . , a n d Dobereiner, J . 1975. P o t e n t i a l f o r n i t r o g e n f i x a t i o n i n maize genotypes i n B r a z i l . Proceedings o f the N a t i o n a l A c a d e m y o f Sciences o f the U n i t e d States o f A m e r i c a 72:2389-2393. Weier, K . L . 1980. N i t r o g e n f i x a t i o n associated w i t h grasses. T r o p i c a l Grasslands 14:194-201. Discussion G . Oblisami: W h a t i s the l o a d o f V A M - f u n g a l i n o c u l a n t t o the s o i l i n o c u l a t i o n f o r sorghum? K . V . B . R . Tilak: T h e i n o c u l u m c a r r i e d 100-125 c h l a m y d o s p o r e s per 50 g of i n o c u l u m . Joseph T h o m a s : T h e d a t a o f D r T i l a k s h o w i n g consistent increase i n r o o t mass on Azospirillum i n o c u l a t i o n are s i g n i f i cant. T h i s is s i m i l a r to a m y c o r r h y z a l effect l e a d i n g t o enhanced u p t a k e o f n u t r i e n t s . T h a t this i s really s o c a n b e d e m o n s t r a t e d b y a p p r o p r i a t e w o r k a t centers like I A R I and I C R I S A T . K . V . B . R . Tilak: V A M i s k n o w n t o increase o t h e r n u t r i e n t s l i k e Z n , Fe, C u , etc., a p a r t f r o m P h o s p h o r u s . S o i t needs t o be e x a m i n e d . S.P. W a n i : I n y o u r d a t a y o u refer t o N balance, w h i c h i s n o t correct. It is increased N u p t a k e a n d n o t the N g a i n or N balance. K . V . B . R . Tilak: Yes, this m a y be considered as N u p t a k e . P.V. Rai: W h a t was the i n o c u l a t i o n m e t h o d f o l l o w e d i n the dual inoculum of Azospirillum brasilense a n d VAM? 74 K . V . B . R . Tilak: Seed i n o c u l a t i o n o f A . brasilense a n d V A M was m i x e d w i t h soil p r i o r to sowing. B . K . Konde: D i d y o u i n o c u l a t e Azospirillum a n d V A M a t the same time? K . V . B . R . Tilak: Yes, a t the t i m e o f s o w i n g . H . L . S . Tandon: W h y is there so m u c h emphasis on s t u d y i n g N b a l ance or N g a i n by t o t a l N analysis of the s o i l w h e n the N changes are e x t r e m e l y s m a l l as c o m p a r e d to t o t a l N present in s o i l , a n d it w o u l d be very d i f f i c u l t t o separate real gains f r o m a n a l y t i c a l errors o r variability? K . V . B . R . Tilak: W e have n o t g i v e n m u c h emphasis o n soil N . B u t soil N content is to be t a k e n i n t o c o n s i d e r a t i o n w h i l e c a l c u l a t i n g the benefits of t o t a l N status d u e to i n o c u l a t i o n w i t h the N 2 f i x e r . Azotobacter Inoculation: N i t r o g e n E c o n o m y a n d Response o f S o r g h u m C S H 1 S . T . Shende1, G . B . R u d r a k s h a 2 , R a j a n i A p t e 1 , a n d R . S . R a u t 2 Summary Field trials conducted revealed that substantially decreased e.g., and appeared 60, to with consistently. gradually 30, during inoculation with The increased and 90 kg N reveal a the saving 1979, 1980, Azotobacter inoculation doses ha-1, of 30 effect N 1981 rainy with seasons (M4), was of N-fertilizer. inoculation kg and chroococcum with sorghum CSH 1 increased grain and fodder yields more at lower N-fertilizer levels at all levels of nitrogen application, But and A z o t o b a c t e r showed a complementary effect and ha-1. Introduction Inconsistent results w i t h Azotobacter chroococcum, p a r t i c u l a r l y i n a g r o n o m i c a l e x p e r i m e n t s , have been a t t r i b u t e d t o the l o w p o p u l a t i o n o f the o r g a n i s m b o t h i n s o i l a n d c r o p rhizosphere ( M i s h u s t i n a n d S h i l n i k o v a 1969, B r o w n 1974). H o w e v e r , there arc re p o rt s t h a t i n o c u l a t i o n w i t h f r e e - l i v i n g n i t r o g e n f i x i n g bacteria enhanced c r o p yields, i n c l u d i n g t h a t o f cereals ( M e s h r a m a n d Shende 1982, Shende a n d A p t e 1982, S u b b a R a o e t a l . 1982, W a n i e t a l . 1985). T h i s paper re p o rt s the results o f f i e l d t r i a l s c o n ducted w i t h sorghum under agroclimatic conditions f o r three consecutive r a i n y seasons a t P a r b h a n i i n Maharashtra. Materials and Methods F i e l d t r i a l s were c o n d u c t e d a t P a r b h a n i d u r i n g t h e 1979, 1980, a n d 1981 r a i n y seasons. T h e e x p e r i m e n t s were l a i d o u t i n r a n d o m i z e d - b l o c k designs i n c l u d i n g f o u r levels o f n i t r o g e n , i.e., 0 , 30, 6 0 , a n d 9 0 k g N ha - 1 . I n a l l these e x p e r i m e n t s , s o r g h u m h y b r i d v a r i e t y C S H 1 was used. A u n i f o r m basal dose o f 4 0 k g P 2 O 5 a n d 40 kg K 2 O ha - 1 was a p p l i e d . N i t r o g e n was g i v e n a s urea i n t w o s p l i t a p p l i c a t i o n s . T h e s t r a i n o f Azotobacter chroococcum ( M 4 ) used was isolated f r o m the rhizosphere o f m a i z e p l a n t . T h i s s t r a i n i s c h r o m o g e n i c a n d was f o u n d t o f i x 1.76 mg N g - 1 sucrose a n d synthesize i n d o l e acetic acid ( I A A ) and G L S compounds. Results D u r i n g 1979, the f o d d e r y i e l d o f 8830 k g ha - 1 , o b t a i n e d by a c o m b i n e d t r e a t m e n t of 60 kg N ha - 1 a n d i n o c u l a t i o n w i t h Azotobacter, was s i g n i f i c a n t l y h i g h e r t h a n the 8020 k g h a - 1 o b t a i n e d w i t h a p p l i c a t i o n of 60 kg N ha - 1 alone, a n d was at p a r w i t h the f o d d e r y i e l d o b t a i n e d w i t h the a p p l i c a t i o n o f 9 0 k g N ha -1 ( T a b l e 1). I n o c u l a t i o n w i t h Azotobacter a l o n e increased g r a i n y i e l d f r o m 3180 t o 3680 k g h a - 1 (15.7%), w h i c h was statistically a t p a r w i t h the 3890 k g h a - 1 o b t a i n e d w i t h t h e a p p l i c a t i o n o f 3 0 k g N ha - 1 . T h u s , there i s a n i n d i c a t i o n o f n i t r o g e n saving u p t o 3 0 k g N ha - 1 . A t h i g h e r levels o f a p p l i e d N , the y i e l d increases d u e t o Azotobacter were n o t statistically s i g n i f i c a n t . T h e c o m b i n e d t r e a t m e n t appeared t o b e advantageous even at the 90 kg N ha - 1 a p p l i c a t i o n . A s i m i l a r t r e n d was seen d u r i n g 1980. A p p l i c a t i o n o f Azotobacter s i g n i f i c a n t l y raised t h e g r a i n y i e l d 1. Senior Microbiologist and Scientist, Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110 012, India, 2. Microbiologists, Department of Microbiology, Marathwada Agricultural University, Parbhani, Maharashtra 431 402, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 75 Table 1. Effect o f Azotobacter ( M 4 ) inoculation a n d lev- els o f nitrogen o n grain a n d fodder yields o f sorghum C S H 1 , P a r b h a n i , rainy seasons 1 9 7 9 - 8 1 . Increase Grain Fodder in grain yield yield yield (kg ha-1) ( k g ha-1) Treatment (%) R a i n y season 1979 Control 3180 5980 - Azotobacter 3680 6540 15.7 3890 6970 - 4220 7600 8.6 3 0 k g N. ha-1 30 k g N ha-1 + Azotobacter 6 0 k g N ha-1 60 k g N ha-1 + Azotobacter 90 k g N ha-1 9 0 k g N ha-1 + Azotobacter SE 4100 8020 - 4280 8830 4.53 4670 8760 - 4960 9070 6.4 ±1 3 7 ±2 0 1 R a i n y season 1980 Control 1960 - 5510 Azotobacter 2620 7200 30 k g N ha-1 2830 8400 - 3170 9080 12.1 3 0 k g N ha-1 + Azotobacter 60 k g N ha-1 6 0 k g N ha-1 + Azotobacter 9 0 k g N ha-1 9 0 k g N ha-1 + Azotobacter SE 33.6 3510 9600 - 3620 10460 3.0 4170 10710 - 4320 12680 3.6 ±1 7 0 ±4 0 6 1660 4890 Azotobacter 2050 5740 1980 5740 30 k g N ha-1 3 0 k g N ha -1 + Azotobacter 6 0 k g N ha-1 + SE - - 7370 7370 47.7 Azotobacter 3390 8660 3460 8490 61.3 - Azotobacter 3810 9600 3.5 ±1 5 0 ±4 0 0 - f r o m 1960 to 2620 kg ha - 1 (33.6% increase), w h e n fertilizer N was n o t added. I n c o m b i n a t i o n s w i t h N , Azotobacter increased the y i e l d b u t differences were a g a i n n o t s i g n i f i c a n t . B u t i t c o u l d b e seen v e r y clearly t h a t 30 kg N ha - 1 c o u l d be saved at each level o f n i t r o g e n a p p l i c a t i o n i f seed i n o c u l a t i o n w i t h A z o tobacter was p r a c t i c e d . D u r i n g 1981, g r a i n as w e l l as f o d d e r yields increased m a r k e d l y w i t h Azotobacter i n o c u l a t i o n . F o d d e r y i e l d increased w i t h i n o c u l a t i o n a t a l l levels 76 References 273. 23.2 2930 9 0 k g N ha-1 9 0 k g N ha-1 + The authors wish to thank Dr N . S . Subba Rao, H e a d , D i v i s i o n o f M i c r o b i o l o g y , I A R I , and Marathwada Agricultural University for providing the facilities f o r these e x p e r i m e n t s . M e s h r a m , S . U . , and Shende, S . T . 1982. Response o f m a i z e to Azotobacter chroococcum. P l a n t a n d S o i l 69:265- 2100 6 0 k g N ha-1 Acknowledgements B r o w n , M . E . 1974. Seed b a c t e r i z a t i o n . A n n u a l R e v i e w o f P h y t o p a t h o l o g y 12:181-197. R a i n y season 1981 Control o f n i t r o g e n a p p l i c a t i o n , b u t increases were h i g h w i t h 30-60 kg N ha -1 . G r a i n y i e l d increased s i g n i f i c a n t l y w i t h i n o c u l a t i o n , g i v i n g 390 kg ha - 1 or 23.2% m o r e t h a n the c o n t r o l . I n o c u l a t i o n alone was c o m p a r a b l e to a p p l i c a t i o n of 30 or 60 kg N ha - 1 . As in the p r e v i o u s 2 years, a c o m b i n e d t r e a t m e n t of i n o c u l a t i o n together w i t h a p p l i c a t i o n of 30 a n d 60 N kg ha - 1 was the best t r e a t m e n t b o t h f o r f o d d e r a n d g r a i n yields. T h u s , the c o m b i n e d a p p l i c a t i o n o f Azotobacter w i t h 60 kg N ha - 1 in the f o r m of urea was the best t r e a t m e n t , to harness the effect of Azotobacter in o r d e r t o increase g r a i n a n d f o d d e r yields a n d a t the same t i m e t o save a b o u t 3 0 k g h a - 1 o f f e r t i l i z e r N . Mishustin, E . N . , and Shilnikova, V . K . 1969. T h e b i o l o g i cal f i x a t i o n o f a t m o s p h e r i c n i t r o g e n b y f r e e - l i v i n g bacteria. Pages 82-109 in S o i l b i o l o g y : reviews of research. Paris, France: U N E S C O . S h e n d e , S . T . , a n d A p t e , R . G . 1982. Azotobacter i n o c u l a t i o n — a remunerative i n p u t for agricultural crops. Pages 532-543 in Proceedings of the N a t i o n a l S y m p o s i u m o n B i o l o g i c a l N i t r o g e n F i x a t i o n , 25-27 Feb 1982, N e w D e l h i , I n d i a . B o m b a y , I n d i a : B h a b h a A t o m i c Research Centre. Subba R a o , N . S . , T i l a k , K . V . B . R . , Singh, C.S., and G a u t a m , R . C . 1982. C r o p y i e l d a n d n i t r o g e n c o n t e n t o f p e a r l m i l l e t (Pennisetum americanum) in response to A z o p i r i l ium brasilense. Pages 507-516 in Proceedings of the N a t i o n a l S y m p o s i u m o n B i o l o g i c a l N i t r o g e n F i x a t i o n , 252 7 F e b 1982, N e w D e l h i , I n d i a . B o m b a y , I n d i a : B h a b h a A t o m i c Research C e n t r e . W a n i , S.P., Chandrapalaiah, S., and D a r t , P . J . 1985. Response o f p e a r l m i l l e t c u l t i v a r s t o i n o c u l a t i o n w i t h n i t r o g e n - f i x i n g bacteria. E x p e r i m e n t a l A g r i c u l t u r e 21:175182. Response of S o r g h u m Cultivars to I n o c u l a t i o n with Azospirillum D . Purushothaman and G . Oblisami1 Summary This study presents evidence of wide variations among sorghum genotypes in supporting nitrogen fixation. Quantitatively and qualitatively, the isolates of A z o s p i r i l l u m differ in their interaction with cultivars. Based on the root-associated acetylene-reduction activity (ARA), 19 sorghum cultivars were classified into high ARA and low ARA genotypes. Inoculation with an efficient strain (CSH 24) of A z o s p i r i l l u m enhanced the ARA of only certain cultivars. Some cultivars when inoculated exhibited negative response in ARA. In root-bit preincubation test also, the cultivars CSH 5 and Co.24 recorded high ARA while K.tall and USH 1 showed negligible increase. In afield study, A z o s p i r i l l u m inoculation significantly increased the grain yield (13.1%) of cultivar Co. 24. Introduction O f the m a n y cereals g r o w n i n I n d i a , s o r g h u m has been consistently f o u n d to respond to Azospirillum i n o c u l a t i o n ( A 1 C R P B N F 1980). T h e response has been m u c h greater a t l o w levels o f n i t r o g e n t h a n a t higher levels. Perhaps one of the m o s t significant a n d e n c o u r a g i n g f i n d i n g s i n r e l a t i o n t o associative N 2 f i x a t i o n i s t h a t there appear t o b e v a r i e t a l d i f f e r ences i n responses t o i n o c u l a t i o n . I n this paper, the responses o f different genotypes o f s o r g h u m [Sorghum bicolor L. ( M o e n c h ) ] t o i n o c u l a t i o n w i t h Azospirillum are presented. Materials and Methods T h e isolates o f Azospirillum were c u l t u r e d f o l l o w i n g the root-tissue e n r i c h m e n t technique. T h e isolates were p u r i f i e d b y s t r e a k i n g over p o t a t o - m a l i c acid 1. m e d i u m . T h e e n u m e r a t i o n of Azospirillum was d o n e f o l l o w i n g the m o s t - p r o b a b l e n u m b e r ( M P N ) technique using N-free m a l i c acid m e d i u m ( H e g a z i et a l . 1979). M u d pots of 36 cm diameter were filled w i t h 5 kg p o t - 1 redloam soil:sand:farmyard manure ( F Y M ) ( 5 : 5 : l v / v ) m i x t u r e ( p H 7.2; t o t a l n i t r o g e n 0.085%, organic c a r b o n 0.48%). Before raising the c r o p , 20 kg N ha - 1 as urea, 40 kg P 2 0 5 ha - 1 as superphosphate, a n d 40 kg K 2 0 ha - 1 as potassium c h l o r i d e were applied. S o i l samples f r o m the rhizosphere a n d r h i z o p l a n e were collected f o l l o w i n g standard procedures ( P r a mer a n d S c h m i d t 1966, L y n c h 1982). Azospirillum isolates g r o w n i n 3 0 m L m a l i c a c i d semisolid m e d i u m f o r 7 2 h i n special 100 m L restricted-neck Erlenmeyer flasks were assayed f o r A R A by i n c u b a t i n g under 1% acetylene f o r 6 h at 28°C I n the case o f root-associated A R A , freshly c o l lected r o o t samples were placed i n 100 m L E r l e n - Associate Professor and Head, Center of Advanced Studies in Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, T a m i l Nadu 641 003, India. ICR1SAT (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 77 meyer f l a s k ( r o o t s t o occupy 20-25% o f the v o l u m e ) a n d s i m i l a r l y incubated under 1% acetylene f o r 6 h ( P u r u s h o t h a m a n et a l . 1979). T h e p r o m i s i n g isolate C S H 2 4 was g r o w n u n d e r static c o n d i t i o n s i n m a l i c acid b r o t h m e d i u m , supplemented w i t h 100 mg g l u t a m i c a c i d L - 1 . A f t e r 5 days o f g r o w t h the b r o t h was m i x e d w i t h sterilized peat s o i l neutralized w i t h c a l c i u m carbonate. T h e peatbased i n o c u l u m c o n t a i n e d 12 x 10 8 cells g - 1 on d r y mass basis. Surface-sterilized seeds of the s o r g h u m genotypes were treated w i t h the i n o c u l u m , u s i n g jaggery s o l u t i o n as the sticker. E a c h seed after treatm e n t carried 32 x 10 6 cells. T h e field experiment was conducted at the M i l l e t Breeding Station, T a m i l N a d u A g r i c u l t u r a l University ( T N A U ) , C o i m b a t o r e , o n a sandy l o a m s o i l w i t h a p H o f 6.9, 0.026% t o t a l n i t r o g e n , a n d 0.64% organic c a r b o n . T h e p l o t size of 6 m x 5 m was replicated thrice in a r a n d o m i z e d - b l o c k design. T e n packets (2.5 kg) of the i n o c u l u m ha - 1 were used f o r the f i e l d study. A t the t i m e o f t h i n n i n g the c r o p (15-20 days after sowing), the b i o f e r t i l i z e r was sidedressed. T h e c r o p received t w o life-saving irrigations. Results T e n o u t o f 1 9 s o r g h u m genotypes differed signific a n t l y i n t o t a l Azospirillum counts i n the r h i z o sphere at the f l o w e r i n g stage. C u l t i v a r s C o . 2 4 a n d C o . 19 registered a higher c o u n t of Azospirillum in the r h i z o p l a n e ( T a b l e 1). These differences m a y arise f r o m the q u a l i t a t i v e a n d q u a n t i t a t i v e changes i n the r o o t exudates u p o n w h i c h the e n e r g y - d e m a n d i n g d i a z o t r o p h s are dependant ( H u b b e l l 1977). T h e mean A R A o f isolates f r o m genotypes ranged f r o m 1 6 t o 360 nmoles o f C 2 H 4 h - 1 , s h o w i n g over 2 0 - f o l d v a r i a t i o n . I n general, isolates f r o m C S H 5 , C o . 19, C o . 24, U S H 1, a n d C o . 18 recorded s u b s t a n t i a l l y Table 1 . Most-probable number ( M P N ) o f Azospirillum sp in the roots of some s o r g h u m cultivars. Rhizosphere Cultivar (x 104)g-1 Rhizoplane (x 104) g-1 Co.19 22.6 Co.20 56.2 7.2 Co.24 84.6 24.6 4.8 15.8 CSH 4 CD(P<0.05) 78 11.84 42.6 6.16 T a b l e 2. T h e ARA of Azospirillum isolates f r o m different sorghum cultivars. No.of isolates Cultivar tested Mean A R A (nmole C2H4 h-1 flask-1) CSH 5 10 360 ± 26 Co.19 20 312 ± 18 Co.24 25 280 ± 21 USH 1 15 220 ± 26 Co.18 16 211 ± 23 Co.20 12 190 ± 16 Co.21 15 105 ± 12 CSH 6 10 99 ± 12 Co.22 15 87 ± 16 CSV 3 20 65 ± 11 CSV 4 15 65 ± 18 CSH 4 10 18 ± 4 K.tall 10 16 ± 8 higher A R A t h a n the others ( T a b l e 2). T h o u g h the isolates were m a i n t a i n e d on N - r i c h m e d i u m f o r several generations, the v a r i a t i o n i n A R A c o u l d o n l y b e traceable to the host genotypes. A l t h o u g h in vitro d e t e r m i n a t i o n s o f A R A d o n o t reflect the field perf o r m a n c e of these isolates, these d a t a suggest the v a r i a t i o n a m o n g the isolates. T h e genotypes differed s i g n i f i c a n t l y i n respect o f the root-associated A R A d e t e r m i n e d u n d e r n o n i n o c u l a t e d c o n d i t i o n s at the f l o w e r i n g stage ( T a b l e 3). Genotypes that s u p p o r t e d h i g h A R A were C o . 18, C o . 24, C o . 20, C S H 5 , C o . 19, a n d U S H 1 . T h e reason f o r l o w A R A observed w i t h some varieties m i g h t be the presence of i n e f f i cient strains. It s h o u l d be p o i n t e d o u t that c u l t i v a r s Co.24, C S H 5, C o . 2 0 , C o . 18, a n d C o . 19 possessed h i g h A R A a n d also a reasonably large n u m b e r o f Azospirilla. A l l the 1 0 c u l t i v a r s tested responded t o A z o s p i r i l lum i n o c u l a t i o n . H o w e v e r , i n o c u l a t i o n d i d n o t increase the A R A s i g n i f i c a n t l y , except i n genotypes Co.24, C S H 5 , C o . 18, a n d C o . 2 0 . C u l t i v a r s C o . 2 1 , C S H 4 , a n d U S H 1 registered negative responses i n A R A w i t h i n o c u l a t i o n ( T a b l e 4 ) . I n general, p r e i n c u b a t i o n of r o o t s w i t h energy source f o r 6 h g r e a t l y increased A R A . T h e m a x i m u m A R A was observed w i t h Co.24 a n d C S H 5 w h i l e K . t a l l a n d U S H 1 had l o w A R A . W i t h o u t p r e i n c u b a t i o n the c u l t i v a r s recorded p o o r A R A ( T a b l e 5). A s the tissues were n o t surface-sterilized b u t were u n i f o r m l y washed t o r e m o v e the a d h e r i n g s o i l particles, Azospirillum f o u n d entrapped i n the m u c i g e l w o u l d n o t have been lost; also, those d w e l l i n g w i t h i n the c o r t i c a l cells w o u l d r e s p o n d t o the energy-source s u p p l y a n d the cell n u m b e r w o u l d have considerably increased. I t T a b l e 5 . Effect o f preincubation o f washed s o r g h u m r o o t bits w i t h malic acid o n A R A . A R A (nmole C 2 H 4 g-1 dry root h-1) Cultivar T a b l e 3. Root-associated nitrogenase activity of s o r g h u m cultivars at the f l o w e r i n g stage. Nitrogenase activity (nmole C 2 H 4 g Preincubation No preincubation Co.24 288 ± 19 143 ± 8 CSH 5 320 ± 16 76 ± 7 K tall 60 ± 8 USH 1 75 ± 10 43 ± 12 68 ± 8 1. ± Standard deviation of the mean. -1 dry root h-1) Cultivar C o . 18 327 C o . 24 318 C o . 20 268 T a b l e 6 . G r a i n yield ( t h a 1 ) o f sorghum C o . 2 4 a s i n f l u - CSH 5 241 enced by Azospirillum inoculation a n d fertilizer N. C o . 19 216 USH 1 212 Nitrogen C o . 21 120 applied Non- CSH 6 112 kg ha-1 inoculated USV 3 105 0 1.7 1.9 1.8 + 12.7 92 10 2.0 2.1 2.04 + C o . 22 68 20 2.0 2.3 2.15 + 13.7 296 68 CSV 3 K.tall 48 CSH 4 42 USV 1 38 CSV 5 36 CSV 4 35 269 34 A S 3280 30 CD T a b l e 4 . T h e A R A o f s o r g h u m cultivars a s influenced b y Azospirillum inoculation. R o o t associated A R A (nmole C 2 H 4 g-1 root h-1) Cultivar C h a n g e (%) Noninoculated Inoculated C o . 18 217 268 + 23.7 C o . 19 126 176 + 39.0 C o . 20 168 186 + 10.7 C o . 21 146 123 - 5.8 C o . 22 62 84 + 34.8 C o . 24 308 426 + 38.0 K.tall 65 68 + 4.9 CSH 4 44 38 - 13.6 CSH 5 198 268 + 35.2 USH 1 142 112 - 21.1 % Inoculated Mean increase 7.0 30 2.3 2.5 2.44 + 11.5 40 2.4 2.7 2.55 + 15.2 50 2.4 2.8 2.6 + 16.3 2.1 2.4 - + 13.1 Mean 12.72 (P<0.05) G r a i n yield(t ha-1) c o u l d be argued t h a t the cultivars C o . 2 4 a n d C S H 5 p e r m i t t e d a higher rate o f m u l t i p l i c a t i o n o f the d i a z o t r o p h d u r i n g the i n c u b a t i o n p e r i o d t h a n the o t h e r genotypes. A l t e r n a t i v e l y , as i n d i c a t e d earlier, the presence o f m o r e efficient strains w i t h C o . 2 4 a n d C S H 5 w o u l d have reflected i n the increased A R A . T h o u g h p r e i n c u b a t i o n leads t o o v e r e s t i m a t i o n o f n i t r o g e n f i x a t i o n , it does give us an idea of the b e h a v i o r o f varieties. In a field e x p e r i m e n t , the g r a i n y i e l d increased s i g n i f i c a n t l y due t o Azospirillum i n o c u l a t i o n . O n a n average, the increase i n g r a i n y i e l d was 1 3 . 1 % . G r a i n y i e l d w i t h 20 or 30 kg N ha - 1 + Azospirillum i n o c u l a t i o n was 2.4 t ha - 1 , w h i c h was equivalent to t h a t o b t a i n e d w i t h 50 kg N ha - 1 w i t h o u t i n o c u l a t i o n ( T a b l e 6). I n c o n c l u s i o n , i t m a y b e said t h a t s o r g h u m genotypes d i f f e r m a r k e d l y i n h a r b o r i n g d i a z o t r o p h s b o t h in quantity and in quality. In a combination of p o t e n t i a l genotypes w i t h a p p r o p r i a t e , efficient strains of Azospirillum, one can d e f i n i t e l y get g o o d responses. 79 References A I C R P B N F ( A l l I n d i a C o o r d i n a t e d Research Project o n B i o l o g i c a l N i t r o g e n F i x a t i o n ) . 1980. P r o j e c t coordinators' report. New Delhi, India: Indian Council of A g r i c u l t u r a l Research. H e g a z i , N . A . , A m e r , H . , and M o n i b , M . 1979. E n u m e r a t i o n of N 2 - f i x i n g spirilla. Soil Biology and Biochemistry 11:437-438. H u b b e l l , D . H . 1977. P l a n t r o o t a n d b i o l o g i c a l n i t r o g e n f i x a t i o n . Proceedings, S o i l a n d C r o p Science S o c i e t y o f F l o r i d a 36:37-40. L y n c h , J . M . 1982. I n t e r a c t i o n s between b a c t e r i a a n d plants in the r o o t e n v i r o n m e n t . Pages 1-23 in B a c t e r i a a n d plants ( R h o d e s - R o b e r t , M . E . , a n d S k i n n e r , F . A . , eds.). L o n d o n , U K : A c a d e m i c Press. P r a m e r , D , and Schmidt, E . L . 1966. E x p e r i m e n t a l s o i l m i c r o b i o l o g y . M i n n e a p o l i s , M i n n e s o t a , U S A : Burgess Publishing Co. P u r u s h o t h a m a n , D . , Gunasekaran, S . a n d O b l i s a m i , G . 1979. N i t r o g e n f i x a t i o n b y Azospirillum i n some t r o p i cal p l a n t s . Proceedings o f the I n d i a n N a t i o n a l Science A c a d e m y , P a r t B 46:713-717. 80 Nitrogen Transformations by A. brasilense Strain 12S f r o m S o r g h u m Roots Bela S h u k l a a n d B . S . K u n d u 1 Summary One of the isolates of A. brasilense (12S) from sorghum roots showed enhanced nitrogenase activity and cell growth with NO-3 (<60 µg NO-3 mL-1) and NO-2 ( < 3 0 µg NO-2 mL-1) under microaerophilic conditions. Both denitrification and ammonification were observed simultane+ -1 ously in this organism. At low levels of ammonium (<20 µg NH 4 mL ) and urea (60 µg mL-1), growth and nitrogenase activity were improved. These compounds were also transformed to gaseous forms of nitrogen. Introduction Azospirillum spp are capable of several n i t r o g e n t r a n s f o r m a t i o n s : (1) n i t r a t e can be u t i l i z e d by assimi l a t o r y n i t r a t e a n d n i t r i t e reductases; (2) d i s s i m i l a t o r y n i t r a t e r e d u c t i o n is carried o u t u n d e r anaerobic c o n d i t i o n s , w i t h NO - 3 as an electron acceptor, a n d is reduced t o n i t r i t e , n i t r o u s o x i d e , n i t r o g e n , o r a m m o n i u m ; a n d (3) nitrate-dependent n i t r o g e n f i x a t i o n occurs under severe o x y g e n l i m i t a t i o n s . I n the l i g h t of these observations, the present i n v e s t i g a t i o n was u n d e r t a k e n t o study the n i t r o g e n t r a n s f o r m a t i o n s b y A. brasilense (12S), effect of n i t r o g e n sources on cell g r o w t h , t o t a l n i t r o g e n under m i c r o a e r o p h i l i c c o n d i t i o n s , a n d levels w h i c h are c r i t i c a l f o r expression o f nitrogenase a c t i v i t y . Materials and Methods T h e s o r g h u m r o o t isolate A. brasilense (12S) was a l o c a l isolate m a i n t a i n e d b y regular transfers o n m o d i f i e d (0.2 g yeast e x t r a c t replaced v i t a m i n s ) m a l ate m e d i u m agar slants ( D o b e r e i n e r a n d D a y 1976). 1. T h e c u l t u r e was m u l t i p l i e d i n b r o t h m e d i u m i n c u bated at 30° ± 2 ° C a n d 0.1 mL c u l t u r e h a v i n g 10 8 cells mL - 1 was used as i n o c u l u m f o r the studies. T h e n i t r o g e n t r a n s f o r m a t i o n s studies were c o n ducted u s i n g v a r i a b l e concentrations o f NO - 3 , NO - 2 , N H + 4 , a n d NH + 2 (urea) in malate semisolid m e d i u m . T h e tubes c o n t a i n i n g 5 m L m e d i u m were i n o c u l a t e d w i t h 0.1 m L i n o c u l u m a n d i n c u b a t e d a t 3 0 ° ± 2 ° C . T h e presence o f N O - 3 , N O - 2 , N H - 4 urea, N 2 O , t o t a l n i t r o g e n , a n d cell p r o t e i n were d e t e r m i n e d at 0, 3, a n d 6 days after i n c u b a t i o n . F o r the e s t i m a t i o n o f various f o r m s o f n i t r o g e n , the c u l t u r e m e d i u m after A R A a n d N 2 O assay was centrifuged at 10 000 r p m , a n d the supernatent was used f o r v a r i o u s estimations. N i t r a t e c o n c e n t r a t i o n s were measured by usin g salicylic acid ( C a t a l d o et a l . 1975) a n d N O 2 b y d e v e l o p i n g c o l o r w i t h s u l f a n i l i c a c i d a n d a - N - n a p h t h y l ethylene d i a m i n e h y d r o c h l o ride ( N i c h o l a s a n d N a s o n 1957). T h e a m m o n i u m estimations were m a d e by Nesselerization ( J a c k s o n 1967) a n d urea b y the procedure o f D o u g l a s a n d B r e m n e r (1970). T o t a l n i t r o g e n was d e t e r m i n e d b y the c o n v e n t i o n a l m i c r o - K j e l d h a l m e t h o d ( J a c k s o n 1967). T o t a l cell p r o t e i n was measured b y f u r t h e r MSc Student and Associate Professor, Department of Microbiology, College of Basic Sciences and Humanities, Haryana Agricultural University, Hisar, Haryana 125 004, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 81 digesting the cell mass i n I N N a O H a n d later determ i n i n g the a m o u n t o f s o lu b il i zed p r o t e i n b y the procedure o f L o w r y e t a l . (1951). T h e nitrogenase a c t i v i t y was measured by reduct i o n of acetylene to ethylene using a d u a l - c o l u m n N u c o n 5500 gas c h r o m a t o g r a p h . T h e tubes were i n c u b a t e d under 10% C 2 H 2 f o r 24 h a n d the samples were analyzed f o r C 2 H 4 p r o d u c e d . N i t r o u s o x i d e was analyzed f r o m the tubes t h a t were subjected t o A R A assay using gas T C D c h r o m a t o g r a p h ( f i t t e d w i t h p o r a p a k N c o l u m n ) , using H 2 as carrier gas (30 mL min - 1 ), at a o v e n temperat u r e of 100° ± 5 ° C . N i t r o u s o x i d e f o r reference was prepared b y reacting zinc w i t h d i l u t e H N O 3 ( 1 : 1 ) i n an a i r t i g h t container. T h e N 2 O peaks were detected b y c o m p a r i n g w i t h r e p o r t e d results a n d r e t e n t i o n t i m e was recorded. T a b l e 1 . Effect o f n i t r a t e , nitrite, a m m o n i u m , a n d urea o n nitrogenase activity ( n moles C 2 H 4 d - 1 m L - 1 ) . Levels (µg Nitrate (NOT) Nitrite (NOT) Ammonium (NH+4) Results A. brasilense isolate 12S showed h i g h e r A R A t h a n A. brasilense (Sp7a) a n d differed p h y s i o l o g i c a l l y f r o m i t . T h e added n i t r a t e n i t r o g e n was d e n i t r i f i e d t o n i t r i t e a t a l l levels (60-1200 µ g N 0 3 m L - 1 ) a n d f u r t h e r r e d u c t i o n was n o t i c e d o n l y a t l o w e r levels o n longer i n c u b a t i o n ( T a b l e 1). S i m i l a r observations have been r e p o r t e d earlier using a z o s p i r i l l a strains (Scott e t a l . 1979, N e y r a a n d V a n B e r k u m 1977, N e l s o n a n d K n o w l e s 1978). Nitrogenase a c t i v i t y was s l i g h t l y increased b y n i t r a t e a d d i t i o n s ( < 6 0 µ g N 0 3 m L - 1 ) , T h e i n h i b i t i o n o f nitrogenase a t higher levels o f N O 3 m a y b e due t o N O 2 a c c u m u l a t i o n t h a t subseq u e n t l y b l o c k s N O 3 - d e p e n d e n t A R A . A slight g a i n i n t o t a l cell p r o t e i n was n o t i c e d o n l y a t l o w e r levels o f N O 3 ( < 6 0 µ g m L - 1 , T a b l e 2). N i t r a t e d i d n o t increase the t o t a l cell p r o t e i n a p p r e c i a b l y , w h i c h indicates the n o n u t i l i z a t i o n o f this c o m p o u n d u n d e r m i c r o a e r o p h i l i c c o n d i t i o n s f o r cell g r o w t h , but i s used as an e l e c t r o n acceptor. T o t a l n i t r o g e n s h o w e d a m a r g i n a l g a i n at l o w levels a n d a s m a l l loss at higher levels. A s m a l l increase in cell mass a n d t o t a l n i t r o g e n a t the end o f the e x p e r i m e n t m a y b e due t o n i t r o g e n f i x a t i o n . A t higher c o n c e n t r a t i o n s o f n i t r a t e , the loss i n t o t a l n i t r o g e n was due t o f u r t h e r d e g r a d a t i o n of NO 3 to N 2 O a n d N 2 . It was f o u n d t h a t NO 2 was reduced to N 2 O at 60 µ g N O 2 m L - 1 a n d A R A was i m p r o v e d , b u t a t h i g h e r levels the nitrogenase was repressed. A t l o w e r levels, slight increase i n t o t a l cell p r o t e i n was also n o t i c e d . T h e increase in cell mass was less after 3 days t h a n at the earlier stage. T o t a l n i t r o g e n showed a m a r g i n a l 82 mL-1) Days of incubation 3 6 0 698 282 60 710 380 300 ND1 ND 600 ND ND 1200 ND ND 0 792 334 30 870 351 60 910 380 90 ND ND 120 ND ND 150 ND ND 430 0 647 10 699 499 20 676 460 40 ND 395 100 ND ND Amide 0 726 423 (NH+2) 30 759 480 60 752 468 120 ND 256 300 ND ND 1. ND = Not detected. g a i n up to 6 days of i n c u b a t i o n o n l y at l o w levels; at higher c o n c e n t r a t i o n s a slight loss was observed. Precise q u a n t i t a t i v e d e t e r m i n a t i o n s of N 2 O c o u l d n o t be m a d e because of n o n a v a i l a b i l i t y of a s t a n d a r d n i t r o u s o x i d e . A m m o n i u m was also f o u n d a t the end of the e x p e r i m e n t , suggesting c o n v e r s i o n of NO - 3 to N H + 4 . I n v i e w o f the fact that n i t o g e n f i x a t i o n does n o t o c c u r u n d e r these c o n d i t i o n s , the presence o f a m m o n i u m i s m o s t l i k e l y due t o a m m o n i f i c a t i o n . S i m i l a r observations have also been r e p o r t e d by Scott e t a l . (1979). N i t r o g e n - f i x i n g bacteria w i t h the a b i l i t y t o assimilate N O - 3 w i l l n o t use this c o m p o u n d f o r n i t r o g e n f i x a t i o n . H o w e v e r u n d e r o x y g e n levels t o o l o w t o a l l o w r e s p i r a t i o n , nitrate-dependent acetylene r e d u c t i o n c a n occur. I n the e x p e r i m e n t s where n i t r i t e was used as a substrate, s i m i l a r results were f o u n d a n d n i t r i t e was used as e l e c t r o n acceptor. I t therefore appears t h a t b o t h n i t r a t e a n d n i t r i t e r e s p i r a t i o n i n this o r g a n i s m are c o u p l e d t o A R A . T h e added a m m o n i c a l n i t r o g e n was u t i l i z e d by A. brasilense 12S r a p i d l y , a n d o n the 3 r d d a y o f i n c u b a t i o n n o residual a m m o n i u m was f o u n d i n the Table 2. Effect of nitrate, nitrite, a m m o n i u m , and amideN o n cell g r o w t h , p r o t e i n , a n d t o t a l n i t r o g e n . T o t a l cell protein (µg mL Levels (µg mL-1) 0 -1 Total nitrogen (µg mL-1) ) Days 3 6 0 Days 3 6 282 310 108 115 100 325 340 113 120 120 36 50 96 170 312 46 60 93 160 312 53 69 91 154 32 39 46 55 48 57 60 55 59 66 Nitrate 0 100 (NO-3) 60 300 600 100 98 98 1200 110 0 30 100 120 110 110 130 100 318 357 350 355 423 370 116 147 104 120 147 95 0 10 20 40 100 100 90 90 100 110 286 378 437 450 512 352 396 468 494 520 0 30 60 100 110 90 90 100 270 407 475 568 619 310 470 535 600 660 Nitrite (NO-2) 60 90 120 150 Ammonium (NH+4) Amide (NH+2) 120 300 66 75 296 55 62 65 50 54 54 53 68 80 36 48 67 74 48 111 115 83 110 42 58 73 103 44 68 77 50 78 89 104 191 98 182 193 66 76 81 m e d i u m a t l o w e r c o n c e n t r a t i o n s . A n appreciable increase i n A R A was n o t i c e d u p t o 2 0 µ g N H + 4 m L - 1 o v e r the c o n t r o l . T h i s m a y b e because o f m o r e cell mass available f o r acetylene r e d u c t i o n . T h e a m m o n i u m a d d e d at higher levels showed a loss in t o t a l nitrogen, indicating oxidation of a m m o n i u m to gaseous n i t r o g e n w h i c h was c o n f i r m e d by gas c h r o m a t o g r a p h y . At the 40 µ g NH + 4 m L - 1 level, n i t r o g e nase was depressed on the 6 t h d a y a n d n o a c t i v i t y was detected o n the 3 r d day. M a r k e d increase i n t o t a l cell p r o t e i n was n o t i c e d a t a l l levels o f a m m o n i u m c o m p a r e d t o the c o n t r o l . H o w e v e r , the effect was less at h i g h e r levels. A s m a l l g a i n in t o t a l n i t r o gen was f o u n d at less t h a n 20 µ g N H J mL - 1 w i t h a loss at 100 µ g NH + 4 m L - 1 . U r e a was c o n v e r t e d t o a m m o n i u m a n d n o residu a l urea was detected on the 6 t h d a y even at a c o n c e n t r a t i o n o f 300 µ g m L - 1 . T h e presence o f active urease was n o t i c e d as the a d d e d urea was c o n v e r t e d i n t o a m m o n i u m even o n the 3 r d d a y o f i n c u b a t i o n . A m m o n i u m formed further showed transformations s i m i l a r t o those reported above. A R A was enhanced over the c o n t r o l w i t h added urea u p t o 6 0 µ g on the 3 r d day, a n d was detected at 120 µ g on the 6 t h day. A t a l l concentrations, a n appreciable increase i n cell p r o t e i n was n o t i c e d . T h e t o t a l n i t r o gen content increased m a r g i n a l l y at l o w levels, b u t at higher c o n c e n t r a t i o n s a small loss was f o u n d . A l l the n i t r o g e n o u s c o m p o u n d s tested s h o w e d a n increase i n A R A a t l o w e r levels, w h i c h i s a n a d d i t i o n a l benefit of using this o r g a n i s m in the presence o f added n i t r o g e n . T h e i n h i b i t o r y levels are a b o v e the r e c o m m e n d e d field doses, therefore, a loss in a d d e d n i t r o g e n w i l l n o t occur. Rather, a n increase i n p o p u l a t i o n s w i l l help i n m o r e n i t r o g e n f i x a t i o n . Use of A. hrasilense 12S can therefore e n r i c h n i t r o g e n c o n t e n t by d i n i t r o g e n f i x a t i o n , even w h e n the levels o f c o m b i n e d n i t r o g e n are l o w a n d the o x y g e n level i s o p t i m a l i n the soil. A l t e r n a t i v e l y , this m a y c o n t r i b ute t o losses o f n i t r o g e n b y d e n i t r i f i c a t i o n w h e n the concentration of combined nitrogen is high and o x y gen is l i m i t i n g . References C a t a l d o , D . A . , H a r o o n , M L , Schrader, L . W . , and Youngs, V . L . 1975. R a p i d c o l o r i m e t r i c d e t e r m i n a t i o n o f n i t r a t e i n p l a n t tissue b y n i t r a t i o n o f salicylic a c i d . C o m m u n i c a t i o n s i n S o i l Science a n d P l a n t A n a l y s i s 6:71-80. Dobereiner, J . , and D a y , J . M . 1976. A s s o c i a t i v e s y m b i oses i n t r o p i c a l grasses: c h a r a c t e r i z a t i o n o f m i c r o o r g a n i s m s a n d d i n i t r o g e n - f i x i n g sites. Pages 518-538 in Proceedings o f the F i r s t I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 3-7 J u n 1974, P u l l m a n , W a s h i n g t o n , U S A ( N e w t o n , W . E . , a n d N y m a n , C . J . , eds.). V o l . 2 . P u l l m a n , W a s h i n g t o n , U S A : W a s h i n g t o n State U n i v e r s i t y Press. Douglas, L . A . , and Bremner, J . M . 1970. E x t r a c t i o n a n d c o l o r i m e t r i c d e t e r m i n a t i o n o f urea i n soils. Proceedings, S o i l Science Society o f A m e r i c a 34:859-862. Jackson, M . L . 1967. S o i l c h e m i c a l analysis. N e w D e l h i , India: Prentice H a l l . L o w r y , P . H . , Rosenbrough, N . J . , F a r r , A . L . , and R a n d a l l , R J. 1951. P r o t e i n m e a s u r e m e n t w i t h the f o l i n p h e n o l rea- gent. J o u r n a l o f B i o l o g i c a l C h e m i s t r y 193:265-275. Nelson, L . M . , a n d Knowles, R . 1978. Effect o f o x y g e n a n d nitrate on nitrogen fixation and denitrification by Azospirillum brasilense g r o w n in c o n t i n u o u s c u l t u r e . C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 24:1395-1403. N e y r a , C . A . , and van B e r k u m , P . 1977. N i t r a t e r e d u c t i o n and nitrogenase a c t i v i t y in Spirillum lipoferum. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 23:306-310. 83 Nicholas, D . J . D . , a n d N a s o n , A . 1957. D e t e r m i n a t i o n o f n i t r a t e a n d n i t r i t e . M e t h o d s i n E n z y m o l o g y 3:981-984. Scott, D . B . , Scott, C . A . , a n d Dobereiner, J . 1979. N i t r o g e n a s e a c t i v i t y a n d n i t r a t e r e s p i r a t i o n i n Azospirillum spp. A r c h i v e s o f M i c r o b i o l o g y 121:141-145. 84 Effect of Azotobacter chroococcum a n d Azospirillum brasilense Inoculations and N i t r o g e n on Yields o f S o r g h u m , M a i z e , P e a r l M i l l e t , and W h e a t B . K . Konde and P . A . Shinde1 Summary Field experiments In general were conducted inoculation intermediate levels of with pearl millet, and along with one-third or yields, thus significantly A. saving superior chroococcum, a third to and in N, wheat over level recommended noninoculated others both 1979-82 rainy chroococcum significantly two-third of the the Azotobacter fertilizer maize, during or increased fertilizer control. cultures N. In were Azospirillum grain the fully fertilized of recommended and postrainy and noninoculated N, generally Inoculation with some cases, A. at par with each seasons on brasilense, stover resulted either along yields treatments. of brasilense Vertisols. of Either in with sorghum, culture, increased crop cultures was the was superior to other. Introduction Materials and Methods Several w o r k e r s have r e p o r t e d that f i e l d i n o c u l a t i o n w i t h Azospirillum u n d e r diverse s o i l a n d e n v i r o n m e n t a l c o n d i t i o n s resulted i n 1 0 - 8 1 % increase i n cereal c r o p yields. Y i e l d s o b t a i n e d w i t h i n o c u l a t i o n , a l o n g w i t h i n t e r m e d i a t e levels o f f e r t i l i z e r N , were r e p o r t e d t o b e higher t h a n i n f u l l y f e r t i l i z e d n o n i n o c ulated p l o t s (Desale 1980, K a p u l n i k et a l . 1982, S u b b a R a o et a l . 1982, P a t i l 1983, Desale a n d K o n d e 1984, Z a m b r e et a l . 1984). These results suggest t h a t it is possible to save a p a r t of v a l u a b l e f e r t i l i z e r N by Azospirillum inoculation. T h e present paper reports the results o f f i e l d experiments conducted at M a h a t m a Phule A g r i c u l t u r a l U n i v e r s i t y ( M P A U ) , R a h u r i , I n d i a , o n the effects of Azotobacter chroococcum a n d A z o s p i r i l lum brasilense i n o c u l a t i o n w i t h g r a d e d levels of fert i l i z e r N o n g r a i n a n d stover yields o f s o r g h u m , maize, pearl m i l l e t , a n d wheat. T h e carrier-based i n o c u l a n t of Azospirillum b r a s i lense ( A b ) was o b t a i n e d f r o m the D e p a r t m e n t o f M i c r o b i o l o g y , I n d i a n A g r i c u l t u r a l Research I n s t i tute ( I A R I ) , N e w D e l h i . T h e lignite-based i n o c u lants of Azospirillum brasilense ( A M P 5) i s o l a t e d f r o m the rhizosphere o f pearl m i l l e t a n d A . brasilense ( C 2 ) (10 9 cells g - 1 ) isolated f r o m the r o o t s o f Cynodon dactylon were prepared in this d e p a r t m e n t . T h e carrier-based i n o c u l a n t of Azotobacter chroococcum (10 8 cells g - 1 ) was o b t a i n e d f r o m t h e A g r i c u l t u r a l B a c t e r i o l o g i s t , College o f A g r i c u l t u r e , Pune, M a h a r a s h t r a , I n d i a . T h e seeds were treated w i t h the i n o c u l a n t s o f respective organisms at the rate of 250 g (10 kg seed) -1 as per the m e t h o d described by S u b b a R a o (1981). T h e e x p e r i m e n t s were c o n d u c t e d o n V e r t i s o l s ( p H 7.0-7.5, t o t a l N 0.03-0.05%, o r g a n i c C 0.60%) d u r i n g 1. Associate Professor and Head, Department of Agricultural Microbiology and Plant Pathology, Mahatma Phule Agricultural University, Rahuri, Maharashtra 413 722, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center. India. Patancheru, A . P . 502 324, India: I C R I S A T . 85 the 1979-82 r a i n y a n d p o s t r a i n y seasons, u s i n g fact o r i a l r a n d o m i z e d - b l o c k designs ( R B D ) w i t h three t o f o u r r e p l i c a t i o n s . T h e p l o t size v a r i e d f r o m 9.2 m 2 t o 20.26 m 2 , d e p e n d i n g u p o n t h e c r o p . F o r s o r g h u m a n d maize, 6 2 k g h a - 1 each o f P 2 O 5 a n d K 2 O were a p p l i e d a t s o w i n g t o a l l p l o t s . T h e n i t r o g e n levels 0 , 33, 66, a n d 100 k g N h a - 1 were a p p l i e d i n t w o s p l i t doses, i.e., t w o - t h i r d a t s o w i n g a n d the r e m a i n i n g o n e - t h i r d one m o n t h after s o w i n g . I n the p e a r l m i l l e t e x p e r i m e n t , a basal dose o f 3 0 k g P 2 O 5 h a - 1 was a p p l i e d , w h i l e the n i t r o g e n a t 20, 4 0 , 60, 80, a n d 100% of r e c o m m e n d e d dose ( i . e . , 12, 2 4 , 36, 48, a n d 6 0 k g N ha - 1 ) was a p p l i e d i n t w o e q u a l doses, one a t s o w i n g a n d the o t h e r o n e m o n t h later. I n the w h e a t e x p e r i m e n t , P 2 O 5 (60 k g h a - 1 ) a n d K 2 O (50 kg ha - 1 ) were a p p l i e d at s o w i n g , w h i l e N was a p p l i e d i n t w o s p l i t doses, i.e., h a l f a t s o w i n g a n d the rest 2 5 days after s o w i n g ( D A S ) . In a l l cases, N was a p p l i e d as urea, P 2 O 5 as single superphosphate, a n d K 2 O a s m u r i a t e o f p o t a s h . A l l crops received a l i g h t i r r i g a t i o n s o o n after s o w i n g . Weeding, interculturing, and plant-protection opera t i o n s were c a r r i e d o u t a s a n d w h e n r e q u i r e d . T h e stover a n d g r a i n yields were recorded f r o m each p l o t at harvest. Results Sorghum Increases i n g r a i n yields a l o n g w i t h b a c t e r i z a t i o n o b t a i n e d at the 66 a n d 100 kg N ha - 1 levels were n o t statistically significant. M a x i m u m percentage increase in g r a i n y i e l d was observed at the 33 kg N ha - 1 level a l o n g w i t h b a c t e r i z a t i o n t h a n at h i g h e r N levels ( T a b l e 1). T h i s s h o w e d that higher level of N fertilizer a p p l i c a t i o n was d e t r i m e n t a l t o n i t r o g e n fixing bacteria. H o w e v e r , higher g r a i n y i e l d was o b t a i n e d at 66 kg N ha - 1 a l o n g w i t h b a c t e r i z a t i o n t h a n w i t h 100 kg N ha - 1 alone. T h i s i n d i c a t e d t h a t 66 kg N ha - 1 c o u l d be c o m p a t i b l e w i t h either c u l t u r e s , a n d there appeared to be a p o s s i b i l i t y of s a v i n g 33 kg N ha - 1 . A c r o s s the n i t r o g e n levels, i n o c u l a t i o n s w i t h b o t h the cultures s i g n i f i c a n t l y increased g r a i n y i e l d o v e r the c o n t r o l a n d n o significant difference c o u l d T a b l e 1. G r a i n a n d stover yields of sorghum as influenced by inoculation w i t h nitrogen-fixing bacteria a n d fertilizer N. N level ( k g h a - 1 ) 0 Culture 66 33 100 Mean 4.52 -1 - G r a i n yield (t ha ) Control A chroococcum (Ac) 4.00 4.19 4.67 5.20 5.04 5.65 5.94 6.01 (26.00)1 A. brasilense (Ab) 5.14 (28.50) (34.84) 5.76 (37.47) 6.09 (30.41) (15.58) 6.17 (18.65) NS2 CD 4.72 Mean CD (27.19) 5.20 5.57 5.66 (25.22) 5.79 (28.09) 0.52 5.80 0.52 (P<0.05) Stover yield (t ha-1) Control A. chroococcum (AC) 5.50 6.00 8.00 8.01 6.67 8.59 8.81 9.02 (21.12) A. brasilense (Ac) 7.51 (36.54) CD (P<0.05) 1. % increase over control. 2. NS = Not significant. 86 9.76 (62.66) (P<0.05) Mean CD (43.16) (10.12) (12.60) 8.12 8.27 (20.20) 11.01 12.01 10.07 (36.62) (49.93) (46.36) 1.43 6.56 6.88 9.27 0.72 0.72 9.68 be n o t i c e d between the t w o bacteria. T h e results f o r the i n t e r a c t i o n between cultures a n d N levels were also n o t s t a t i s t i c a l l y s i g n i f i c a n t . I n general, trends s i m i l a r t o g r a i n yields were also observed i n the case of stover yields. T h e Azospirillum i n o c u l a t i o n was f o u n d to be s i g n i f i c a n t l y s u p e r i o r to Azotobacter, since i t p r o d u c e d t w o tonnes m o r e stover y i e l d t h a n Azotobacter. T h e results f o r i n t e r a c t i o n between cultures a n d N levels were s i g n i f i c a n t . t r o l , a n d n o significant difference c o u l d b e n o t i c e d between t h e m . T h e results o f i n t e r a c t i o n f o r c u l t u r e s a n d N levels were s t a t i s t i c a l l y s i g n i f i c a n t . T h e results f o r stover y i e l d also s h o w e d a s i m i l a r t r e n d to those f o r g r a i n yields. Pearl Millet B a c t e r i z a t i o n u n d e r i n t e r m e d i a t e levels ( 3 6 , 4 8 , a n d 60 kg ha - 1 ) of N fertilizer a p p l i c a t i o n s i g n i f i c a n t l y increased g r a i n y i e l d ( T a b l e 3). H i g h e s t percentage increase in g r a i n y i e l d was o b t a i n e d at the 48 kg N level, a l o n g w i t h bacterization, w i t h either o f t h e Azospirillum strains. T h e yields o b t a i n e d at 48 kg N a l o n g w i t h b a c t e r i z a t i o n were h i g h e r t h a n w i t h 6 0 k g N ha - 1 alone. T h u s b o t h strains h a d better c o m p a t i b i l i t y w i t h the 48 kg N level a n d s h o w e d the p o s s i b i l i t y of saving 12 kg N ha - 1 . Differences b e t w e e n t h e t w o strains as also f o r the i n t e r a c t i o n b e t w e e n t h e strains a n d N levels were s t a t i s t i c a l l y i n s i g n i f i c a n t . T h e results f o r stover yields s h o w e d a s i m i l a r t r e n d t o those o b t a i n e d f o r g r a i n yields. Maize A significant increase in g r a i n y i e l d c o u l d be o b t a i n e d w i t h 66 a n d 100 kg N ha - 1 a l o n g w i t h i n o c u l a t i o n , but n o t w i t h 33 kg N ha - 1 a p p l i c a t i o n a l o n g w i t h i n o c u l a t i o n ( T a b l e 2). Differences between 66 kg a n d 100 kg N a l o n g w i t h b a c t e r i z a t i o n were n o t s i g n i f i c a n t . T h i s s h o w e d t h a t b o t h the c u l tures were c o m p a t i b l e at the 66 kg N level a n d i n d i cated the p o s s i b i l i t y of saving 33 kg N ha - 1 . Azotobacter a n d Azospirillum p r o d u c e d 4 9 % a n d 5 5 % h i g h e r g r a i n yields over the n o n i n o c u l a t e d c o n - T a b l e 2 . G r a i n a n d stover yields o f maize a s influenced b y inoculation w i t h nitrogen-fixing bacteria a n d fertilizer N . N level ( k g h a - 1 ) Culture 0 33 66 100 Mean 3.88 Grain yield (t ha-1) Control A. chroococcum (Ac) 3.43 3.95 3.98 4.15 3.60 5.60 6.98 7.07 (4.95)1 A. brasilense ( A b ) 3.90 (13.70) (41.86) 5.81 (47.18) 7.20 (80.90) (70.36) 7.27 (75.18) 3.64 Mean 5.12 6.05 5.81 (49.74) 6.40 (55.67) 1.33 2.65 CD (P<0.05) CD (75.38) 6.16 1.33 (P<0.05) Stover yields (t ha-1) Control A. chroococcum (Ac) 3.90 5.12 6.08 7.22 5.58 4.71 6.22 7.47 7.94 6.58 (22.86) (9.97) (17.92) (5.36) A. hrasilense CD (Ab) 6.53 7.94 8.55 6.95 (7.38) (27.53) (30.60) (18.42) (24.55) (P<0.05) 0.52 1.04 (P<0.05) Mean CD (21.48) 4.80 4.47 5.% 7.16 7.90 NS2 1 . % increase over control. 2. NS = Not significant. 87 T a b l e 3 . G r a i n a n d stover yields o f pearl millet a s influenced b y inoculation w i t h n i t r o g e n - f i x i n g bacteria a n d fertilizer N . N level ( k g ha-1) 12 Culture 24 36 48 60 Mean 2.10 G r a i n yield (t ha-1) Control A. A. brasilense ( A M P brasilense CD 5) (Ab) 1.70 1.82 2.19 2.30 2.48 1.80 1.94 2.32 2.65 2.60 2.26 (5.88)1 (6.59) (5.94) (4.84) (7.62) 1.78 1.92 2.30 (4.77) (5.49) (5.02) 1.76 1.89 2.27 Stover y i e l d (t Control brasilense ( A M P brasilense 2.63 2.27 (6.05) (8.09) 0.16 2.56 2.57 - 2.79 0.26 CD(P<0.05) A. 2.72 (18.26) NS2 (P<0.05) Mean A. (15.22) 5) (Ab) ha-1) — 2.53 2.55 2.60 3.07 3.22 2.60 2.64 2.73 3.36 3.42 2.95 (2.77) (3.53) (5.00) (9.44) (6.21) (5.74) 2.59 2.63 2.75 (2.37) (3.14) (5.76) CD 3.50 (14.01) 3.50 2.99 (6.69) (7.17) NS NS 2.57 Mean CD 2.61 2.69 3.31 3.38 0.16 (P<0.05) 1. % increase over control. 2. NS = Not significant. Wheat ( T a b l e 4). T h e i n t e r a c t i o n effects were f o u n d t o b e statistically significant. T h e i n t e r a c t i o n effect o f the 120 kg N ha - 1 , level w i t h Azospirillum (4.19 t ha - 1 ) a n d Azotobacter (4.01 t ha - 1 ) was at p a r a n d s u p e r i o r to a l l other remaining treatment combinations. The highest g r a i n y i e l d was o b t a i n e d at 120 kg N ha - 1 , b u t T h e Azospirillum i n o c u l a t i o n recorded a m e a n g r a i n y i e l d of 3.04 t ha - 1 over different levels of N f e r t i l i z e r a p p l i c a t i o n , f o l l o w e d by Azotobacter, 2.90 t ha - 1 , as c o m p a r e d t o 2.50 t h a - 1 i n the n o n i n o c u l a t e d c o n t r o l T a b l e 4 . G r a i n yield o f wheat a s influenced b y i n o c u l a t i o n w i t h n i t r o g e n - f i x i n g bacteria a n d fertilizer N . N level ( k g h a - ' ) 12 Culture 24 36 48 60 Mean Grain yield (t ha-1) Control A. A. chroococcum brasilense (Ac) (Ab) 1.58 2.07 2.53 2.91 3.41 2.54 1.66 2.40 2.97 3.47 4.01 2.90 (5.06)' (15.94) (17.39) (19.24) (17.59) 1.76 2.49 (11.39) CD (P<0.05) 1. % increase over control. 88 (23.32) 3.66 (25.77) 4.19 (22.87) 0.18 (P<0.05) Mean CD (20.28) 3.12 1.67 2.32 2.87 3.35 0.093 (16.00) 3.04 (21.60) 0.093 3.87 highest increase over n o n i n o c u l a t e d c o n t r o l due t o Azotobacter was 19.24% a n d due to Azospirillum 25.77%, i n c o m b i n a t i o n w i t h 9 0 k g N ha - 1 . T h i s i s o b v i o u s , since increase in fertilizer doses at a c e r t a i n level decreases a crop's response. I n o c u l a t i o n w i t h Azotobacter a n d Azospirillum over N levels p r o d u c e d 1 6 a n d 2 1 % h i g h e r g r a i n yields o n a n average over the n o n i n o c u l a t e d c o n t r o l . Acknowledgements T h e a u t h o r s express t h e i r sincere t h a n k s t o D r N . S . Subba R a o , H e a d , D i v i s i o n o f M i c r o b i o l o g y , I A R I , New Delhi, and Dr P.L. Patil, Agricultural Bacteriologist, College o f A g r i c u l t u r e , P u n e , f o r s u p p l y o f Azospirillum a n d Azotobacter i n o c u l a n t s . T h e y also express t h e i r t h a n k s t o M s M . A . Z a m b r e , M r P . H . P a t i l , a n d late M r A . G . Desale, p o s t g r a d u a t e s t u dents on whose research this paper has been based, f o r t h e i r help i n the present i n v e s t i g a t i o n . Conclusions T h e results i n d i c a t e t h a t a b o u t o n e - t h i r d o f the r e c o m m e n d e d level of fertilizer N c o u l d be saved if seed b a c t e r i z a t i o n w i t h either cultures is d o n e before s o w i n g . T h i s i s o f p a r t i c u l a r significance t o those farmers w h o are n o t i n a p o s i t i o n t o invest i n f e r t i l i z ers. I n a d d i t i o n t o the k n o w n benefits f r o m associat i v e n i t r o g e n f i x a t i o n ( W a n i 1986), the increase i n c r o p yields have also been a t t r i b u t e d to the p r o d u c t i o n o f g r o w t h - p r o m o t i n g substances b y either o f these organisms ( T i e n et a l . 1979, Vlassak a n d Reynders 1981) a n d also due to the p o s i t i v e effects of Azospirillum r o o t d e v e l o p m e n t a n d r o o t u p t a k e o f m i n e r a l s a n d w a t e r ( K a p u l n i k e t a l . 1982). I n the present i n v e s t i g a t i o n Azospirillum brasilense was f o u n d to be either s u p e r i o r to A. chroococcum or at p a r w i t h i t . T h e i n t e r a c t i o n effects o n g r a i n yields between N fertilizer levels a n d seed b a c t e r i z a t i o n w i t h either cultures were observed to be i n s i g n i f i c a n t i n s o r g h u m a n d pearl m i l l e t , b u t significant i n maize a n d wheat. P r i o r i t i e s f o r F u t u r e Research Based o n results o f the present e x p e r i m e n t s the f o l l o w i n g lines o f w o r k are suggested: 1. Response of c r o p genotypes to Azospirillum s h o u l d be tested u n d e r f i e l d c o n d i t i o n s . T h i s i n f o r m a t i o n w o u l d b e useful f o r b r e e d i n g genotypes h a v i n g enhanced n i t r o g e n - f i x i n g a b i l i t y . 2 . I s o l a t i o n a n d screening o f d i a z o t r o p h i c a z o s p i r i l l a strains h a v i n g h i g h nitrogenase a c t i v i t y f r o m a w i d e range of hosts i n c l u d i n g cereals, vegetables, grasses, sugarcane, p o t a t o , ginger, t u r m e r i c , etc., s h o u l d be u n d e r t a k e n . 3. C o m p a t i b i l i t y of Azospirillum w i t h seed-dressi n g fungicides, insecticides, a n d f e r t i l i z e r n i t r o g e n s h o u l d be s t u d i e d . References Desale, A . G . 1980. Effect o f seed b a c t e r i z a t i o n w i t h A z o tobacter a n d Azospirillum cultures u n d e r v a r i o u s levels of nitrogen on growth, and yield of sorghum and maize. M . S c . thesis, M a h a t m a P h u l e A g r i c u l t u r a l U n i v e r s i t y , Rahuri, Maharashtra, India. Desale, A . G . , and K o n d e , B . K . 1984. Response o f s o r g h u m t o seed b a c t e r i z a t i o n w i t h n i t r o g e n levels. J o u r n a l o f M a h a r a s h t r a A g r i c u l t u r a l U n i v e r s i t i e s 9:169-170. K a p u l n i k , Y . , Sarig, S., N u r , I . , O k o n , Y . , and H e n i s , Y . 1982. T h e effect o f Azospirillum i n o c u l a t i o n o n g r o w t h a n d y i e l d o f c o r n . Israel J o u r n a l o f B o t a n y 31:247-255. P a t i l , P . H . 1983. Response o f some pear l m i l l e t g e n o t y p e s t o Azospirillum i n o c u l a t i o n a n d effect o f i n o c u l a t i o n u n d e r g r a d e d levels o f n i t r o g e n o n g r o w t h a n d y i e l d o f p e a r l m i l l e t cv. B J 104. M . S c . thesis, M a h a t m a P h u l e A g r i c u l t u r a l University, Rahuri, Maharashtra, India. Subba R a o , N . S . 1981. Response o f crops t o Azospirillum i n o c u l a t i o n i n I n d i a . Pages 137-144 i n A s s o c i a t i v e N 2 f i x a t i o n : proceedings o f the I n t e r n a t i o n a l W o r k s h o p o n A s s o c i a t i v e N 2 - f i x a t i o n , 2-6 J u l 1979, P i r a c i c a b a , B r a z i l ( V o s e , P . B . , a n d R u s c h e l , A . P . , eds.). V o l . 1 . B o c a R a t o n , F l o r i d a , U S A : C R C Press. Subba R a o , N . S . , T i l a k , K . V . B . R . , Singh, C.S., and G a u t a m , R . C . 1982. C r o p y i e l d a n d n i t r o g e n c o n t e n t o f p e a r l m i l l e t ( P e n n i s e t u m americanum) in response to A z o s p i r i l lum brasilense. Pages 507-516 in Proceedings of the National Symposium on Biological Nitrogen F i x a t i o n , 252 7 F e b 1982, N e w D e l h i , I n d i a . B o m b a y , I n d i a : B h a b h a A t o m i c Research C e n t r e . T i e n , T . M . , Gaskins, M . H . , and H u b b e l l , D . H . 1979. P l a n t g r o w t h substances p r o d u c e d by Azospirillum brasilense a n d t h e i r effect o n the g r o w t h o f p e a r l m i l l e t (Pennisetum americanum L.). Applied and Environmental M i c r o b i o l o g y 37:1016-1024. 89 Vlassak, K., and Reynders, L. 1981. Azospirillum r h i z o coenoses in a g r i c u l t u r a l p r a c t i c e . Page 4 9 4 in C u r r e n t perspectives i n n i t r o g e n f i x a t i o n : proceedings o f t h e I n t e r n a t i o n a l S y m p o s i u m o n N i t r o g e n F i x a t i o n , 1-5 D e c 1980, C a n b e r r a , A u s t r a l i a ( G i b s o n , A . H . , a n d N e w t o n , W . E . , eds.). C a n b e r r a , A u s t r a l i a : A u s t r a l i a n A c a d e m y o f Science. N . S . Subba R a o : A t the h i g h e r level o f f e r t i l i z e r n i t r o g e n a p p l i c a t i o n , the a m o u n t of f e r t i l i z e r N left b e h i n d u n u t i l i z e d is n o t k n o w n . S i m p l e a r i t h m e t i c c a l c u l a t i o n o f savings is c o n v e n i e n t to present, b u t d e d u c t i o n s f o r r e s i d u a l n i t r o g e n m a y have t o b e d o n e . W a n i , S . P . 1986. C e r e a l n i t r o g e n f i x a t i o n : p r o b l e m s a n d p o t e n t i a l i t i e s . Pages 7-21 in C e r e a l n i t r o g e n f i x a t i o n . P r o ceedings o f the W o r k i n g G r o u p M e e t i n g , 9-12 O c t 1984, I C R I S A T C e n t e r , I n d i a . P a t a n c h e r u , A . P . 502 324, I n d i a : I n t e r n a t i o n a l C r o p s Research I n s t i t u t e f o r the S e m i - A r i d Tropics. B . K . Konde: W e l l , w e have n o t estimated the q u a n t u m o f f e r t i l izer n i t r o g e n left b e h i n d ; h o w e v e r , this suggestion w i l l be taken into consideration while planning further experiments. Z a m b r e , M . A . , K o n d e , B . K . , a n d Sonar, K . R . 1984. Effect of Azotobacter chroococcum a n d Azospirillum brasilense i n o c u l a t i o n u n d e r g r a d e d levels o f n i t r o g e n o n g r o w t h a n d y i e l d o f w h e a t . P l a n t a n d S o i l 79:61-67. S.P. W a n i : H i g h e r N percentage in p l a n t tissues a n d increased biomass w i l l result i n very h i g h N u p t a k e . T h e d a t a need to be rechecked f o r u n u s u a l l y h i g h values. Discussion B . K . Konde: Yes, 1 agree w i t h y o u r c o m m e n t s b u t can't d e n y the facts t h a t w e observed. H o w e v e r , i n f u t u r e e x p e r i ments, we shall take due care to ensure the p r o p e r N e s t i m a t i o n o f p l a n t tissues. G.S.Murty: A t w h a t level o f N - a p p l i c a t i o n was the saving o f o n e - t h i r d t o t w o - t h i r d o f the r e c o m m e n d e d n i t r o g e n dose observed, 2 0 k g ha - 1 , 4 0 k g h a - 1 , o r m o r e ? T h e r e c o m m e n d e d dose f o r s o r g h u m a n d maize is 100 kg N ha - 1 . B . K . Konde: S a v i n g of o n e - t h i r d N (33 kg N ha - 1 ) has been observed i n s o r g h u m a n d maize a n d a saving o f 2 0 % N (12 kg N ha - 1 ) in p e a r l m i l l e t a n d o n e - t h i r d N (30 kg N ha - 1 ) in wheat. P.V. Rai: W e need t o l o o k f o r the q u a l i t y o f p r o t e i n i n the grains f r o m the i n o c u l a t e d t r e a t m e n t , a l t h o u g h i t a l w a y s gives h i g h e r p r o t e i n . B . K . Konde: T h i s m a y b e i n c l u d e d i n o u r research projects. Yes, we have also a l r e a d y estimated the p r o t e i n c o n t e n t o f g r a i n s i n a l l c r o p s , b u t the data presented are c o n f i n e d t o f o d d e r a n d g r a i n yields a n d N c o n t e n t i n p l a n t tissues, o w i n g t o l i m i t a t i o n o f t i m e . G . S . Jadhav: S m a l l p l o t size m a y b e the reason f o r v e r y h i g h y i e l d . B . K . Konde: T h e net p l o t size r a n g e d f r o m 9 t o 2 0 m 2 . 90 V . R . Rao: I n y o u r studies o n s o r g h u m , the percentage N i n p l a n t tissues due t o i n o c u l a t i o n increased f r o m 0 . 3 % i n the c o n t r o l t o 0.8%. C o u l d y o u t h r o w some l i g h t o n this? B . K . Konde: T h i s increase i s a t t r i b u t e d t o b i o l o g i c a l l y f i x e d N , besides the fertilizer n i t r o g e n s u p p l i e d t h r o u g h the soil i n the f o r m o f urea. These data, a s suggested b y o t h e r m e m b e r s , w i l l b e checked. S . T . Shende: W h y was the i n o c u l a t i o n effect a t par w i t h h i g h n i t r o g e n a p p l i c a t i o n ? W a s i t due t o l o w efficiency o f N a p p l i c a t i o n d u r i n g that season? B . K . Konde: I t i s a t t r i b u t e d t o the reason t h a t h i g h e r level o f N f e r t i l i z e r a p p l i c a t i o n m i g h t have depressed the nitrogenase a c t i v i t y o f the o r g a n i s m s , a l t h o u g h increased levels of N f e r t i l i z e r a l o n e also increased yields a n d t h e i r parameters. G . Oblisami: I n y o u r d a t a o n i n o c u l a t i o n o f maize w i t h A . chroococcum a n d Azospirillum brasilense, the zero level of f e r t i l i z e r n i t r o g e n gave h i g h e r g r a i n yields t h a n 100% fertilizer n i t r o g e n alone. H o w d o y o u e x p l a i n this phenomenon? B . K . Konde: I t h i n k the reasons m i g h t be (1) h i g h o r g a n i c m a t t e r ( o r g a n i c C 0.6%) c o n t e n t of the s o i l , (2) h i g h rates of fertilizer n i t r o g e n depressing nitrogenase a c t i v i t y , a n d (3) m o r e g r o w t h - p r o m o t i n g substances being p r o d u c e d i n the absence o f h i g h e r levels o f fertilizer N. 91 Root-Associated N i t r o g e n F i x a t i o n i n Finger M i l l e t M . N . Upadhyaya1, S.V. Hegde2, P.V. R a i 2 , and S.P. W a n i 3 Summary This paper presents nitrogen fixation finger activity cultivars (2) in plant root-associated millet yields and study with N ha to four over pure no uptake from were Indaf 7, over and the three diurnal soil, with levels All of cultivars wash, and the applied SRI had nitrogen highest and but showed over activity root cultures, a in net gain earlyand or dryby counts during macerate. The Inoculation increased the field. higher affected diazotroph Enterobacter. not (4) was further unsterilized diazotroph greenhouse, group nitrogenase of 53 of nitrogenase cultivars, system and assay levels between soil-root of root-associated nitrogenase low medium-maturity Pseudomonas NBRE in (1) between millet root of control in aspects Soil-root variability activity changes. some indicated relationship of finger on Gaertn). high higher species out groups (3) (5) activity root-adhering in coracana apparent and inoculation -1 lines, moisture, cultivar N (6) carried maturity variability, stage nitrogen fixers finger kg (Eleucine Nitrogenase soil reproductive millet and production. of investigations belonging plant-to-plant groups, age, the high hybrids late-maturity matter results in finger millet activity, the of above-ground Nitrogen-balance equivalent to 63-9.4 inoculation. Introduction F i n g e r m i l l e t (Eleusine coracana G a e r t n ) is an i m p o r t a n t f o o d c r o p i n the s e m i - a r i d t r o p i c s ( S A T ) , p a r t i c u l a r l y i n I n d i a a n d Eastern A f r i c a . T h e c r o p ranks f o u r t h i n area ( 5 m i l l i o n ha) a n d p r o d u c t i o n (4.5 m i l l i o n t ) a m o n g m i l l e t s i n the w o r l d . I n d i a accounts f o r 4 5 % o f the w o r l d p r o d u c t i o n . Contributions of nonsymbiotic nitrogen fixation associated w i t h finger m i l l e t a n d o t h e r m i l l e t s , t h o u g h felt to be s u b s t a n t i a l , have been w i d e r a n g i n g (20-148 kg N ha - 1 ) d u e to different m e t h o d o l o g i e s used b y different w o r k e r s ( M o o r e 1963, J e n k i n s o n 1977, D a r t a n d W a n i 1982). Studies were c o n d u c t e d a t the U n i v e r s i t y o f A g r i c u l t u r a l Sciences, B a n g a lore, o n (1) root-associated nitrogenase a c t i v i t y o f 5 3 finger m i l l e t c u l t i v a r s , (2) occurrence o f d i a z o t r o p h s , (3) i n o c u l a t i o n response, (4) factors affecting n i t r o gen fixation, a n d (5) n i t r o g e n balance. Screening G e r m p l a s m F i f t y - t h r e e c u l t i v a r s representing b o t h p u r e - l i n e selections a n d h y b r i d s i n f o u r m a t u r i t y g r o u p s w e r e screened f o r t h e i r a b i l i t y t o s t i m u l a t e nitrogenase a c t i v i t y ( C 2 H 2 r e d u c t i o n ) i n the rhizosphere a t t h e f l o w e r i n g a n d p o s t f l o w e r i n g g r o w t h stages ( T a b l e 1). U n p l a n t e d soil a n d finger m i l l e t c u l t i v a r s I n d a f 5 were i n c l u d e d a s checks i n each g r o u p . T h e p l a n t s were g r o w n i n p o l y t h e n e bags f i l l e d w i t h 3.3 k g s o i l . T h e s o i l surface i n each b a g was covered w i t h a 5 - c m t h i c k g r a v e l , a n d the bags were k e p t i m m e r s e d in a sand bed t o a v o i d algal g r o w t h a t the s o i l surface a n d 1. P h D Student, Australian National University, Canberra, Australia. 2. Senior Microbiologist, and Professor and Head, Department of Agricultural Microbiology, University of Agricultural Sciences, Gandhi 3. Microbiologist, Pearl Millet improvement Program, I C R I S A T , Patancheru, A . P . 502 324, India. Krishi Vignana Kendra ( G K V K ) , Bangalore, Karnataka 560 065, India. I C R I S A T (International Crops Research Institute f o r the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g G r o u p Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 93 a t the interface o f s o i l a n d bag. A basal dose o f 5 0 k g each o f N , P 2 O 5 , a n d K 2 O h a - 1 e q u i v a l e n t was a p p l i e d t h r o u g h a m m o n i u m sulfate, superphosphate, a n d p o t a s s i u m c h l o r i d e respectively. P l a n t s were watered a s r e q u i r e d w i t h t a p w a t e r a n d one d a y before assay the m o i s t u r e c o n t e n t of t h e bags was adjusted t o 70-80% w a t e r - h o l d i n g capacity ( W H C ) . F o r nitrogenase assay, t h e m e t h o d f o l l o w e d b y W a n i et a l . (1983) was used. T h e general level o f nitrogenase a c t i v i t y associated w i t h 5 3 finger m i l l e t c u l t i v a r s was l o w , a n d the g r o u p means r a n g e d f r o m 2 t o 267 n m o l e s C 2 H 4 h - 1 b a g - 1 or 1 to 59 n m o l e s h - 1 g - 1 r o o t mass ( T a b l e 1). R a n k i n g o f c u l t i v a r s based o n r o o t a c t i v i t y d i f f e r e d w h e n expressed a s g - 1 r o o t t h a n o n b a g - 1 basis. T h e m e a n nitrogenase a c t i v i t y o f 0.2-13 n m o l e s h - 1 b a g - 1 i n the u n p l a n t e d s o i l suggested s t i m u l a t i o n o f nitrogenase a c t i v i t y b y the p l a n t . Increased n i t r o g e nase a c t i v i t y i n A s s a y I I o v e r A s s a y I i n m a t u r i t y groups I and II indicated higher activity d u r i n g postf l o w e r i n g g r o w t h stages. T h e m a x i m u m nitrogenase a c t i v i t y o f i n d i v i d u a l plants i n this s t u d y was 488 n m o l e s C 2 H 4 h - 1 bag - 1 . T h i s i s m u c h l o w e r t h a n the a c t i v i t y o f 1064 nmoles C 2 H 4 h - 1 core - 1 r e c o r d e d f o r f i n g e r m i l l e t c u l t i v a r P R 202 a t I C R I S A T Center ( I C R I S A T 1978) a n d 374 nmoles C 2 H 4 h - 1 g - 1 d r y mass by D o m m e r g u e s et a l . (1973). W i t h i n a cultivar, plant-to-plant variation in nitrogenase a c t i v i t y f r o m 1 0 t o 488 nmoles C 2 H 4 h - 1 bag - 1 i n c u l t i v a r T N A U 169 a n d 5-359 nmoles C 2 H 4 h - 1 b a g - 1 i n c u l t i v a r I n d a f 5 was observed. S u c h v a r i a t i o n s have also been r e c o r d e d i n s o r g h u m a n d pearl m i l l e t ( W a n i e t a l . 1983). O f t h e 5 3 c u l t i v a r s tested, the a c t i v i t y was m o r e T a b l e 1 . Nitrogenase activity (nmoles C 2 H 4 h - 1 ) 1 o f soil-root system o f f i n g e r millet cultivars d u r i n g t w o assays. 1 Maturity Assay 1 group Assay II Range/Cultivar (Days to 5 0 % DAS3 Cultivar flowering) bag-1 g-1 2 root Range/Cultivar2 DAS bag-1 g-1 root 10-138 4-46 I V L 1 1 4 , V L 1 1 5 , V L 116 12-70 2-30 (56-62) V L 1 1 8 , V L 110, R E C 13-1 R E C 13-1 R E C 45-1 R E C 45-1 P E S 83-2,PES 400 R E C 45-1 V L 115 P E S 83-2 P E S 83-2 55 62 (68) (38) R A U 3,R A U 7,RAU 5,RAU 2, R E C 4 5 - 1 , R E C 13-1 II VL 56-267 8-59 (63-70) P R 1 7 7 , P R 1103, T N A U 160 T N A U 160 V L 117 P R 1103 P R 1 0 9 1 , P E S 176, T N A U 169 T N A U 169 T N A U 169 P R 1091 117, I n d a f 9 , H R 3 7 4 , 70 2-30 1-11 92 (13) T N A U 1 6 9 , T N A U 167, (131) T N A U 193, T N A U 2 5 6 , T N A U 160, T N A U 2 9 4 1 5 4 , H R 2823 ND4 ND 94 21-166 3-24 HI HR 919,HR (71-78) R O H 2, H R 1541, P R 230 P R 230 P u r n a , P R 230, PR 202, B 7-7-43 B 7-7-43 B 7 - 7 - 4 3 , P E S 110, J N R 9 8 1 - 1 J N R 852,JNR (85) 1008 IV I n d a f 1, I n d a f 3, VR 550, 19-12 4-32 (79-89) I n d a f 7, I n d a f 8, ND ND 99 Indaf 8 Indaf 8 I n d a f 1 0 , I n d a f 1 1 , V R 530 I E 1012 I n d a f 10 K M 13, I E 1012, U 6 , U 10 ( 5 1 ) A 104 1. Mean of 4 replications. Indaf 5 and implanted soil were used as checks. Nitrogenase activity of unplanted control ranged f r o m 0.2 to 13 nm C 2 H 4 bag - 1 . 2. Mean nitrogenase activity. 3. P A S = Days after sowing. 4. ND = N o t determined. 94 t h a n 300 n m o l e C 2 H 4 h - 1 b a g - 1 i n 1 2 c u l t i v a r s , between 200 to 300 in 8 c u l t i v a r s , between 100 to 200 n m o l in 20 c u l t i v a r s , a n d less t h a n 100 in 13 c u l t i v a r s . S u c h v a r i a b i l i t y f o r nitrogenase a c t i v i t y a m o n g s t finger m i l l e t c u l t i v a r s has also been observed earlier ( I C R I S A T 1978). T h e t o p five c u l t i v a r s , based o n m a x i m u m a c t i v i t y , were T N A U 169, T N A U 256, P u r n a , I E 1012, a n d I n d a f 9 , i n t h a t o r d e r . Least a c t i v i t y was f o u n d i n R A U 7 . Generally, h y b r i d selections s h o w e d h i g h e r nitrogenase a c t i v i t y t h a n p u r e - l i n e selections ( T a b l e 2). The m e d i u m - m a t u r i t y cultivars (groups I I and I I I ) had h i g h e r nitrogenase a c t i v i t y t h a n either e a r l y (group I) or late-maturity cultivars (group I V ) . M i s h r a e t a l . (1980) h a d also f o u n d t h a t m e d i u m m a t u r i t y c u l t i v a r s were m o r e p r o d u c t i v e t h a n e a r l y o r late types, based o n t h e i r screening o f 400 f i n g e r m i l l e t cultivars. i n c l u d e d . S i x r a n d o m l y selected p l a n t s were assayed f o r nitrogenase at 22, 32, 44, 59, 68, 8 1 , 105, a n d 129 days after s o w i n g ( D A S ) , f o l l o w i n g the m e t h o d m e n t i o n e d earlier. Nitrogenase a c t i v i t y increased f r o m 2 2 D A S ( 9 n m o l C 2 H 4 h - 1 bag - 1 ) t o peak a t 6 8 D A S (106 n m o l C 2 H 4 h - 1 bag - 1 ) a n d t h e n decreased t o 3 6 n m o l e s C 2 H 4 h - 1 bag - 1 a t 105 D A S ( F i g . 1). F o r e s t i m a t i n g the counts o f d i a z o t r o p h s , t w o r a n d o m l y selected bags each, i.e., p l a n t e d a n d u n p l a n t e d , were selected each t i m e after assay. Increase i n nitrogenase a c t i v i t y o f the s o i l - r o o t syst e m closely f o l l o w e d increase o f d i a z o t r o p h c o u n t s u p t o 6 8 days, p a r t i c u l a r l y the d i a z o t r o p h c o u n t o f nonsterilized and sterilized r o o t samples. U n l i k e the nitrogenase a c t i v i t y t h a t decreased 6 8 D A S , t h e d i a z o t r o p h c o u n t r e m a i n e d largely u n c h a n g e d . Assay a t 6 8 D A S gave b o t h m a x i m u m nitrogenase a c t i v i t y (129 n m o l C 2 H 4 h - 1 bag - 1 ) a s w e l l a s m a x i m u m d i a z o t r o p h c o u n t o f sterilized ( 4 x 10 9 g - 1 r o o t ) a n d n o n s t e r i l i z e d (2 x 10 11 g - 1 r o o t ) macerate. I n studies w i t h c u l t i v a r I n d a f 5 , the d i a z o t r o p h c o u n t s were i n general h i g h e r d u r i n g the r e p r o d u c tive stage t h a n d u r i n g the vegetative stage. R o o t a d h e r i n g s o i l gave the m a x i m u m d i a z o t r o p h c o u n t (8.5 x 10 9 ) g - 1 d r y r o o t , f o l l o w e d by n o n s t e r i l i z e d r o o t macerate (3.4 x 10 9 ), a n d r o o t w a s h (3.1 x 10 9 ). Surface-sterilization o f r o o t reduced the c o u n t f r o m 3.4 x 10 9 to 1.6 x 10 8 (g r o o t mass) -1 f o r 5 m i n s t e r i l i z a t i o n , a n d 1.3 x 10 6 (g r o o t mass) -1 f o r 60 m i n s t e r i l i z a t i o n . T h e n u m b e r o f c o l o n y types o f d i a z o t r o p h s d i d n o t increase f r o m the vegetative t o r e p r o - Seasonal Variation in Diazotroph Counts and Nitrogenase Activity Plants o f c u l t i v a r I n d a f 5 were s i m i l a r l y g r o w n i n p o l y t h e n e bags, except that 2.75 kg soil was used in this e x p e r i m e n t . T h e plants were i n o c u l a t e d w i t h 50 m L r h i z o s p h e r e - s o i l e x t r a c t . T h i s e x t r a c t was prepared by m i x i n g 1 kg rhizospheric soil collected f r o m the field w i t h 4 L N-free sucrose m e d i u m , i n c u b a t e d f o r 42 h at r o o m t e m p e r a t u r e , filtered t h r o u g h a cheese c l o t h , a n d f i n a l l y m a d e up to 10 L using water. A n u n p l a n t e d t r e a t m e n t was also T a b l e 2. Screening of pure-line a n d h y b r i d selections of different origin for the root-associated nitrogenase a c t i vi t y . N o . of cultivars having No. of Highest n i t r o - nitrogenase activity culti- (nmol C 2 H 4 plant-1 h-1) vars active (nmol C2H4 cultivar plant-1 h-1) Pedigree Karnataka Hybrid 15 5 4 2 4 Indaf 9 361 Tamil Nadu Hybrid 6 3 0 3 0 T N A U 169 488 A n d h r a Pradesh Pure line 7 0 1 3 3 P R 1091 250 M a d h y a Pradesh Pure line 5 1 1 2 1 J N R 852 354 Uttar Pradesh Pure line 11 1 2 6 2 P E S 83-2 324 2 200-300 100-200 Bihar Pure line 4 0 0 2 Orissa Pure line 2 1 0 1 Exotic collection Pure line 3 1 0 1 Total 53 12 (23)* 8 (15) <100 genase a c t i v i t y Origin tested >300 Most 1 20 13 (37) (25) RAU 5 183 B 7-7-43 314 I E 1012 403 1. Figures in parentheses are percentages. 95 e n t l y o n N-free m e d i u m were f i n a l l y o b t a i n e d i n pure cultures. W h e n the 4 0 d i a z o t r o p h isolates f r o m c u l t i v a r I n d a f 5 were screened f o r A R A , a l l b u t 3 isolates d u c t i v e g r o w t h stage. A m a x i m u m o f 1 5 c o l o n y types were observed i n n o n r h i z o s p h e r i c s o i l , a n d surface-sterilized r o o t macerate s h o w e d 5 to 6 c o l o n y types. A t o t a l o f 4 0 isolates t h a t g r e w consist- 120 Soil-root a c t i v i t y Soil a c t i v i t y S h o o t mass R o o t mass 100 80 50 60 40 40 30 20 20 10 0 0 22 32 44 59 Age 68 81 105 129 (days) F i g u r e 1. Seasonal pattern of nitrogenase activity a n d shoot a n d r o o t mass of finger millet cultivar I n d a f 5. 96 p r o d u c e d less t h a n 2 n m o l e s C 2 H 4 h - 1 t u b e - 1 . O f these three isolates, N o . 38 a n d 45 were i d e n t i f i e d as Enterobacter cloacae a n d Isolate N o . 23 was Azospirillum-like. T h e rest of the isolates were species of Pseudomonas or Enterobacter cloacae. I s o lates f r o m f i n g e r m i l l e t were c o m p a r e d w i t h three reference cultures, i.e., N B R E ( n a p i e r bajra r o o t e x t r a c t ) , A. lipoferum ( 4 A B L ) , a n d Azospirillum lipoferum ( I C M 1001) f o r in-vitro a c t i v i t y . T h e c u l tures N B R E a n d 4 A B L s h o w e d f o u r - f o l d m o r e a c t i v i t y t h a n the isolates f r o m finger m i l l e t . H o w ever, E. cloacae s h o w e d h i g h e r a c t i v i t y t h a n A. lipoferum. H i g h e s t a c t i v i t y (115 nmoles C 2 H 4 h - 1 t u b e - 1 ) was r e c o r d e d i n the N B R E c u l t u r e . Effect of Soil Moisture Effect o f m o i s t u r e o n nitrogenase a c t i v i t y o f finger m i l l e t I n d a f 5 was studied by m a n i p u l a t i n g the m o i s t u r e regime i n the s o i l a n d b y u s i n g a n i n t a c t - p l a n t assay m e t h o d ( W a n i et a l . 1984). T h e plants were g r o w n in s o i l in plastic bags, a n d a basal dose of 25 kg N a n d 50 kg each of P 2 O 5 a n d K 2 O ha - 1 t h r o u g h urea, superphosphate, a n d p o t a s s i u m c h l o r i d e was a p p l i e d . T i l l the m o i s t u r e - l e v e l treatments were i m p o s e d , a l l the plants were w a t e r e d u n i f o r m l y . N i t r o g e n a s e a c t i v i t y of the s o i l - r o o t system as affected b y six m o i s t u r e levels ( 2 0 % W H C t o 9 0 % W H C ) increased w i t h increasing s o i l m o i s t u r e . T h e r e was n o significant change i n nitrogenase a c t i v i t y between m o i s t u r e levels v a r y i n g f r o m 19% t o 4 7 % W H C . L i n e a r regression o f average nitrogenase a c t i v i t y against s o i l - m o i s t u r e c o n t e n t i n d i c a t e d a significant c o r r e l a t i o n ( r = 0 . 7 8 8 ) . Diurnal Variation T e n p l a n t s o f c u l t i v a r I n d a f 5 were g r o w n i n 6 - L plastic p o t s c o n t a i n i n g 6 kg a l l u v i a l s o i l . A basal dose of 25 kg N a n d 50 kg each of P 2 O 5 a n d K 2 O was a p p l i e d . T h e c o n d i t i o n s f o r g r o w i n g p l a n t s were s i m i l a r t o those described b y W a n i e t a l . (1984). N i t r o g e n a s e a c t i v i t y was estimated u s i n g i n t a c t p l a n t assay t e c h n i q u e ( W a n i et a l . 1984). A c e t y l e n e gas was injected at 1200 a n d gas samples were c o l lected at 2 h i n t e r v a l s up to 2400. S o i l t e m p e r a t u r e in the p o t a t each assay t i m e was r e c o r d e d . T h e d i u r n a l p a t t e r n o f nitrogenase a c t i v i t y i s s h o w n i n F i g u r e 2 . M a x i m u m a c t i v i t y o f 104 n m o l C 2 H 4 h - 1 p l a n t - 1 was r e c o r d e d between 10 am a n d 12 n o o n . 105 Nitrogenase Soil activity temperature 90 80 32 70 28 60 24 50 20 40 16 30 20 10 Day Night Day 0 Time o f day ( h ) F i g u r e 2 . D i u r n a l p a t t e r n o f nitrogenase a c t i v i t y o f a n i n t a c t - p l a n t system o f finger m i l l e t c u l t i v a r I n d a f 5 . Response to Inoculation with NitrogenFixing Bacteria Response o f f i n g e r m i l l e t c u l t i v a r I n d a f 7 t o seed i n o c u l a t i o n w i t h d i a z o t r o p h cultures ( o b t a i n e d f r o m I C R I S A T C e n t e r ) was studied at 25 a n d 50 kg ha - 1 levels o f a p p l i e d n i t r o g e n , u n d e r greenhouse a n d f i e l d situations. I n t h e greenhouse, p l a n t s were raised i n 2 5 c m x 1 5 c m i r o n cores f i l l e d w i t h 3/75 k g a l l u v i a l s o i l . T h e basal dose consisted o f a p a r t o f the N a l o n g w i t h 5 0 k g each o f P 2 O 5 a n d K 2 O . T h e r e m a i n i n g N was a p p l i e d as a t o p dressing. In each case, a single p l a n t was g r o w n . T h e seeds were soaked f o r 18 h in b r o t h c u l t u r e of bacteria as per t h e t r e a t m e n t a n d d r i e d . A t s o w i n g , each c o r e was i n o c ulated w i t h 8 mL b r o t h culture. The noninoculated b r o t h served a s the c o n t r o l . Surface s o i l i n the cores was c o v e r e d w i t h g r a v e l a n d the m o i s t u r e c o n t e n t i n the cores was m a i n t a i n e d a t a r o u n d 7 0 % W H C . T h e g r a i n a n d s t r a w yields increased s i g n i f i c a n t l y 97 over the c o n t r o l due t o i n o c u l a t i o n w i t h N B R E (37%) a n d S R I (35%) ( F i g . 3). I n o c u l a t i o n w i t h A . l i p o f e r u m ( 4 A B L ) increased l e a f n u m b e r b u t n o t p l a n t h e i g h t over the c o n t r o l . N i t r o g e n alone o r interaction of N x inoculation had no significant effect o n y i e l d parameters. N i t r o g e n c o n t e n t o f g r a i n increased 5 0 % f r o m i n o c u l a t i o n w i t h N B R E a n d 4 7 % w i t h S R I ; total uptake o f nitrogen b y the plant increased 7 2 % w i t h N B R E a n d 6 6 % w i t h S R I . I n o c u l a t i o n h a d n o effect o n n i t r o g e n c o n t e n t o f straw. I n t e r a c t i o n of N x i n o c u l a t i o n ( N B R E ) increased N c o n t e n t o f g r a i n b y 1 % , w h i l e N alone h a d n o effect. I n the f i e l d e x p e r i m e n t , a l l the cultures used i n the p o t t r i a l except the S R I isolate were used. T h e experi m e n t was c o n d u c t e d f o l l o w i n g r a n d o m i z e d - b l o c k design a n d 2 m x 2 m p l o t s f o r each t r e a t m e n t , replicated f o u r times. T h e N , P , a n d K treatments were as in the case of the p o t e x p e r i m e n t . Seeds were 1. Noninoculated control 2 . Azospirillum 3. 4 ABL lipoferum soaked in p e a t - i n o c u l a n t suspension f o r 18 h, a i r d r i e d a n d s o w n i n r o w s 22.5 c m apart. E a c h p l o t was i n o c u l a t e d a t s o w i n g w i t h p e a t - i n o c u l a n t suspension ( 1 g peat i n o c u l a n t suspended i n 500 m L w a t e r ) u n i f o r m l y . I n o c u l a t i o n o f finger m i l l e t w i t h a l l the cultures o f N 2 - f i x i n g bacteria increased g r a i n o r straw yields by 8-10% over the c o n t r o l plants, b u t the increase was n o t significant ( F i g . 4). A p p l i c a t i o n o f N also gave n o n s i g n i f i c a n t y i e l d increases over the c o n t r o l plants. H i g h e s t a b o v e - g r o u n d y i e l d (5552 k g ha - 1 ) was o b t a i n e d w i t h A . L i p o f e r u m ( I C M 1001) i n o c u l a t i o n + 50 kg N ha - 1 , f o l l o w e d by N B R E c u l t u r e + 25 kg N ha - 1 (5168 kg ha - 1 ). N i t r o g e n c o n t e n t o f f i n g e r m i l l e t s t r a w increased b y 0.3% due t o i n o c u l a t i o n w i t h N B R E a n d N u p t a k e increased b y 1 2 k g ha - 1 ( F i g . 5). A p p l i c a t i o n of 50 kg N ha - 1 increased g r a i n n i t r o g e n u p t a k e b y 2 5 k g ha - 1 , b u t h a d n o effect o n straw n i t r o g e n c o n t e n t . 4. NBRE 5. Sharda ragi isolate (SRI) 15 100 Grain Straw 12 80 9 60 6 40 3 20 0 0 1 2 3 4 5 1 2 3 4 5 Figure 3. Response of finger millet cultivar I n d a f 7 to inoculation w i t h diazotrophs in a pot trial. 98 Grain Straw a t 2 5 k g N ha-1 a t 2 5 k g N ha-1 -1 a t 50 k g N ha Mean Grain -1 a t 5 0 k g N ha Straw inoculation Mean 70 inoculation 5500 60 5000 50 4500 40 4000 30 3500 20 3000 10 2500 a Control 0 C o n t r o l A. lipoferum 4ABL NBRE Figure 4. Response of field-grown finger millet cul- Figure millet 5. A. lipoferum Nitrogen cultivar 4ABL uptake Indaf 7 as NBRE by field-grown finger influenced by nitrogen levels a n d i n o c u l a t i o n s w i t h d i a z o t r o p h s . t i v a r I n d a f 7 w i t h n i t r o g e n levels t o i n o c u l a t i o n w i t h diazotrophs. Nitrogen Balance N i t r o g e n balances (postharvest N - p r e s o w i n g N in soil) due to the g r o w t h of finger m i l l e t I n d a f 5 as affected b y p l a n t i n g , i n o c u l a t i o n , a n d three levels o f n i t r o g e n (0, 25, a n d 5 0 k g ha - 1 ) were studied i n p o t c u l t u r e i n the greenhouse ( F i g . 6). M a x i m u m posit i v e n i t r o g e n balance (200 m g p o r - 1 ) was f o u n d i n i n o c u l a t e d finger m i l l e t at the 0 level a p p l i e d - N , w h i c h also s h o w e d the least loss of s o i l n i t r o g e n (5 m g p o t - 1 ) . M a x i m u m loss o f s o i l n i t r o g e n was f o u n d i n the u n p l a n t e d p o t w i t h 5 0 k g h a - 1 a p p l i e d N . F i n a l N-balances i n i n o c u l a t e d a n d p l a n t e d systems were 200, 168, a n d 198 m g p o t - 1 . I n the u n p l a n t e d system, there were negative balances o f 1 1 , 58, a n d 9 3 m g pot - 1 respectively at the 0, 25, a n d 50 kg a p p l i e d - N levels. E v e n t h o u g h i n o c u l a t e d pots s h o w e d a h i g h e r balance (188 m g p o r 1 ) t h a n the n o n i n o c u l a t e d p o t (161 m g p o t - 1 ) , the difference was n o t s i g n i f i c a n t . P l a n t i n g I n d a f 5 resulted i n a n N g a i n o f 175 m g pot - - 1 , whereas in the u n p l a n t e d system there was a loss of 49 mg N p o t - 1 . T h e system gains of N in p o t s due t o i n o c u l a t i o n e x t r a p o l a t e d t o a net g a i n o f 6.3, 7.6, a n d 9.4 kg N ha - 1 , respectively, at the 0, 25, a n d 50 kg ha - 1 a p p l i e d - N levels. References D a r t , P . J . , and W a n i , S.P. 1982. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d s o i l f e r t i l i t y . Pages 3-27 in N o n - s y m b i o t i c n i t r o g e n f i x a t i o n a n d o r g a n i c m a t t e r i n the t r o p i c s . S y m p o sia papers 1 . T r a n s a c t i o n s o f t h e 12th I n t e r n a t i o n a l C o n gress o f S o i l Science, 8-16 Feb 1982, N e w D e l h i , I n d i a . N e w D e l h i , I n d i a : I n d i a n A g r i c u l t u r a l Research I n s t i t u t e . D a y , J . M . , Neves, M . C . P . , and Dobereiner, J . 1975. N i t r o g e n a s e a c t i v i t y o n t h e r o o t s o f t r o p i c a l forage grasses. S o i l B i o l o g y a n d B i o c h e m i s t r y 7:107-112. 99 Inoculated No N Noninoculated 25 kg N ha-1 Sown 50 kg N ha-1 Not sown 200 (+)ve 160 120 80 40 0 40 (-)ve 80 120 Figure 6. Nitrogen balance in p o t - g r o w n finger millet cultivar I n d a f S as affected by nitrogen a n d inoculation (95-day-old plants). G . , and H a r d y , R . W . F . , B u r n s , R . C . , a n d H o l s t e n , R . D . 1973. W e i n h a r d , P . 1973. N o n - s y m b i o t i c n i t r o g e n f i x a t i o n i n A p p l i c a t i o n s o f t h e a c e t y l e n e - e t h y l e n e assay f o r m e a s u r e - Dommergues, Y., Balandreau, J., Rinaudo, t h e r h i z o s p h e r e o f r i c e , m a i z e a n d d i f f e r e n t t r o p i c a l grasses. ment of nitrogen fixation. Soil Biology and Biochemistry S o i l B i o l o g y a n d B i o c h e m i s t r y 5:83-89. 5:47-81. 100 I C R I S A T ( I n t e r n a t i o n a l Crops Research Institute for the S e m i - A r i d Tropics). 1978. A n n u a l r e p o r t 1977-78. P a t a n c h e r u , A . P 502 324, I n d i a : I C R I S A T . Jenkinson, D . S . 1977. T h e n i t r o g e n e c o n o m y o f B r o a d b a l k e x p e r i m e n t s . I . N i t r o g e n balance i n the e x p e r i m e n t s . R e p o r t f o r 1976, R o t h a m s t e d E x p e r i m e n t a l S t a t i o n 2:103109. M i s h r a , H . P . , P a t n a i k , M . C . , and N a y a k , B . K . 1980. V a r i a t i o n i n q u a n t i t a t i v e characters a n d t h e i r a s s o c i a t i o n w i t h qualitative traits i n f i n g e r millet. I n d i a n J o u r n a l o f A g r i c u l t u r a l Sciences 50:298-301. M o o r e , A . W . 1963. N i t r o g e n f i x a t i o n i n l a t o s o l i c s o i l u n d e r grass. P l a n t a n d S o i l 19:127-138. Rennie, R . J . 1981. A single m e d i u m f o r the i s o l a t i o n o f acetylene r e d u c i n g ( d i n i t r o g e n f i x i n g ) bacteria f r o m soils. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 27:8-14. W a n i , S.P., D a r t , P . J . , and U p a d h y a y a , M . N . 1983. F a c t o r s a f f e c t i n g nitrogenase a c t i v i t y ( C 2 H 2 r e d u c t i o n ) associated w i t h s o r g h u m a n d m i l l e t e s t i m a t e d u s i n g the s o i l core assay. C a n a d i a n J o u r n a l o f M i c r o b i o l o g y 29:10631069. W a n i , S.P., U p a d h y a y a , M . N . , and D a r t , P . J . 1984. A n i n t a c t p l a n t assay f o r e s t i m a t i n g nitrogenase a c t i v i t y ( C 2 H 2 reduction) of sorghum and millet plants g r o w n in pots. P l a n t a n d S o i l 82:15-29. 101 Heterotrophic N i t r o g e n F i x a t i o n as Influenced by Fertilizers in Rice-Soil Systems V . Rajaramamohan R a o , J . L . N . R a o , and T . K . Adhya1 Summary The rice We rhizosphere-soil investigated conditions, the effects employing gas level form, and with the rhizosphere. activity, the the rice extent plant. ence on nitrogenase, from this laboratory, the nitrogen nitrogenase of economy of fertilizer The the while varying under nitrogen an the the sources phosphate urgent of with phosphate rock is on by several soil nitrogenase under laboratory and field assay. Studies indicate that the the nitrogenase associated enhanced nitrogenase acetylene-reduction application stimulation there affected of mineral fertilizers chromatographic method Among is was need to impact application urea method less F e r t i l i z e r i s one o f the key i n p u t s i n c r o p p r o d u c t i o n , b u t the i n f o r m a t i o n o n its influence o n n i t r o g e n fixation in the rice rhizosphere soil is rather l i m i t e d . It has been w e l l established that nitrogenase is depressed by f e r t i l i z e r n i t r o g e n . H o w e v e r , u n d e r f i e l d c o n d i t i o n s , the effects o f n i t r o g e n f e r t i l i z e r either s i n g l y o r i n c o m b i n a t i o n w i t h o t h e r n u t r i e n t s could be complicated owing to plant absorption and o t h e r f i e l d factors. I n f o r m a t i o n o n the effect o f p h o s p h o r u s a p p l i c a t i o n o n s o i l nitrogenase i n l o w l a n d - r i c e soils is also n o t available. We have e x a m i n e d the p o t e n t i a l n i t r o g e n - f i x i n g a c t i v i t y i n rhizosphere s o i l as influenced by different sources of f e r t i l i z e r n i t r o g e n , p h o s p h o r u s , a n d c e r t a i n management practices under field and l a b o r a t o r y conditions. Materials and Methods A f i e l d e x p e r i m e n t was c o n d u c t e d to evaluate the influence o f f o r m s a n d m e t h o d s o f a p p l i c a t i o n o f of and significantly application and superphosphate effective. evaluate of improved Introduction influenced briquettes tested, environmental Based the exerted on this the overall contribution of rice cultural factors. growth phase of stimulatory influ- and earlier research N2 fixation to technology. urea n i t r o g e n o n the nitrogenase a c t i v i t y o f t h e rhizospheric s o i l . N i t r o g e n was a p p l i e d as urea p r i l l s a n d urea briquettes at a rate of 40 kg N ha - 1 , in a d d i t i o n t o 2 0 k g h a - 1 each o f P 2 O 5 a n d K 2 O , t o a l l treatments. Urea briquettes were a p p l i e d b e h i n d t h e p l o w o r t o s h a l l o w w a t e r between the r o w s a m o n t h after s o w i n g . T h e treatments w i t h p r i l l e d urea i n c l u d e d broadcast a n d i n c o r p o r a t i o n , urea a p p l i e d b e h i n d the p l o w a n d between seed r o w s . W a t e r was a l l o w e d to a c c u m u l a t e in the field a f o r t n i g h t after g e r m i n a t i o n , a n d the level reached a b o u t 5 0 c m b y 6 0 days after s o w i n g ( D A S ) . T h e water level v a r i e d between 4 0 c m a n d 5 0 c m u p t o 120 D A S a n d g r a d u a l l y declined thereafter. I n a l l treatments, rhizospheric s o i l ( 2 g fresh w t ) was collected p e r i o d i c a l l y f r o m three p l a n t s f r o m each p l o t a n d transferred t o 125 x 1 6 m m B - D V a c u tainer ( N e w Jersey) tubes f o r acetylene ( C 2 H 2 ) r e d u c t i o n analysis. T h e i n c u b a t i o n a n d analysis were c o n d u c t e d as per the procedures described by N a y a k e t a l . (1980), M a h a p a t r a a n d R a o (1981), a n d R a o et al. (1983). H i g h - p u r i t y n i t r o g e n served as a c a r r i e r gas at a flow rate of 30 mL min - 1 . T h e effect o f different levels a n d sources o f p h o s - 1. Microbiologist, U G C Teacher Fellow, and Microbiologist, Central Rice Research Institute, Cuttack, Orissa 753 006, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986, Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502324, India: I C R I S A T . 103 p h o r u s o n s o i l nitrogenase a c t i v i t y was e v a l u a t e d i n a l a b o r a t o r y i n c u b a t i o n study. A l l u v i a l a n d P deficient a l k a l i n e soils were a i r d r i e d , screened t h r o u g h < 2 m m sieve, a n d 5 g placed i n B - D v a c u t a i n e r tubes. O n e set o f soils was f l o o d e d (1.5 c m s t a n d i n g w a t e r ) a n d t h e o t h e r was k e p t a t 5 0 % w a t e r h o l d i n g c a p a c i t y ( W H C ) A l l treatments were r e p l i cated three times. P h o s p h o r u s was a p p l i e d as K 2 H P O 4 to p r o v i d e 0, 10, 20, 40, 80, a n d 100 p p m P levels. I n a n o t h e r e x p e r i m e n t r o c k phosphate, d i c a l c i u m phosphate, a n d superphosphate were a p p l i e d t o y i e l d f i n a l concentrations o f 0 , 20, 40, a n d 6 0 p p m P . N i t r o g e n a s e a c t i v i t y was d e t e r m i n e d a t d i f f e r e n t i n t e r v a l s . T h e r e m a i n i n g a v a i l a b l e P was e s t i m a t e d as Olsen's P. T h e p o p u l a t i o n s o f different g r o u p s o f n i t r o g e n f i x i n g m i c r o o r g a n i s m s i n the soils u n d e r different treatments were c o u n t e d b y c o n v e n t i o n a l seriald i l u t i o n techniques o n N-free m e d i a . Azospirillum sp was c o u n t e d f o l l o w i n g the m e t h o d suggested by O k o n e t a l . (1977), a n d anaerobic n i t r o g e n fixers a n d Azotobacter b y the p r o c e d u r e o f R a o e t a l (1973). Results presented are the means o f f i v e replicates f o r Azospirillum a n d anaerobic N 2 f i x e r s , a n d three replicates f o r Azotobacter. Results N i t r o g e n a s e was, i n general, s t i m u l a t e d b y the a p p l i c a t i o n o f 4 0 k g N ha - 1 , p a r t i c u l a r l y d u r i n g the i n i t i a l 5 4 D A S ( T a b l e 1). Nitrogenase a c t i v i t y was s i g n i f i c a n t l y ( P < 0 . 0 5 ) reduced w h e n the urea b r i q u e t t e s were a p p l i e d t o s t a n d i n g s h a l l o w w a t e r , whereas i t was h i g h w h e n the briquettes were a p p l i e d either b e h i n d the p l o w o r between the r o w s . Perhaps the increased N c o n c e n t r a t i o n in the r h i z o s p h e r e s o l u t i o n c o u l d have reduced the n i t r o g e n a v a i l a b i l i t y , r e s u l t i n g i n a r e d u c t i o n i n a c t i v i t y w h e n t h e urea was a p p l i e d t o s t a n d i n g s h a l l o w w a t e r . I n fact, a p p l i c a t i o n o f urea b r i q u e t t e s t o the r o o t zone prevents n i t r o g e n loss a n d results i n the slower release o f n i t r o g e n . T h u s , the s l o w e r s u p p l y o f l o w levels o f n i t r o g e n m i g h t have f a v o r e d nitrogenase a c t i v i t y . A d d e d - N i s k n o w n t o s t i m u l a t e s o i l nitrogenase ( K n o w l e s a n d D e n i k e 1974, T r o l l e d e n i e r 1977, C h a r y u l u et a l . 1981). U r e a briquettes resulted in a s i g n i f i c a n t ( P < 0 . 0 5 ) increase i n g r a i n y i e l d , c o m p a r e d w i t h the c o n t r o l , i n a l l m e t h o d s o f a p p l i c a t i o n . T h e nitrogenase was, h o w e v e r , affected b y t h e m e t h o d o f N a p p l i c a t i o n . T h u s , n o a p p a r e n t c o r r e l a t i o n existed between t h e 104 T a b l e 1 . Nitrogenase activity ( n m o l C 2 H 4 g - 1 soil d - 1 ) i n the rhizosphere as influenced by f o r m a n d m e t h o d of n i t r o gen a p p l i c a t i o n . Days after sowing Treatment (40 k g N ha-1) Without 30 47 54 76 88 102 580 420 390 250 150 210 640 510 450 320 230 170 760 450 430 310 480 170 740 430 400 140 150 190 570 130 200 180 170 190 620 620 540 360 310 370 ±38 ±25 ±33 ±27 ±27 ±20 N fertilizer Urea prills Applied between seed r o w s Broadcast and incorporated Applied behind the p l o u g h Urea briquettes Applied in shallow water Applied behind the p l o u g h SE nitrogenase a n d the c r o p y i e l d u n d e r these situations. O u r results i n d i c a t e t h a t p h o s p h o r u s a d d i t i o n s t i m u l a t e d nitrogenase a c t i v i t y i n the t w o soils ( T a b l e 2), a n d the s t i m u l a t i o n was m o r e p r o n o u n c e d under nonflooded conditions. The stimulation by p h o s p h o r u s was m o r e a p p a r e n t i n the a l l u v i a l s o i l . T h u s the effect o f p h o s p h o r u s o n nitrogenase depended o n the w a t e r regime a n d s o i l t y p e . These differences c o u l d b e a t t r i b u t e d t o the a l t e r a t i o n s i n the a v a i l a b l e P u n d e r t w o w a t e r regimes in the soils. I n fact, the a v a i l a b l e P disappeared faster i n the P-deficient s o i l t h a n i n a l l u v i a l soil. A d d i t i o n o f superphosphate a n d d i c a l c i u m p h o s phate stimulated nitrogenase activity almost t h r o u g h o u t i n c u b a t i o n , w h i l e the r o c k p h o s p h a t e h a d a n i n n o c u o u s effect ( T a b l e 3). S u p e r p h o s p h a t e was s u p e r i o r over o t h e r P-sources i n e n h a n c i n g s o i l nitrogenase a n d c r o p yields o n this a l l u v i a l s o i l . A d d i t i o n of phosphorus in alluvial soil had little effect o n the p o p u l a t i o n s o f Azospirillum, a n a e r o b i c N 2 - f i x e r s , a n d Azotobacter ( T a b l e 4 ) . I n c o n t r a s t , i n a P-deficient s o i l , the a d d i t i o n o f phosphate s t i m u lated the p o p u l a t i o n o f Azospirillum a n d A z o t o b a c ter. T h e s t i m u l a t i o n was m o r e a p p a r e n t at the 10 p p m P level. T h e P-deficient s o i l , however, h a d h i g h e r n u m b e r s o f Azotobacter t h a n the a l l u v i a l s o i l . Changes i n the m i c r o b i a l p o p u l a t i o n s a n d levels of a v a i l a b l e P m i g h t be responsible f o r changes in nitrogenase a c t i v i t y i n the soils. O u r results suggest t h a t rhizosphere s o i l n i t r o g e n ase i s influenced b y the m o d e o f a p p l i c a t i o n o f f e r t i l izer n i t r o g e n . T h e level a n d source o f p h o s p h o r u s a p p l i e d t o rice soils u n d e r n o n f l o o d e d a n d sub- merged c o n d i t i o n s also e x h i b i t e d p r o f o u n d i n f l u ence o n nitrogenase a c t i v i t y a n d the p o p u l a t i o n o f n i t r o g e n fixers. T h i s s t u d y opens up a f u r t h e r need to manipulate fertilizer-management practices to e x p l o i t the benefit o f b i o l o g i c a l n i t r o g e n f i x a t i o n f o r rice u n d e r these s i t u a t i o n s . Acknowledgement T a b l e 2. I n f l u e n c e of phosphate on soil nitrogenase activity ( n m o l C 2 H 4 g - 1 soil d - 1 ) i n t w o soils under f l o o d e d a n d T h e a u t h o r s w i s h t o t h a n k D r H . K . Pande, D i r e c t o r , C R R I , f o r p r o v i d i n g the facilities t o c o n d u c t this research. n o n f l o o d e d conditions. Days of incubation 11 P-level F1 ppm 16 NF2 F 30 25 NF F NF F NF A l l u v i a l soil 0 30 80 30 100 40 80 10 40 100 50 90 40 90 T a b l e 3 . Effect o f P-sources o n soil nitrogenase ( n m o l ND3 C 2 H 4 g - 1 soil d - 1 ) in a submerged alluvial soil. 20 70 590 40 200 50 70 40 80 310 40 160 40 30 80 90 290 50 170 80 20 P-source 100 70 430 70 60 130 20 Control L S D (P<0.05) 18 97 10 34 10 11 (P<0.01) 25 136 15 48 15 15 Rock P-deficient alkaline soil 80 120 100 40 60 60 70 30 10 80 490 100 250 120 120 90 130 20 80 130 140 70 110 100 120 90 40 150 150 120 140 100 70 100 50 80 250 170 150 180 90 110 70 50 100 170 200 200 60 140 10 100 20 LSD (P<0.05) 48 105 30 37 33 21 17 24 (P<0.01) 67 147 43 52 46 30 24 34 8 14 19 22 25 29 0 40 150 90 40 40 30 ppm phosphate 0 Days of incubation P-level Dicalcium phosphate Super phosphate 20 20 150 110 50 50 40 40 80 90 40 30 10 30 60 70 130 60 50 30 30 40 20 100 157 130 50 50 40 90 160 130 40 40 30 60 100 160 150 80 50 50 40 20 100 110 150 50 40 40 120 180 210 50 40 30 60 150 160 140 40 40 40 19 14 LSD(P<0.05) 34 31 29 21 (P<0.01) 47 42 40 29 1. F = Flooded. 2. NF = Nonflooded. N S 1 19 1. NS = Not significant. 3. ND = N o t determined . T a b l e 4. P o p u l a t i o n of N 2 - f i x i n g microorganisms as influenced by the phosphate level in flooded soils ( 1 2 days incubation). Nitrogen-fixing population g-1 dry soil Soil P-level Azospirillum (ppm) (x F1 Alluvial 0 10 80 P-deficient alkaline 16 2.8 16 0 0.5 10 13.0 80 2.8 Anaerobic N 10 6 ) NF2 F Azotobacter (x105) fixers NF (x104) F NF 0.14 2.4 1.4 5 0.60 2.8 1.7 2 1.8 0.12 2.8 2.4 3 6.5 0.45 1.4 0.24 47 9 0.17 0.24 122 21 1.7 0.17 98 14 13.5 0.18 7.5 1. F = Flooded. 2. NF = Nonflooded. 105 References C h a r y u l u , P . B . B . N . , N a y a k , D . N . , and R a o , V . R . 1981. N i t r o g e n i n c o r p o r a t i o n b y rhizosphere s o i l : influence o f rice variety, organic matter and combined nitrogen. Plant a n d S o i l 59:399-405. Knowles, R . , and D e n i k e , D . 1974. Effects o f a m m o n i u m n i t r i t e a n d n i t r a t e - n i t r o g e n o n anaerobic nitrogenase a c t i v i t y i n s o i l . S o i l B i o l o g y a n d B i o c h e m i s t r y 6:353-358. f i x a t i o n . T h e deleterious effect of higher levels of N o n nitrogenase i s alleviated b y the a p p l i c a t i o n o f higher levels of P to the system. D . Purushothaman: C o u l d y o u t e l l u s the response o f rice genotypes t o i n o c u l a t i o n w i t h Azospirillum'! V.R.Rao: M a h a p a t r a , R . N . , and R a o , V . R . 1981. I n f l u e n c e o f h e x a c h l o r o c y c l o h e x a n e o n the nitrogenase a c t i v i t y o f rice rhizosphere s o i l . P l a n t a n d S o i l 59:473-477. W e have l i m i t e d i n f o r m a t i o n o n the genotype response to Azospirillum i n o c u l a t i o n w i t h regard to yield. N a y a k , D . N . , Pasalu I . C . , and R a o , V . R . 1980. I n f l u e n c e o f n a t u r a l a n d synthetic pesticides o n n i t r o g e n f i x a t i o n ( C 2 H 2 r e d u c t i o n ) i n the rice rhizosphere. C u r r e n t Science 49:118-119. U.S. K u n d u : W h a t i s the percentage o f azospirilla i n the rice rhizosphere? O k o n , Y . , Albrecht, S . L . , and B u m s , R . H . 1977. M e t h o d s f o r g r o w i n g Spirillum lipoferum a n d f o r c o u n t i n g i t i n p u r e c u l t u r e a n d i n association w i t h plants. A p p l i e d a n d E n v i r o n m e n t a l M i c r o b i o l o g y 33:85-88. R a o , J . L . N . , Pasalu, I . C . , and R a o , V . R . 1983. N i t r o g e n f i x a t i o n ( C 2 H 2 r e d u c t i o n ) i n the rice rhizosphere s o i l a s i n f l u e n c e d b y pesticides a n d m e t h o d s o f t h e i r a p p l i c a t i o n . J o u r n a l o f A g r i c u l t u r a l Science ( U K ) 100:637-642. R a o , V . R . , Kalininskaya, T . A . , and M i l l e r , Y . M . 1973. T h e a c t i v i t y o f n o n - s y m b i o t i c n i t r o g e n f i x a t i o n i n soils o f r i c e fields s t u d i e d w i t h I 5 N . M i k r o b i o l o g i y a 42:729-734. Trolledenier, G . 1977. I n f l u e n c e o f some e n v i r o n m e n t a l factors o n n i t r o g e n f i x a t i o n i n the rhizosphere o f rice. P l a n t a n d S o i l 47:203-217. Discussion N . S . Subba R a o : H o w d o y o u estimate Rhizosphere i n the rice p l a n t i n wet land? V.R.Rao: T h e rhizosphere c o l l e c t i o n a n d s a m p l i n g f r o m wetl a n d soils o f t e n pose several p r o b l e m s . We consider the soil f r a c t i o n attached to the rice r o o t s as the rhizosphere. G.S.Murthy: D i d y o u s t u d y the i n d i v i d u a l effects o f N a n d P o n nitrogenase a c t i v i t y , or t h e i r c o m b i n e d effect? V.R.Rao: W e have i n f o r m a t i o n o n the independent a n d c o m b i n e d effects o f N a n d P o n r i c e rhizosphere N 2 106 V.R.Rao: Azospirillum i s one o f the N 2 f i x e r s associated w i t h rice. C o n v i n c i n g q u a n t i t a t i v e data o n the percentage o f a z o s p i r i l l a i n rice rhizosphere are n o t available. C . P . Ghonsikar: W h a t i s the r e l i a b i l i t y o f A R A m e t h o d o l o g y i n w e t l a n d c o n d i t i o n s o f rice cultures? A n y difficulties i n assay techniques? If there are, w h a t special techniques are adopted? V.R.Rao: A R A m e t h o d i n w e t l a n d c o n d i t i o n s c o u l d a t best b e q u a l i t a t i v e a n d is often e m p l o y e d f o r screening a n d e v a l u a t i n g the N 2 - f i x i n g p o t e n t i a l under such c o n d i tions. T h e r e are several difficulties associated w i t h this assay system l i k e gas d i f f u s i o n , i n i t i a l lag, s o l u b i l i t y , etc. T h i s technique s t i l l needs p e r f e c t i o n a n d i m p r o v e m e n t s are i n progress. P. Tauro: W h a t i s the n u m b e r o f azospirilla i n the rice soil? V.R.Rao: 10 6 g - 1 soil. Effect of Certain Organic Amendments and Potassium on the Bacterization of Rice w i t h Azotobacter chroococcum N . N . Prasad1 Summary effect of Sesbania, bacterization The of Oryza ments, gave Sesbania 31.1% of neem Azotobacter increase cake application + with increase in increase in over application markedly application K K glyricidia sativa the in levels. The sunhemp with Azotobacter gave a 31. 7% nonamended combination augmented Azotobacter and L. the indicated (green increase control. with increase Azotobacter population The results in studied. also showed inoculation population in and paddy was straw Among on the in grain yield and Glyricidia + Azotobacter Azotobacter an manures), chroococcum grain the in and on the straw rhizosphere the Azotobacter beneficial effects rice yield. Neem rhizosphere. yields of rice the treat- cake Potassium of rice with an increased with an levels. Introduction N i t r o g e n fixation is an energy-consuming process a n d the a v a i l a b i l i t y o f c a r b o h y d r a t e i n soil assumes m u c h significance f o r the f i x a t i o n o f a t m o s p h e r i c nitrogen. Under field conditions, application of organic amendments, therefore, becomes essential f o r the e x p l o i t a t i o n o f the n i t r o g e n - f i x i n g p o t e n t i a l o f Azotobacter. S o m e o f the data o b t a i n e d o n the b a c t e r i z a t i o n of rice (Oryza sativa L . ) w i t h A. chroococcum are s u m m a r i z e d below. Results I n studies o n the effect o f green manures a n d p a d d y straw o n the b a c t e r i z a t i o n o f rice w i t h Azotobacter at A n n a m a l a i U n i v e r s i t y , Sesbania + Azotobacter gave the m a x i m u m increase i n g r a i n y i e l d (31.7%) over the c o n t r o l ( T a b l e 1), w h i l e g l y r i c i d i a + A z o t o bacter gave a 31.1 % increase a n d s u n h e m p + A z o t o - bacter gave a 2 3 . 1 % increase in g r a i n yields ( P r a k a s h a n d Prasad 1980). O r g a n i c amendments a l o n g w i t h Azotobacter have also increased the straw y i e l d a n d 1000 g r a i n mass. Interestingly, the a d d i t i o n o f o r g a n i c a m e n d m e n t c o m b i n a t i o n s w i t h Azotobacter i n o c u l a t i o n have m a r k e d l y augmented shoot n i t r o g e n c o n t e n t , w h e n c o m p a r e d to either Azotobacter i n o c u l a t i o n or organic amendments alone ( P r a k a s h 1977). W o r k done a t A n n a m a l a i U n i v e r s i t y revealed t h a t w i t h Azotobacter i n o c u l a t i o n the o p t i m u m level o f fertilizer N c o u l d be reduced f r o m 120 to 90 kg ha - 1 f o r the rice c r o p ( P r a k a s h 1977). T h e o r g a n i c - m a t t e r a p p l i c a t i o n was also f o u n d to be beneficial to the Azotobacter i n o c u l a t i o n . To investigate this aspect further, Azotobacter was i n o c u l a t e d at three levels o f g l y r i c i d i a a p p l i c a t i o n a t t w o levels o f n i t r o g e n ( N a g a r a j a n 1978). T h e results revealed the p o s s i b i l i t y of reducing the rate of fertilizer N to 60 kg N ha - 1 f r o m 9 0 k g N ha - 1 , i f supplemented w i t h g l y r i c i d a a p p l i c a t i o n at 7.5 t ha - 1 a n d i n o c u l a t e d w i t h Azoto- 1. Professor and Head, Department of Microbiology, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the W o r k i n g Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A . P . 502 324, India: I C R I S A T . 107 T a b l e 1 . Effect o f organic amendments ( 6 t h a - 1 ) a n d A z o - Table tobacter inoculation on grain yield of rice. on grain yield of rice. 3. Treatment Increase Increase over Grain over respective yield control control (%) (%) ha-1) (kg Treatment Control 3136 - - Azotobacter 3526 12.5 12.5 Sesbania 3835 22.3 - Sesbania 4124 31.7 9.4 3526 12.5 - 4109 31.1 18.6 + Azotobacter Glyricidia Glyricidia + Azotobacter + Azotobacter Sunhemp Sunhemp 3467 10.6 - 3860 23.1 12.5 Paddy straw 3089 -1.4 - Paddy 3610 15.1 16.8 CD s t r a w + Azotobacter Effect of neem cake and Azotobacter inoculation Grain Change N e e m cake Nitrogen Azoto- yield over (t ha-1) ( k g ha-1) bacter1 (kg ha-1) control2 0 90 4650 +9.4 6 90 4764 +12.1 8.5 90 4816 +13.3 12.5 90 4848 +14.1 25.0 90 4895 +15.2 0 90 NI 3884 -8.6 0 120 NI 4250 - 1.1 = Inoculated, NI = Not inoculated. 2. Control = 120 kg N ha-1 only. 0.48 (P<0.05) bacter ( T a b l e 2). At the 90 kg N ha - 1 level, a d d i t i o n of 7.5 t ha - 1 g l y r i c i d i a gave a 32.1% increase in g r a i n y i e l d , w h i l e w i t h 60 kg N ha - 1 + 7.51 ha - 1 g l y r i c i d i a , g r a i n y i e l d increased by 27.8%. T h e effect o f neem cake o n b a c t e r i z a t i o n o f rice (var. white ponni) w i t h Azotobacter d u r i n g the samba (northeast m o n s o o n ) season ( O c t 1979-Feb 1980) was studied ( S a h u l H a m e e d 1980). N e e m cake was applied at 0, 6, 8.5, 12.5, a n d 25 t ha -1 w i t h Azotobacter i n o c u l a t i o n . N i t r o g e n a p p l i c a t i o n at 120 kg N ha - 1 , w i t h o u t Azotobacter i n o c u l a t i o n or neem cake, served as the c o n t r o l . T h e results have s h o w n t h a t neem cake a p p l i c a t i o n i n c o m b i n a t i o n w i t h Azotobacter i n o c u l a t i o n on rice can give g r a i n y i e l d increases of 12.1-15.2% a n d straw y i e l d increases of 15.9-18.7% ( T a b l e 3). T h e neem cake a p p l i c a t i o n m a r k e d l y a u g m e n t e d the Azotobacter p o p u l a t i o n in the rhizosphere at 75 D A S . T h e increase i n p o p u l a t i o n o f this o r g a n i s m was up to 41.8 x 10 3 at 25 t ha -1 neem cake, as c o m p a r e d to 22.3 x 10 3 w i t h no neem cake a p p l i c a t i o n ( T a b l e 4). We studied the effect of graded levels of p o t a s s i u m a p p l i c a t i o n o n the a z o t o b a c t e r i z a t i o n o f rice (var. white ponni). Potassium a p p l i c a t i o n increased g r a i n a n d s t r a w yields of rice as also the 1000-grain mass. T h e a p p l i c a t i o n of K w i t h Azotobacter i n o c u l a t i o n augmented the Azotobacter p o p u l a t i o n in the r h i z o sphere of rice. T h e p o p u l a t i o n s increased to 20.46 x 10 3 at 200 kg K 2 O ha -1 as c o m p a r e d to 12.1 x 10 3 w i t h o u t K a p p l i c a t i o n ( T a b l e 5). Table 4. Effect of neem cake a n d Azotobacter inoculation on rhizosphere p o p u l a t i o n of Azotobacter (x 10 3 g - 1 ovenT a b l e 2. Effect of glyricidia and N w i t h Azotobacter dry soil). chroococcum inoculation on grain a n d straw yields of rice. Treatments Treatment N e e m cake Glyricidi a Nitrogen G r a i n yield Straw yield (t h a - 1 ) (kg ha-1) (kg ha-1) ( k g ha-1) 0 90 5029 14275 0 60 4611 13618 2.5 90 5325 15702 2.5 60 4942 13672 5.0 90 6019 16197 5.0 60 5710 15043 7.5 90 6642 17460 7.5 60 6425 16583 108 (t ha-1) Nitrogen ( k g ha-1) Days after Azato bacter1 transplantation 15 35 55 75 0 90 I 13.8 17.7 19.6 22.3 6 90 I 16.3 19.5 23.2 26.1 29.3 8.5 90 I 14.0 21.9 26.5 12.5 90 I 20.1 23.9 28.5 31.9 25.0 90 I 2 6 . 4 29.9 34.8 41.8 0 90 NI 12.6 15.1 17.2 18.5 0 120 NI 11.2 13.2 15.7 17.8 1. 1 = Inoculated, NI = N o t inoculated. T a b l e 5. Effect of potassium application w i t h Azotobacter chroococcum inoculation on the rhizosphere population of Azotobacter (x 10 3 g - 1 oven-dry soil). Potassium ( k g K2O h a - 1 ) 0 50 100 150 200 D a y s after t r a n s p l a n t a t i o n 15 30 45 8.48 10.68 12.82 13.14 15.25 10.28 12.84 14.28 16.14 19.28 12.12 14.86 16.24 18.45 20.46 References N a g a r a j a n , R . 1978. Studies o n c e r t a i n aspects o f b a c t e r i z a t i o n of rice (Oryza sativa L . ) w i t h Azotobacter c h r o o c o c cum B e i j . M . S c . t h e s i s , A n n a m a l a i U n i v e r s i t y , Annamalainagar, T a m i l Nadu, India. Prakash, R . 1977. Studies o n the effect o f b a c t e r i z a t i o n o f r i c e ( O r y z a sativa L . ) a n d c e r t a i n factors i n f l u e n c i n g the g r o w t h of Azotobacter in vitro a n d in s o i l . M . S c . thesis, Annamalai University, Annamalainagar, T a m i l Nadu, India. P r a k a s h , R , and Prasad, N . N . 1980. Effect o f c e r t a i n o r g a n i c a m e n d m e n t s o n the efficiency o f i n o c u l a t i o n w i t h Azotobacter. Pages 90-94 in Aspects of b i o l o g i c a l n i t r o g e n f i x a t i o n : proceedings o f the T h i r d S o u t h e r n R e g i o n a l C o n ference o n M i c r o b i a l I n o c u l a n t s i n C r o p P r o d u c t i o n , 1-2 A p r 1977, D h a r w a d , K a r n a t a k a , I n d i a . B a n g a l o r e , K a r n a t a k a : U n i v e r s i t y o f A g r i c u l t u r a l Sciences. Sahul H a m e e d , M . 1980. Studies o n the effect o f c e r t a i n o r g a n i c m a t t e r a m e n d m e n t s a n d c r o p v a r i e t y o n the bacteri z a t i o n of rice (Oryza sativa L . ) w i t h Azotobacter c h r o o c occum B e i j . M . S c . thesis, A n n a m a l a i U n i v e r s i t y , Annamalainagar, T a m i l Nadu, India. 109 Studies on Vesicular Arbuscular M y c o r r h i z a in Cereals at I C R I S A T Center K . R . Krishna1 Abstract The vesicular grown in variation tion in Fungal technique 1. it could differed pearl based be millet, is genotypes colonization, widespread tested which (P<0.05) further both sorghum and pearl millet three field locations showed a large ranged between 25 male-sterile lines, between that on across mycorrhizal colonization and 56%. Root restorer lines, is plant-genotype colonizaand their dependent heritable. in their indicating on phosphorus improved performance symbiosis millet significantly indicating isolates and mycorrhizal Pearl mycorrhizal varied crosses, that sorghum with mean percentage derived and arbuscular SAT regions. on ability a need estimation sorghum, to to in stimulate screen bleeding is and sap, growth select which and phosphorus fungi could for be uptake improved used on response. to both A select fungi described. Microbiologist, Pearl Millet Improvement Program, I C R I S A T , Patancheru, A.P. 502 324, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics), 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502324, India: I C R I S A T . 111 T h e use o f E L I S A (Enzyme-Linked Immunosorbent Assay) for Q u a l i t y Assessment of Bacterial Inoculants P . T . C . Nambiar1 Abstract major reasons inoculants. One of the The conventional plant-infection carrier-based inoculants. control of Rhizobium The test ELISA necessary a single modified for 1. plant results to has can test ELISA the the for At the ICRISAT to be obtained quality quality of is of 25-30 assessment 2 we often have days for days. inoculum the of same other informers' is The plant-infection within eight technology Center, grown for needed for BNF technique inoculants. be plate failure fields used standardized technique is packets number bacterial hundred by the of peat and the poor enumerate ELISA time the plant-infection One is to for quality rhizobia the quality consuming and laborious. technique assessment, sixty-eight siratro plants plant-infection packets. of in technique, This technique while while can are only be inoculants. Microbiologist, Groundnut Improvement Program, I C R I S A T , Patancheru, A.P. 502 324, India. I C R I S A T (International Crops Research Institute for the Semi-Arid Tropics). 1986. Cereal nitrogen fixation. Proceedings of the Working Group Meeting, 9-12 Oct 1984, I C R I S A T Center, India. Patancheru, A.P. 502 324, India: I C R I S A T . 113 Recommendations T h e need to have f a i r l y u n i f o r m procedures for measuring the a m o u n t of n i t r o g e n f i x e d b y s o r g h u m a n d m i l l e t s u n d e r i n situ c o n d i t i o n s w a s r e c o g n i z e d a s a p r e r e q u i s i t e f o r e m b a r k i n g o n m o r e i n t e n s i v e r e s e a r c h o n t h e B N F t e c h n o l o g y o f these c r o p s . T h e acetylene-reduction m e t h o d ( A R A ) , e m p l o y i n g whole plants either b y axenic p l a n t cultures i n o c u l a t e d w i t h N 2 - f i x i n g bacteria o r b y n o n d i s t u r b e d soil cores o r intact p l a n t assay, w a s c o n s i d e r e d t o b e a p p r o p r i a t e f o r q u a l i t a t i v e l y e s t i m a t i n g t h e n i t r o g e nase a c t i v i t y a n d , h e n c e , t h e N 2 - f i x i n g a b i l i t y o f these p l a n t s . T h e p l a n t e d s o i l c o r e m e t h o d , s t a n d a r d i z e d b y I C R I S A T s c i e n t i s t s , w a s e n d o r s e d t o m e e t t h e assay r e q u i r e ments for this purpose. S i n c e t h e t i m e o f i n c u b a t i o n w i t h a c e t y l e n e gas c a n b e a v a r i a b l e f a c t o r i n s u c h assays, i t i s r e c o m m e n d e d t h a t t h e t i m e c o u r s e assay b e t e r m i n a t e d w h e n t h e l i n e a r i t y o f t h e r e a c t i o n b e g i n s t o cease. W h e n e v e r q u a n t i t a t i v e m e a s u r e m e n t s a r e n e e d e d , t h e 15 N d i l u t i o n t e c h n i q u e has to be resorted t o , c h o o s i n g a suitable n o n f i x i n g c o n t r o l plant. I n s o f a r a s p o t c u l t u r e o r field e x p e r i m e n t s are c o n c e r n e d , the t o t a l b i o m a s s o f the plant ( r o o t , shoot, a n d grain), i n d i v i d u a l l y or collectively, m a y be t a k e n as the y a r d s t i c k t o measure the o v e r a l l benefits f r o m i n o c u l a t i o n w i t h bacterial cultures. S u c h a m e a s u r e m e n t w o u l d take i n t o a c c o u n t the benefits d e r i v e d b y N 2 f i x a t i o n a s w e l l a s b y o t h e r factors, such a s g r o w t h - p r o m o t i n g substances o r e n h a n c e d n u t r i e n t uptake c o n c o m m i t a n t w i t h i m p r o v e d r o o t g r o w t h . T h e design a n d conduct o f the f i e l d e x p e r i m e n t s s h o u l d be left to the a g r o n o m i s t s , b u t m i c r o b i o l o g i s t s have to supervise i n o c u l a t i o n procedures a n d w a t c h the progress o f experiments t o record o u t b r e a k o f pests a n d diseases, w h i c h m a y l i m i t o r m a s k b e n e f i t s f r o m B N F . I n these e x p e r i m e n t s , fertilizer nitrogen should be kept w i t h i n 30-40 kg N ha-1. There c a n b e b o t h l o n g - t e r m a n d s h o r t - t e r m approaches t o future research o n B N F technology for sorghum and millets. T h e l o n g - t e r m approaches m a y include the f o l l o w i n g : 1. To search extensively f o r cultivars that e x h i b i t consistently h i g h nitrogenase a c t i v i t y a n d p l a n t b i o m a s s o u t p u t u n d e r d i v e r s e stress c o n d i t i o n s i n t h e s e m i a r i d tropics, w i t h a view to eventually transfer the beneficial traits to cultivated varieties t h r o u g h intensive plant-breeding methods. T h i s line o f w o r k m a y also include designing o f breeding procedures t o f i n d o u t i f the h i g h p r o d u c t i o n a t t r i b u t e o f plants are inheritable. 2 . T o e x p l o r e v a r i e t a l i n t e r a c t i o n w i t h s p e c i f i c b a c t e r i a l species o r s t r a i n s . 3 . T o exchange b a c t e r i a l g e r m p l a s m a n d m a i n t a i n t h e m a t different centers. T h e s h o r t - t e r m strategies m a y i n c l u d e the f o l l o w i n g : 1 . T o test t h e e f f i c i e n c y o f s u p e r i o r b a c t e r i a l c u l t u r e s i n e n h a n c i n g t h e y i e l d potential of s o r g h u m a n d millets under field conditions in the semi-arid tropics. 115 2 . T o test v a r i o u s m e t h o d s o f i n o c u l a t i o n u n d e r f i e l d c o n d i t i o n s t o e v o l v e a suitable m e t h o d . 3. To qualitatively a n d quantitatively define the extent of g r o w t h - p r o m o t i n g substances p r o d u c e d b y e f f i c i e n t s t r a i n s o f b a c t e r i a i n p u r e c u l t u r e s a n d i n t h e rhizosphere of crops. 4 . T o intensify w o r k o n identification o f hitherto undefined N 2 - f i x i n g bacteria i n sorghum and millets. 5 . T o q u a n t i t a t i v e l y estimate the p r e p o n d e r a n c e o f several types o f N 2 - f i x i n g bacteria in the r o o t region, by standardizing the e n u m e r a t i o n procedures. 116 117 Meeting Organization Organizing Committee F.R. Bidinger, K . K . L e e , S.P. W a n i Session Chairpersons Rapporteurs P.V. Rai P.T.C. Nambiar P. Tauro R.P. Thakur Joseph Thomas J . V . D . K . Kumar Rao K . K . Lee S.B. Chavan G. Oblisami O.P. Rupela N . N . Prasad S. Chandrapal C. Johansen J . V . D . K . Kumar Rao N.S. Subba Rao S. Pande and P. Soman Participants C.P. Ghonsikar Associate Dean, PG School Department of Microbiology Marathwada Agricultural University Parbhani Maharashtra 431 402 India B.K. Konde Associate Professor Department of Microbiology and Plant Pathology Mahatma Phule Agricultural University Rahuri Maharashtra 413 722 India S.V. Hegde Senior Microbiologist Department of Agricultural Microbiology University of Agricultural Sciences Gandhi Krishi Vignana Kendra ( G K V K ) Bangalore Karnataka 560 065 India B.S. Kundu Associate Professor Department of Microbiology College of Basic Sciences and Humanities Haryana Agricultural University Hisar Haryana 125 004 India G .S.Jadhav Agronomist Bajra Research Station Marathwada Agricultural University Paithan Road Aurangabad Maharashtra India G.S. Murthy Chief Agronomist Coromandel Fertilizers L t d 126, Sarojini Devi Road P.B.No.1589 Secunderabad Andhra Pradesh 500 003 India 118 K . C . Mohan Kumar Department of Microbiology Andhra Pradesh Agricultural University Rajendranagar Hyderabad Andhra Pradesh 500 030 India G. Oblisami Head Centre of Advanced Studies in Agricultural Microbiology T a m i l Nadu Agricultural University Coimbatore T a m i l Nadu 641 003 India H . Polasa Professor and Head Department of Microbiology Osmania University Hyderabad Andhra Pradesh 500 007 India N . N . Prasad Professor and Head Department of Microbiology Annamalai University Annamalai Nagar T a m i l Nadu 608 002 India D . Purushothaman Associate Professor Center of Advanced Studies in Agricultural Microbiology Tamil Nadu Agricultural University Coimbatore Tamil Nadu 641 003 India P.V. Rai Professor and Head Department of Agricultural Microbiology University of Agricultural Sciences Gandhi Krishi Vignana Kendra ( G K V K ) Bangalore Karnataka 560 065 India A . V . Rao Microbiologist Central A r i d Zone Research Institute Jodhpur Rajasthan 342 003 India V. Rajaramamohan Rao Microbiologist Central Rice Research Institute Cuttack Orissa 753 006 India S.T. Shende Senior Microbiologist Division of Microbiology IARI New Delhi 110 012 India P.A. Shinde Head Department of Agricultural Microbiology and Plant Pathology Mahatma Phule Agricultural University Rahuri Maharashtra 413 722 India N.S. Subba Rao Project Director Agro-Energy Center IARI New Delhi 110 012 India H . L . S . Tandon Director Fertilizer Development and Consultation Organization New Delhi 110 048 India P. Tauro Professor of Eminence Department of Microbiology College of Basic Sciences and Humanities Haryana Agricultural University Hisar . Haryana 125 004 India Joseph Thomas Biology and Agriculture Division Bhabha Atomic Research Centre Trombay Bombay Maharashtra 400 085 India 119 K.V.B.R. Tilak Senior Microbiologist Division of Microbiology IARI New Delhi 110 012 India I C R I S A T Participants J.S. Kanwar, Director of Research C.R. Jackson, Director of International Cooperation K . K . Lee, Principal Cereals Microbiologist S.P. Wani, Microbiologist (Millet) K . R . Krishna, Microbiologist (Millet) S.B. Chavan, Plant Breeder (Millet) C. Johansen, Principal Agronomist (Pulses) O.P. Rupela, Agronomist (Microbiology, Pulses) J.V.D.K. Kumar Rao, Agronomist (Microbiology, Pulses) J . H . Williams, Principal Plant Physiologist (Groundnut) P.T.C. Nambiar, Microbiologist (Groundnut) Acknowledgement T h e organizers express t h e i r sincere t h a n k s t o D r H . L . S . T a n d o n , F e r t i l i z e r D e v e l o p m e n t a n d C o n s u l t a t i o n O r g a n i z a t i o n , N e w D e l h i , I n d i a , f o r useful advice, a n d t o G . S a t y a k u m a r i , N i r m a l a K u m a r , K . V . H a n u m a n t h a R a o , the I n f o r m a t i o n Services staff, a n d the S o r g h u m a n d M i l l e t s I n f o r m a t i o n Center staff ( a l l I C R I S A T ) f o r t h e i r h e l p i n the e d i t i n g a n d t y p i n g o f these proceedings. 120 RA-00097 ICRISAT International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India ISBN 92-9066-111-9 Printed at ICRISAT Center ICR 85-0043
© Copyright 2026 Paperzz