Calculated liquid phase thermodynamic properties and liquid

NBSIR 73-338
CALCULATED LIQUID PHASE THERMODYNAMIC PROPERTIES AND
LIQUID-VAPOR EQUILIDRIA FOR
Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302
September 1973
Final Report
Prepared
for:
The National Aeronautics and Space Administration
Lewis Research Center
-Ciei^land, Ohio
/oo
(JLSU
/fl3
44135
1
NBSIR 73-338
CALCULATED LIQUID PHASE THERMODYNAMIC PROPERTIES AND
LIQUID-VAPOR EQUILIBRIA FOR
FLUORINE-OXYGEN (FLOX] MIXTURES
W.
M.
R.
J.
Parrish
Hiza
Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302
September 1973
Final
Report
Prepared
for:
The National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
U.S.
DEPARTMENT OF COMMERCE.
NATIONAL BUREAU OF STANDARDS
Frederick B. Dent, Secretary
Richard
W
Roberts Director
CONTENTS
1.
INTRODUCTION
i
2.
CALCULATION METHODS
3
3.
RESULTS
8
4.
ACKNOWLEDGMENTS
10
5.
REFERENCES
11
TABLES
13
^-
A-1
13
A-2
14
*B-1
21
*B-2
22
The thermodynamic properties given
thermochemical BTU = 1054. 35J.
iii
in
these tables are based on the
CALCULATED LIQUID PHASE THERMODYNAMIC PROPERTIES
AND LIQUID-VAPOR EQUILIBRIA
FOR FLUORINE-OXYGEN (FLOX) MIXTURES>;=
W. R, Parrish and M.
J,
Hiza
Cryogenics Division
National Bureau of Standards
Boulder, Colorado 80302
ABSTRACT
Liquid phase thermodynamic properties and liquid
vapor equilibria of fluorine-oxygen mixtures, for which no
experimental data exist, have been calculated. The results
are based on excess properties predicted from the SniderHerrington equations, with an adjusted combining rule, and
the corresponding data for the pure fluids. Mixtures con-
sidered are
of fluorine
0. 6,
0. 7,
from
55 to
0. 8,
0.
90K up
88, and 0. 9 weight fraction
to 70 x 10
Pa. In the com-
pressed liquid, molar volumes, enthalpy, entropy, and
constant pressure specific heat were determined. Along
the saturation boundary, coexistent vapor compositions
and solution vapor pressures were determined as well.
Corresponding properties of pure fluorine from experimental data have also been included. Results are tabulated
in both British and S.I. units.
Key Words: Calculated properties;
enthalpy; entropy;
mixtures; hard- sphere
model; liquid-vapor equilibria; specific heat; volume.
liquid; fluorine; fluorine-oxygen;
1.
INTRODUCTION
Liquid mixtures of fluorine and oxygen are potential candidates
for oxidizers in chemical rocket propulsion systems.
is
As such, there
a need for thermophysical properties of selected mixtures over a
range of temperatures and pressures, for which experimental data do
not exist.
It is
the
purpose of
this study to
provide the "best" calculated
mixture properties within the current state-of-the-art.
*This study was carried out at the National Bureau of Standards under
the sponsorship of the National Aeronautics and Space Administration.
To predict
liquid
the
thermodynamic properties and phase equilibria
mixtures reliably,
it is
some
essential at
of
point to introduce
appropriate numerical data on the components of the mixture and on the
nature of the unlike molecule interactions.
The latter information
is
generally obtained by evaluating some experimental data on the fluid
mixture, not necessarily on the property of interest,
inadequacies of the combining rules.
the
property of interest, preferably
to
account for
Calculations can then be
in
made on
regions where some data are
available to assess the degree to which the real mixture values are
reproduced.
Recent work on hard-sphere perturbation models has resulted
at least
in
one set of relatively simple equations for liquid mixtures, i.e.
,
which represent the correct tem-
the Snider-Herrington equations [1],
perature dependence of thermophysical excess properties.
Staveley
[2]
showed that results calculated from these equations compare much better
with newer data than with
some
of the data originally
This led Miller, Kidnay, and Hiza
equations
to the infinite dilution
system with marked success.
ment
to
dict
Henry's constants for the neon-krypton
the adjust-
account for the inadequacy of the combining rule for the energy
it
unnecessary
tion on the unlike
for a
apply the Snider-Herrington
In these latter calculations,
parameters was consistent with
making
[3] to
used by the authors.
number
the correlation of
to sacrifice
experimental data
molecule interactions.
of other
Hiza and Duncan
Miller
[5]
to obtain
[4],
informa-
also demonstrated that
systems, the deviation parameters needed
to
pre-
mixture properties with the Snider-Herrington equations are consis-
tent with those obtained
from independent gas phase
most part are properly represented
in
correlation.
2
data,
which for the
magnitude by the Hiza-Duncan
Fluorine -oxygen mixtures are particularly intriguing in the above
context, since appropriate data are not available to determine the inade-
quacies of the combining rules nor
to
determine the reliability
However, accurate data for
calculations.
and oxygen[7], are available.
If
the
of
any
pure fluids, fluorine
[6j
one can postulate something about the
nature of the unlike molecule interactions,
fluorine -oxygen mixture properties
from
it is
the
possible
pure
obtain liquid
to
properties data
fluid
and the excess properties determined with the Snider -Her ring ton equations.
Though
is
not available, previous experience with comparable oxygen systems
can be applied
sible
molecule
To model
it
the desired information for fluorine -oxygen interactions
to this
in
problem, since oxygen appears
to
be the respon-
exceptions encountered in the correlation effort
the fluorine -oxygen
must be assumed
system
[4].
after other simple oxygen systems,
that fluorine is well-behaved, and that the
mixtures
formed are purely physical solutions.
In this study, the
argon-oxygen system was used as
estimate an adjustment to the geometric
mean combining
the
model
to
rule for the
characteristic energy parameter of the fluorine -oxygen system.
Fluorine-
oxygen liquid mixtures containing 0,6, 0,7, 0.8, 0.88, and 0.9 weight
fraction of fluorine and pure fluorine
calculations
90K.
from
the saturation
were considered
boundary up
to 70
in the
x 10
5
present
Pa from
55 to
The properties determined were molar volume, enthalpy, entropy,
Along the saturation boundary, the
and constant pressure specific heat.
coexistent vapor phase compositions and solution vapor pressures were
determined as well,
2,
CALCULATION METHODS
The equations used
in these calculations are well
documented; thus,
only the specific logic and unique features of the present calculations are
included here.
3
The form
of the equation of state of
upon which the mixture equations
Pv/RT
where
^ = p /v
and
term represents
=
[(1
P is the
+
^
of Snider
+
f )/(l
-
Longuet-Higgins and
and Herrington are based
?f
]
(a/RTv)
-
1
hard- sphere volume, (—
6
NA
3
TT
r
).
[8],
is:
(1)
The second
a uniform attractive potential field.
Assuming constant "a" and "3" parameters implies
figurational
Widom
= 0.
that the con-
Recently, Blinowska, Herrington, and Staveley
[9]
have taken into account the fact that these parameters are not constant
over a range of temperatures.
To avoid evaluation
of
temperature and
density dependencies in the present calculations, the parameters "a" and
"P" were evaluated
interest.
from
the pure fluid properties at each
temperature
of
The "a" parameter was evaluated from the configurational
internal energy (the configurational internal energy of an ideal gas
zero); thus, "P", the hard-sphere
volume
is the
is
only unknown in equation
(1).
In applying their equations. Snider and
molar G
Herrington used the equi-
(excess Gibbs energy) at one temperature
of the cross
determine the value
Sacrificing mixture data in any
parameter, "a
the present calculations
to
was not possible.
form
in
Thus, a different scheme had
to be devised.
In correlating deviations
for the characteristic energy
from
the
parameters
equation was developed:
4
geometric mean combining rule
[4j,
the following empirical
where
component with
is the
=
(1
defined as:
(3)
characteristic potential energy parameter.
is
1
(2)
is
-kj^) (Uo, U^^)'/'
cipated that the deviation parameter k
comparing predictions
In
the subscript one denotes the
The parameter k^^
the larger value.
Uoi2
where Uq
eV and
ionization potential in
is the
I
^
It is
anti-
always positive.
of the deviation
parameter from equation
with observed values for oxygen systems specifically, equation
consistently over-predicts the magnitude of k
effective ionization potential for oxygen,
served value of 12.08 eV [10],
is
This suggests that an
.
J.
w
somewhat larger than
necessary
to
(2)
make
the ob-
the predictions for
oxygen systems consistent with experiment.
The ionization potential for fluorine
almost the same as that for argon,
that,
in the fluorine -oxygen
15. 79
is
15.70
15. 94
-
eV
-
15. 83
[12].
eV[ll],
If
one assumes
system, fluorine will be well-behaved and
oxygen can be blamed for the unusual behavior noted above, the argonoxygen system can be used as a model system for the fluorine -oxygen
system.
This
is
precisely the assumption
made
in the
present
calculations
In the
where "r"
combining rule used by Miller, Kidnay, and Hiza
is the
hard-sphere diameter, a k
of
0.015 was selected for
^
the fluorine
-oxygen system by examination of the equimolar G
argon-oxygen liquid-vapor equilibria data
[3]
E
from
[4],
Since the liquid-vapor equilibria data for argon-oxygen are well
represented by the two-suffix Margules equation [13], this framework
5
was used here
phase
to establish the liquid
total
vapor pressure and the
vapor composition of the fluorine-oxygen system.
excess Gibbs energy and the activity coefficient
and y ^, are related
to the liquid
of
sense, the
In this
each component,
phase mole fractions, x^ and x^,
with a single constant. A, by
=
A
x^ x^
RT
In
RT
In Y
(5)
2
A
=
(6)
A
^21
2
x^
=
(7)
The standard expression for the activity coefficient
RT
In
RT
In Y2 =
=
RT
In (y^ P/x^po^) + (B^^
RT
In
(y2P/x2 P02) +
can then be related to equations
unknowns,
i.e. the solution
mole fraction, y
where
22
(6)
v^^) (P
~ ^""2^
and
(7)
each component
Py^
p^^) +
-
"
^02^ +
to obtain
h
(8)
^^1^2
^"^^
two equations in two
vapor pressure, P, and the vapor phase
+y^
(y
-
of
= 1).
B
,
v
and Po
.
>
and the
corresponding terms with a subscript two, are the pure component
second virial coefficient, saturated liquid molar volume, and vapor pressure respectively.
is
6
J.
an excess interaction second virial coefficient
Ld
term defined by
'
=
6
12
2B
-
B
12
-
II
B
22
The second virial coefficients were calculated using
6
(10).
B (T/T
)
=
^
y]
V
-
C
C
c
1
i
=
(l-i)/4
(T/T
B.
(11)
)
l
are the reduced form of the fitted polynomial coefficients B
where B
i
of
i
pure fluorine second virial coefficients given by Prydz and Straty
The relationship between the two sets of coefficients
[6],
is
v(l-i)/4
B.
r
=
c
(12).
V
1
c
Since the reduced polynomial coefficients for pure oxygen are essentially
parameter corresponding
identical to those for fluorine, i,e„ two
states is satisfied, the values of
for fluorine
B.''~
were used.
To obtain
1
from equation
B
J.
^
mixing rules were used
the following
(11),
cl2
c
2
c2
cl
^
^'^^
'
and
T
T
c
equal
with a value of k
1
The value
^
=
cl2
to
(1
-
k
)
12
(T
T
clc2
of the constant
Snider-Herrington equations.
the
(14)
0.015.
A
in equations (5),
evaluated at each temperature from the equimolar
from
)1/^
G
(6),
E
and
(7)
was
calculated
from
the
All pure component parameters were taken
experimental data [6,7].
7
RESULTS
3.
The properties
were deterrained
of interest
temperature in both British and
liquid phase compositions at each
The properties along the saturation boundary and those
units.
compressed
liquid are given in
S.
units in tables
I.
The corresponding properties
ively.
B-1 and B-2.
of the
for the selected
All calculations
S.
I.
in the
A-1 and A-2, respect-
in British units are given in tables
were done on
a
molar basis, though some
properties are given on a weight basis for the convenience of the
Fluorine and oxygen molecular weights of
intended user.
respectively,
32, 00,
were used
38. 00
and
in these conversions.
The mixture molar volumes, enthalpies, and entropies are the
algebraic
sum
from
contribution.
M is
of the
pure component prop-
the excess property of the mixture cal-
the Snider -Herrington equations,
and the ideal mixing
This relationship is simply expressed as
Mm
where
mole fraction average
from experiment,
erties taken
culated
of the
=
M
X
1
+ x^M^ +
1
2
+ M^^®^^
(15)
'
2
^
the property of interest, the subscript
and the superscript E denotes excess.
The
m
denotes mixture,
last term,
the ideal mixing
contribution, is zero except for entropy and thus Gibbs energy, the ideal
entropy of mixing being -RI^x. In
the mixture,
it
was assumed
In calculating the heat capacity of
x..
that the excess heat capacity is zero.
The
pure fluorine properties for the compressed liquid listed here have been
corrected for a computational error in the original internal energy and
enthalpy values given in reference
correct as given„
were
Revised thermophysical properties tables for fluorine
have been prepared by G.
soon.
the saturated liquid properties
6;
The reference
Straty and L. A.
state for the pure
erties is the ideal gas at zero K.
8
Weber and
will be published
component thermodynamic prop-
is
It
worth noting that the saturated liquid mixture densities
(more correctly, specific weights), reported graphically by Schmidt
from "proportional interpolation"
from
significantly
the values
[14]
pure fluid properties, differ
of the
determined
in this study.
It is
clear that
Schmidt's values were determined by weight fraction averaging of the
weights per unit volume of the pure saturated liquids.
Thus, his mixture
values are not consistent with the traditional definition of an ideal liquid
mixture,
%
70 weight
mole fraction average
approximately
is
4% due
1.
to nonideality
same pure
method
15)
1.
of
4%
For
to the
0.
2.
a
2% lower than the corresponding value
4% due
to the difference in
two different methods
of
pure fluid properties
averaging, and
0.
considerations accounted for in the present study.
fluid properties
were
4% due
If
the
used, for this mixture, Schmidt's
averaging results in a negative excess molar volume (equation
of the ideal
excess volume
0.
4%
The validity
assessed in the
while the present calculations result in a positive
of the ideal.
of the calculated results given
final analysis by
two kinds of data
at a single
requirement.
T
-
here can only be
comparison with appropriate experi-
mental data, which are not available
this
molar volumes.
This difference can be accounted for in three
this study (Table B-1).
parts (approximately):
used,
of the
fluorine mixture at 140R, the saturation specific volume taken
from Schmidt
from
the
i. e.
at the
present time.
At a minimum,
x point for the liquid mixture can satisfy
These are precise values
of the solution
vapor pressure
and the saturated liquid excess molar volume for the equimolar liquid
mixture
at a single
temperatures
of the
temperature, preferably far removed from the critical
pure components.
An
additional piece of experimental
data which is desirable, but not absolutely necessary, is the vapor phase
composition in equilibrium with the equimolar liquid solution.
9
Without
this information,
it
is
hoped that these results are
a significant
raent over values of the subject properties obtained by simple
improve-
mole
fraction averaging of the pure fluid (molar) properties.
4.
ACKNOWLEDGMENTS
Support
of this study
by the National Aeronautics and Space
Administration
is gratefully
acknowledged.
G. C. Straty and L. A.
pure fluid properties
Weber
for providing
of interest.
10
The authors wish
to
thank
computer programs for the
REFERENCES
5.
1.
N. S. Snider and T.
J.
2.
Chem, Phys.
R. C. Miller, A.
J.
4.
M.
_53,
J.
3136 (1970).
Kidnay, and M.
4,
J.
Hiza
807 (1972).
Hiza and A. G. Duncan
J.
J. j_6,
733 (1970).
R. C. Miller
J.
6.
2248 (1967),
Chem. Thermodyn.
AIChE
5.
47,
L. A. K. Staveley
J,
3.
Chem. Phys,
M, Herrington
Chem. Phys.
55,
l6l3 (1971).
R. Prydz and G. C. Straty
Nat. Bur. Stand. Tech. Note 392 (October 1970).
7.
R. D.
McCarty and
L. A.
Weber
Nat. Bur. Stand. Tech. Note 384 (July 1971).
8.
H. C. Longuet-Higgins and B.
Mol. Phys.
9.
8,
Widom
549 (1964).
A. Blinowska, T, M. Herrington, and L. A. K. Staveley
Cryogenics 21, 85 (1973).
10.
K.
J.
11.
Watanabe
Chem. Phys.
26,
542 (1957).
A. W. Potts and W. C. Price
Trans. Faraday Soc. 67, 1242(1971).
12.
D.
W. Turner, C. Baker, A. D. Baker, and C. R. Brundle
Molecular Photoelectron Spectroscopy [John Wiley, London, 1970].
13.
J.
M. Prausnitz
Molecular Thermodynamics
Hall,
14.
Englewood
Cliffs,
of
New
Jersey, 1969], see pg. 194.
H. W. Schmidt
NASA SP-3037
Fluid-Phase Equilibria [Prentice
(1967).
11
TAB-E A-1.
TEMPERATURE
THERiOOYNA'^IC PROPERTIES OF LIQUID FL UCR IN' E-0
ON THE SaTJRATION POUNOARY
WT. FRACTION F2
PRESSURE
V0LU1E
ENTHALPY
X
YG EN
MIXTURES
ENTROPY
p
J/MOL-
MCL-K
3
lO^PA
LIQUID
0. 6000
0.70 00
55.0
0.
1.0000
60.0
0.
0.
0.
6000
7000
8000
0.8800
0.90 00
1.
65.0
7
0.0
75.0
0000
5.0
1. .
85
5
1.
.
31.
.
5?
22.7 U
22.be
22.^1
5
5
1.
1.
.
1.1.
5 I. .
51..
1.7
,
i
.9329
1.1000
0
0
0
. 0
.
0 38<*
0 0 38 7
0
.
OOi^O
1
726
C. 01299
0. 01367
0. 011.32
0.9212
0. 011.81
0
.
7521.
3.^132
0
.
8
0. 9333
1. 1000
.
C
1
55
3.81.
3.61
39
75. 58
63
^666.69
70.92
67.
51.
21..
21..
2 8
51.1 9.60
79. 95
0
•51.01
.21
le
78.98
3.15
23. IC
03996
569 2. 3
5575.2:
15
22.82
2
0
Tgi.?. 16
66
51.. 01
51.. If5 1. . 3 1
51.. 1*3
51.. 1.6
23.36
0.011.93
C
2
2
^935.
5935.6
0 2
1
5661.. 51.
-5661 . 32
-5661 .3?
71..
59
7 3. IC
7 1. 1.3
1 8
.
62
8 711.
0
38 00
90 00
J
.
^21
0. 01.552
0. 01. "^89
0. 01.769
2
3.39
23.5 3
2 3.25
^•3 81.. 7 9
-5381.. 50
5388.31
51
75. 36
75. 36
71.61.
0 . 10 326
0. 10853
0. 11 356
C . 11 71.1.
0. 11839
0 . 12 302
21.. 75
21.. 5 1
511.5.
81+.
01
83.
81.
79.
79.
75.
07
62
99
51.
51.
51.
51.
1.9
51.. 39
80
55.10
87. 81
86. 89
85. 1.7
8 3. 35
8 3. 36
79. 69
51.. 70
51*
5 1.
.
71.63
0.8130
1.0003
0.6000
0
0. 70 00
0.3 059
0.8000
3
.
.
71.32
3691.
0. 3800
0. 9000
1.00 00
0.920 3
0. 9332
0. 6000
0. 7000
0
0.8000
0.8800
1.3 030
.7333
Q.
0. 01.20 3
.
3.3670
0. 25511*
0. 26373
P. 26583
.
25.78
0.51308
0,53008
0 .
.
25.5 5
5.30
25.0 8
25.0 2
0.1.9116
2
.531.26
0. 551*73
0
0
.
86232
.
0
90 31.2
9003
72J8
7932
3625
0.9170
0. 9337
0.
3
1.0033
1.3 030
1.
0.
0.7151*
0.
0.
0.7896
1.0000
76
0. 1.6837
6000
0.7003
SOOO
8800
9000
21*.
7267
7971
1.3 030
6000
0.7000
25.2 5
2 5.01
21.1.01*
.361.6
1.0000
6000
7003
8003
0. 8800
0. 9000
1.0000
3.71
0.27612
9192
0.9130
3.9315
0. 8000
0. 8803
2
21*. 55
21*. 1.9
2 1..2 0
.
3.9323
1.3030
0
0
2i..2fc
21.. 05
21.. 0 0
0. 2321.6
0
3
23. 3C
01.1.0 1
0.3011*
0. 6003
0. 7000
0. 8000
0. 8803
0. 9000
0.
0.
0.
22.9'.
1.2
7 7
1.0
3
.
0.
95.0
5
69.
66.
66.
66.
62.
0.9357
1.3030
0.
90.0
70.86
•59'.7.
693 7.
3
0.
8
•596 3.^7
23.19
0
1.0000
0.0
? 3.1.
0. 00355
0. DC 372
6000
7003
8000
0. 90 00
8
0.00338
l't6
721*
>)
8000
9000
J/MOL
,756?
0.8800
0.
/10L
CM
.
53 8 9.
5106. 29
5105.65
-5107.68
•1.869.
1.81*8.
-1.832.
•1.825.
1.821..
73
26
93
87
88
1.825.
0 7
1.592, 60
1.569. 39
1.552, 15
91, 39
90, 1*9
1.51. 3
,
51.
87,
1*9
1.51.2
.
1
6
01
36
73
•1.51*0,
38
26.35
26.12
-1.31 3.
57
91..
21*.
1.238
. 1.1.
U269.
2 5.
3 C
1. 1*71.87
1. 51.39 9
26.97
26.73
360 5
0.9 161
1.61112
1. 66359
26.1.8
0.9300
1.67»^5i*
1.3 030
1
0
.
0. 91.315
0. 971.07
0
.
.
98168
01909
71. 0 31*
0,7101
2.37502
,
7860
.
3
2. 1.81.55
2. 5911.3
0
0
531.
3.9150
0.9291
1.3030
31.
01.
-1.259.
-1.257. 09
=6
16
55.1.6
.
32
.
51
. 7(>
.
35
55,
1ft
5 5
5 5
1.3
55
,
,
,
38
69
51., 96
5 5.20
5 5. i»r,
55, (^7
55. 72
5 6.
00
5 5.65
55.97
51^ . 31
5 6.59
6.67
7.03
5
-1*031.96
-1.001.. 77
9 7. 96
9 7. 11
56.53
5 6.96
95. 76
91.. 20
93. 72
90. 12
5 7. 76
5 7 . «6
1.
•37i*6, 61
1
2 6. 39
26.3 9
.
5
2 7, 6
2. 69601.
2. 79R1.9
.
5.21
86. 82
2 7,
2.67529
51.
5 5
5
1.253. 2C
26.2 7
26.2 1
25.91
'+
75
93. 86
92. 50
90. 93
51.. 50
5 1. . 7?
1.1.
3933.51
•3971 .1.3
3969.16
3962. 81
27, 1 6
26, 95
13
6 9. 0 9
8 7,
8 3,
25.8 7
2 5.65
25.6 0
J .
5 0
-^125.6?
^•112.01
7 7.
3717,20
3693, 57
•36 7 9, 7
•36 7 6, 9 6
3668.
1
fi
9 C.
10 1,03
10 0.20
98. 37
97. 33
9 6. 36
93. 28
5 7
5
.
1.0
8.33
5 7
17
5 7. 63
5 a
10
.
58
53
.
1.9
,
58
5 5.
09
ro
^ o vD J o tH
ir»
vC «> v£)
Lr>
N- J-
o o<o
CO
r»-
o ^ « LT
vp
LT oxy*
(vj
ir^ (\J
CO cvj
f\j
o ro fo
<i>
J-
^ N. o
^i^
rvj
{T* LfN
W IT O
^
<VJ fVJ Lr>
flo
r^N-NwOOeocT'O^CI^c)
(\j
Lr>
J- N.
J- J-
•••••
^CZiNto
oj r<5
fs-
o^^
^vOOON. ^ CO
T-t
cj
(\J C\l
•
J-
UJ
^
p*.
C3 f\j ir»
(Tvt) J-
0 1^
(T* *-»
LfMfN ijMf\
I
I
^r»-
I
I
<r>
J
I
«
I
I
I
I
I
I
I
I
t
I
I
I
I
CDCD
J"
vi? (T*
^COUNOJOfV.
^ J- J- '^ro
I
I
I
I
I
O N-
CO ITi
I
I
I
I
I
IT.
CM
I
I
I
I
11(11111
^ fT<rr ^ ^
r
CVj(VjfNjC\i(\J(\j(\JCVjC\J
(/)
CO
tlJ
o-"
a
I-
o
o
OOCJCDCDCDCjOO
ooooooooo
O
ir>
<X"X)
ITv
CJ
b"^
O LfM3
LT*
IT.
O OU
IJ>
*
CJ u"^
o
lT*
ocoooooo
LDLriOLr>oLP>t_'Lr>
ir*x>«x;f**-N-«otDCT'(T'
oc/
^O^fMN-
ooooooooo
oir*«-t<\j(\jJ-iri-3-oy
oiri(\jaoj-f^(\n£)eo
rof^oCMXtvDocTo
roN-icr^roroXj-oo
^sCOCvDJ-rOXoO)
flOU'T-tx-oooro^r';
CT'tVjLT'r-vDXOLO
j'«-*ir'0'^-"4j0'
o
LT-C^r^r^oj-r-o
u^t^^lr^Lf^u^
ru
^o
\C J-
'-t t\j
cr
OLf^O^roK-^J-f^o
r^r^ N-
CO®
<t)
ir«
<o
^
r*^ v£)
(O
(T*
o^o
o
J"
ow
r»w
oj
^
a>
r*-
oir>crfON-'»Hj-r^o
flO
oo
cr*
o^o
« ^poir»<oo(\j
^^ ^ n
(MiTi
r*^
<r*
fvj r-»
I
N.
ITi (T*
O J-
ofrr-j-ovCT-i/Nj
CO -1-4 J- N- a* OJ J(T»
O ^^
I r Pv r* r
J
-
i
uMjMrMrv JI
•
I
I
I
«
rsj
K.
•
•
•
I
L'^ L'^ L'>
•
I
I
•
I
I
I
I
I
I
I
I
I
•
t
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
J-
-J-
J-
I
I
I
^0
I
I
M ffM/N
J- LP* 00 ro OJ rn OD u3 CT*
ro N.
O vO N>
fNj (M
(>j fvj <\j (\j r>j pvj rvj r\j ro
oorDOooooo
ooooraoooo
ooooooooo
oooooooo
irioir>oif^ oufNOLf\
in (X) *X> N- N- CO 00 CT» <T»
LOO(iNOir»OiriOlf>
LTvOvON-r^oococrcr
LrNOLr(C3irvoirioir>
oir^ou^oifNOLT*
ro K.
(NJ
V
O ^ N.
i-troaOUM-T'O^vI^^*-
»
•
^
fNj(>jfvjfvjr<j
r\j
oj
14
<\j cvj (Vj oj
ro
J"
v£> X)
OJf\JfVJ(\jOjOdC\ifVJ
iX)*i3N.N.<X>eOCT*CT'
^OOO-^vDN-OOlOOJ
1
Dh
0
J- (T fO CT
0
• •
•
UMfN LfMT* to
X.
Lou^
If*
0
^
«-» <t> to CD CD
J^«ir»co-j-*x>«X)crLO
r«^-.-(^vDCrv£)LOOJ
ON- l/N
•^eo^o<y*f')v£)^£)OJ(y*
•
j-j-vOJ-LOLOlO^vO
j-j-ir^j-muMfMOvD
J-lTNJlOLOLOLOvf)
ir>u^Lr>
lOlO UM/> LOlO 10 10 LO
i/>u^ioi/* Loioiou^ir*
10
J-OOOOO^N-LOLOro
i^K)N-hs.lO^LO^^GO
ir»00>TOOv£)C\J^LO
• •
•
••••••••
r^irojj^j'^tXJOj
LO u^ 10
lO
LO.
">
>-
Q.
0
1
_J
0
H-
z.
UJ
V.
~3
7
•
0^
ro
>-
o
a.
-J
—I
f-l
c*
UJ
X
v.
0 J•••••
C3
<0 ITN 0^
J (C ro
vX)
j
LO LfN LO
u
1
*
1
r-tLT
IT
•
LT^
•
ap 1^
^^
1
1
w
(\j
f\J
^ CO OJ ^ 0
iT".
*H
^ <D ro ^
(\j
(\J
r\j
u^ CO
tJ^
("^
00
<
0
CO LO
f\l
1
1
1
to
vij
0^
^^lOi^-JCT^f^lOLO
CT^
^
C\J
^-t
CPo
CJ^
O^N.
1
1
1
1
1
^
^LOC3JO~'LOO'X'r'^
ixl
(\j (\i i^j fVi CVJ fVi
OOC3 OOO
CD
_y
0
1
^0 ^D
LO LO LO lO
Vi."*
1
f
1
1
•-tlO
^^
»Xj (7^
^ J ^- CP
•«•
•
ro fo
Oj C\J
lT*
^
J
CO OC Oj rO LO
CT^
J'(T'JN.co^N.^X)ao«t?
oj N»
POfO
LO LO LO LO
1
(\j
Ln
•••••
fo ^o
UJ
CO
CA
UJ
J"
J"
CJ^ v£)
o
J
^^
~y
iX)
N-
LO CVJ
'
vLJ
^
1
1
ro ro
t
1
* ^ u* J 0^
1
(NJ
O^LO
OJ «-*vO *HN. C7^
»Hf\jOj
OfO«JTJN-
^ 'O OJ vO D*
vD CT^ 1^ "X*
vCr^N-ooroa^o^O^f^
^ ro
(T>
L/^
UL
CT>
•••••
N. eD
•
00
vD 0 'o^^ 0
ir» CT* (T^ ^^
IX)
•
0
t^K. CO'OorC^O^T'
^ rO J
CNj
r*"'
0 N*
P')
..hN.cdo»holooj
^ 0 ^
0
lO T* CD
LO*1^r^vL)t><^'*>-T
cou^ ro ^3 r**- -.^ OJ 0^ 1
•,
10 LO LO lO
1
1
1
1
-J"
1
S -J ^
1
1
1
1
*H
0 vO 1^ rD
CD OJLO N- (T* IVi
CD N«
vl.
lO LO LO
J' t^t^
vC
i
_f
*
I
1
^
J
^^
l/^ f\.
1
1
1
1
1
1
oLO u*ro cc ro 0^
vON-
lO
(\J (Vj f\J C\j CVJ (\J
Oj
r\j (\j (Nj fvj
OJ
c\j
OJ Oj
PJOj
PwtNJOjfXJ
oj
r. f\ r\
rvjiNj
rwf\
/\i rPrv
t\jo,ojOjt\j
0
CD
0 0 0 CD ^D
CD LO
vO
r*^
LO CD U C5 L( ^
OC
0^ CT^
CJ
UJ
2:
C
V
UJ
Q.
LiJ
CO
\£>
If^
0 CD 0
••••••
•••
0 u c lo 0 LO
^
X
>—
^3C3a
CJ
CD
10
lo
LO v£J
— CC 'OO^ 0^
r
CD
0 CD CD 0 0 0
0 0 0 LO
0 CD CD CD
•*•••••*•
^DCD ^D CD^D
LO ^D LO
1/*^
IP*
LO
0 LO CD LO 0
U
N- CO CD 0^ 0^
lOi
\D
^^ CD
U*^ "-P
ff^
LO
0^ CT"
.
UJ
C3
U^
UJ
0^
CO
a
CD
CD
0
CD
CD
•
•
•
•
UJ
fV
CD
0
0
CD
•J
•
CD
0
0
0
<a
•
10
0.
Z
Ul
u.
>-
X
0
1
CT
0
LU
>^
0
0
^
-J
u.
u
1
•
2
0
0
•
•
•
•
0
n
>Q.
en
Q::
UJ
y—
>X)L'^C^^r-^OJJLO^-^o
J-LOv^-JLOLOLOvDN-
-J-J'vD^LOlOLO'XJS.
roj'LOJ'LOUMOvD*^
J'LOJ'LOLOIOLOvO
LOLO LOLT LOir lOLOLO
lololololtlololoio
lolololololololoio
LO LO LO LO LO- LO LO LO
ro QO
•S 'JDT^ CT^ CD N~
LO OjvX) \£ L/^O >J iX)
O^vjJ
^j? CT^
(j>^COf\J^JJCDntA)U>
-T^jrvjiX^U
viJ
v^f^-N.cocDo^(r*o^o^
»X)r*^t^<OcOO^(T'<T'0^
N-N-
CT^
U^
0
l\j CT^
N. LO
»D v£) (T <0
i:
LTv
UMT. LfMT
0
1
0
IT*
0^ CD IT* 0^
CD Oj
C0Lf^0'*O<0J' COCD^H
•
CT*
•
•
•
^ ^ ro
•
0^
J ^5
r**)
vX)
CD ro N- ^D
^X,^^^^ OOCOQ^CT'O^CD
Uj
0^
(\
^ 1^
tZD
c\j
^^^ ^
_J
CO
fT^
0
^ vO
3"
T"
v.
N- CD fNJ
3*^
fT"
n
0
a:
a:
UJ
z
LT-
UJ
1
UJ
LTMT^
t
1
Lf^ -J"
1
1
ro vO 0^ «H
vP
P
"
0^
^
^
^'^
^3 S' CD >^ \0
^
<c
^
NLOU^LOLO-U-J'^ro
1
1
1
•
1^
t
1
!
1
'
' '
1
1
-1
z:
^iocair^oto»-*N.r*^
T-
»—
-I
V
0 m
•
ro
0"^D *^N*
—1
>-
Lf^
N- ^0
^ 0 w Oj O' Oj
0 J" L ro ^ Oj fO J
-
'
WCO 0^
"5
>'*
® LO
N-
s-j'ajcCsL/Oj^ocoo^
Q.
'
U J LO
•
0.
0
N-ojioxiLoror^h^
r<s-ro'»-4.X)-3'cDa^'X)io
orr)(T»eDr^vX)Cr>vDo
C\j (J^ vX)
-5
u.
CO
UJ
IX^
• • •
•
fOro
T"
*
•
fM CVJ CM (VJ fvj
^
OJ U* tHvO *^ 0^ 0^
Oj ^cO^^OjlO^X)-^
t f (\J lO
C3 CVj J'
fT*vf**«^f^(inLOt\lOJiP
LOIOLOLO-T JJ"rOr^
1
1
1
1
1
1
1
^i^OvOLOO^fOJ-O
— 10 0 n> C3 0
LO LO LO LO w" -J -J r*) r*!
1
1
1
1
1
1
t
1
1
'r-)r\JLOCDCT»CDj'POvD
-^LO(7^_^*n^nMO«-*
(\j(\Jf\JfVjPMOJ(MOjM
ojojojf\j(\jrjoj(vj(\j
k
^
^
1
••••••••
<
•
J- UMX^ >^ i^N.
oj (\j f\j oj fvj oj fM rj ro
^ ^o CD ^ GO
^
<ID
N- -J »^
• •
LP'
1
0
CT^ ^—t
O'
LO LO
1
-OC3
1
LT*
1
LO LO
0^
J"
+
fvj
f
J ^ >J ^
1
•
OJOJ
1
1
1
LO
•••••••
rOf^'^JJ'LOlOvDN*
OJOjOJOjOjOjOjOJ
»
1
«I
UJ
0^
III
^
4
000*^00 o<^o
CkT
LOoIOOLOOLOOLO
UJ
Q.
T.
LT^
\Q
LO
*^ N" N.
B
0^ 0**
LO
LO
0 LO 0 LO CD LO ^D LO
^ ^ 00 oO CP
CT^
"^D
C300f3O00OO
LO C3 LO 0 LO ^DIO CD LO
LO ^0
N. *0 CO
0^
CD CD
CDO 0 0 rD 0
OJii)
<Xj tx* Cj*
UJ
^
UJ
0^
<X
(/)
(/)
UJ
a
a
0
0
ir-
0
0
O
0
0
0
•
•
CD
15
0
0
0
0
CD
•
0
o
v£)(\joDrj'^cDr«o*-4cD
(\jT-4®fvjf*-oo\r>ro
(Vj*-t<y^*Heoo<rroa^
cd (T
^iTivDiouMfN
^u^^Dl^^«^v^)vD^«.eo
^iTivOUMJ^vDvOvOf^
^mu>ifMr\<x>iriv£)v£>
iriir*UMmrvLri'^>^
CO to N.
ifN O"*
<1>
N. N. CO
a5(\iS-*-*iroo(\j»r*oo
N.
<0 eo OO CT» CT^ (T*
ts.
^X'^~^^aOcCT(T»0^(P
*
a*C\jOj
•
J
r*^
N.
-r-i
m (D 00
LT*
«P
tX- LTi
(J> iX>
f\J
CO Lf>
I
I
I
cr* vu
ro
o CO IT
<t)
f\j
cr tX)
JI
00
^
rj
I
I
I
I
I
I
I
I
1
^
w
cd
00
-.-4
m <d
CT^
<T
cr'Xia3.i)j'tj»r\j(\jo
m a? XI ^rou'' !CO'
ir> fvj
I
I
I
I
I
fO
I
I
"X)
'T-t
O.J
UMTN ITMTv J" JI
oj
^X)
^
^ vC
o ro IT CD C3 oj LO
o
fvj CT" irv
iTi
f*"* -r-l
iririiMT JI
o
J"
•••••
m vu
I
oc
«n <r oo
I
I
I
I
I
I
t
I
I
IT'OJO'r^ -J
•«-<«)
inur
j-^^t^
I
I
I
-t JI
I
I
I
I
LT
I
CO fvj r*". ro
cr
(/I
CO
UJ
fV'
a
r
O OOOCDCD
o
o
OOOC3CDOOOO
Li.
_l
t—
o
1
ror^ Co 0~
_J
3
li.
a.
O
o
r
•
•
•
•
LP
O
IT.
Lr>
vC
iX)
C3 IT*
OOOCDOOOOO
O O
O O LA CJ C O
LTi
IT*
^- <o a. cr^o^
LP"X^'X)t*-N-0OcO0'0^
r-iroQOLr^j-caLrvocr
(M ta t ro ro
j-c\jocoj(\joPOaO(C
«-tTHCD00sX^CjOJ-«H
^Lr'\X)ir»vD*x)»xt^-«
LP» lA lr^ LTMri ir* li>
-J'L^^vXlU^«X)^£;'X)vD^^
-j-iAir>irMr«X)*xt^i>r^
LALf>LALrLAir"X^«X^
lAinALTLAUMfMALA
Lnir-LAcrLniAirMrMr*
LAtrMriLfMj>Lr>tf>Lr»
<T»ro^roN- oocof*50o
ror^N.j-cor^'X)<OLA
co^\JN-r^^J^coooLf^co
iX)N.N-aOflOcoO^<T>(r»
CDOoh^^LrcOOOlACO
vD "XJ N. N- a;
a
ooooooooo
N.
m
•
*XlJ'XiX)»X''r-*'X)^
^
•••••••
•
•
LT
->
U.
o
(/>
liJ
a
o
l-l
t-
a:
I—
tu
Q.
z
O
UJ
1
xooflOj-GCcacj
-J
o
•
•
•
•
•
^ CO CO O^O^O^
N.
-1
OON-^-^J-tOWLToO
N- N- 03 CO OO O"
CT*
'
OC
a.
foin-TvO
>-
o
n
n
i:
<s
_i
X
z
<i
_l
o
n
o
•
•
J-
ror-lAcrrororo^cc
•
T-
r^kO CO thio
^»5r
cr
1>-
^^ vf^
• •
(Oif\ (T^ro J- JCJ LTt ^(\J J-
O
m coo
'X)
(T«
1
1
1
1
1
0 00 lA N. ^ ro
CT*
^ow^X'OJJ•^X)^^v^>OJ
if\
rriXT^mK-Lf^fMn^ir
UMALTlAj-J'-JToro
Ul
Lr>o^j0^coiX)X)roo«-t
I
I
I
I
I
t
I
I
I
"XJ
J"
vDCT^'HJ'tXXOOOOJ-
Lf^<Do^^l^^^-0•'-^
<riLrr-->oN -*o.irrH,,p
I
rvj <->
N.
.1-
t
I
i.r
LTLPl/MTvj-j'J-roro
1
I
I
I
I
I
I
I
I
I
I
•
I
I
I
I
I
I
I
I
I
I
I
I
i:
or
UJ
UJ
r
X
—
o
ro ITv Cnr\ LTV CO lA
O OJ ^ O 00 CO
roiX>o^^a3»H(t)c3
<T» CO
N*a)tJLAJ'Lr'anCT^OO
OOf^POJ-J-iAlA^^N-
^jrrtPOJ'j-uMAvD'^
OJ 00 Co OJ OJ 00 00 OJ oo
fVjOofMOOOOOJOJOjOj
fVOOOJOJOoOjOJOJ
ooooooooo
oooooooo
«X)
T-1
o
:>
><v
<\Jf>Of»>
J-^
fVJ
O
(VI
(M
t\J
00 fM <M OJ f\J
1
4
(u
tx
111
-1
a>
<t
y-
.
t«I
0^
oo<->oo
• •
•
•
O0O0O0C5OO
•
UJ
OLf>oiAoir>oLr>
u.
lX)'-D^^^<OaO(T'CT^
X
bJ
UJ
Of
lO
</)
UJ
QL
a.
«s
a.
in
o
o
o
o
U^
o
16
0^»D
^
f\j (\j
J-
«-4 ir>
o m ro cr
J" J" (vj
vC »X) K. 03
iTv ir» ir\ UN Lpi tr lf^ irv ir>
i/MTiru^mu^uNtTiLr*
®
fVJ
flo
rj J-
ir^ r*^
^^
ir*f\jv£)
if» flo
CO ifN
ro a^<Nj
«O O «O ^
ifi
\iN
CJ
W
C\j
J-
r.j tr*
J-
flO
CfNO^CX*
O
<JD t/N
^
LfN
Cr CO
LfNcjroi/NjTvjr^a>^
<x) ifN (\j CT^ I.D
coojmoh-^cNjtr^
UMjNjMTNj^j-J-mro
LfNlT'irMrNj-j-j-ror^
®ir»fNjcDf^j''^ajtX>
LTLMiM/Nj-jj-j-ror-^
v£)
•••••
•
UM/N IT. UN IT. IT' l/N LT
ITN
^
^.1-
iTi
(M
CDlf^ (T»f^
vOO
U
-J
vft
f\j
•-tj^v£3aoo(Mj-UNr^
ON \C
<0 LfN
irMAONlTN J- JI
I
I
I
I
J- LfN rn J- IT
I
cr iX)
I
I
rr>
I
o
I
I
I
I
I
I
I
CT'
I
I
(T* fT> r-
(
I
I
f^-.
LP
I
I
M
I
I
fVj
(D
irirr^fMcnr-ij-fvir
tX)
J- (TTO ON J"
(X"
r^^iTNoirNOvD^MflD
I
I
I
I
I
t
I
I
I
^
(\j
cy*-
LT- LTN -J-
-t
t
I
I
I
a
T
I
I
LTN
r^*-*
r
I
O
O
r\l(Nj(Ng(\j(\J(Nj
oooooo
OOOOCJOOOO
0000000C30
OOOOCDCDOOO
i/NOLr^oa~\o
LfNOLfNOLfNOLTCDLfN
lfNC::>LrC3irNCJLfNC3LrN
iTi
LP"X)kL' N- N.
©
CD liN tu(^
(_3
U"''
lX^^£'v£)^^N.<DCOON0^
ȣ'*X)N'N-CO(X>ONO*
ONvOvD^OCDLTNONCDrO
ON^
J- lT"
IT
LfMr»Lr>
LfN i/N
(NjrocNjj-^roroN-a^
UMfNLiMrir.liNtrNUMTN
LfNLfNtriLfNLT'irMr'trLXN
^LfNvIMTuX'i^XvDf^
IfNLrNlfNLTLfNlJNLfNlfMr'
oro x> <D
caO^
lfN-J'C\i-J'\£)rOvOf\jfNJ
«JD
OCDCDCDOOOO
li'.
LfNa:Lf^>^^Xl^^'X:^LfNUNi/NaMr'Lr»trNi/\
J-UM^^£Xf^tCUN
oN-o^o^ir><i)'-<N-ts>
a^tn
J
f\.
(D (\j -J
IT-
^wu^^JN^o^*o^o^w
v£; f-^ h*. fs^
<o
X ^^ ^- N-
^c^*-^-N-cl>a3aNONo^
o* CT^ cr
v£;N.h».N.t£)H>O^0^a^
fsHr^h-cotooNO^aN
to
UNUNO\DrdO^N-J'f\J
r^j-j-UN^oojf^tvj
«^lrN^T>^Jf^J*-'ON^^
CP(\j-j"r^crwrjj'UN
'^OtD<Hf^UN^-(T*'-'{\j
trN^*CD(NJJ•^X)<DO
UNiT'UNUNj'j'^mro
UNLf^UNu'NJ'-t-J'for^
IJ^U^U^ J- J" J"
flo
N- vC ro UN oj
f\j
.r'^K^^'^-^UN'^^^^^
^®
(^iX^
UMTNUNUN
I
I
I
I
JI
«XirNjuNa3N.«x>fNJvD*X)
ON
ro U^ vD
(\J UN
I
UNUNU^UNJ-J-J-MPO
I
I
I
I
I
I
I
I
I
I
J- UN ON UN UN
I
I
I
I
I
I
I
I
c3»-iUNoONwvj3r»*ro
^-.•-llr^ou^o^of^JfT^
K.
W UN O ^ O lA W «
I
I
I
I
I
I
N.N-aNJ'fMJ-<OP^C3
I
I
I
I
I
I
ro
I
I
roUNCTo^vi^cnN-fT*
cvjrorofo-^jUNvOvo
fsjrofOJ'j'iAUNvf)'^
(^J(^J^d^JfM
(MP^W-JirNLTN-J-O
T*vfN^c3frNU^(\jnNvf
fMpgfvjcvjfNjpjCurvjoj
CNjojrjfvjfVjfNjfNjcsjro
ooooo
fNJ f\J
C3
(M (NJ rNJ
fVJ fVJ (NJ
O O O C3 C3 C3 O O
UNOUNOUNOUNOUN
UJ
17
O O
UN
CDUN C3 UN
UN
^\£)NfcN.CO<t>ONON
ro
ro (o J- CT* *X) fvj
J"
00
J- J- fO IT
O
O
C3 vO CJ IT *^ fO
IT*
»H lf«
J" lA vX)
IT* ir>
LP
ITv
LP
(\J
iH
NfNJ
cr
•
Lr>
"Xi
vDf^
roooir •-fo
OO
CT* 1-4 k£>
<0
(\j
Cr C\J rj
C3
O vO C3
o^a-
J- j-oji-iu".--*
CT* PT)
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
f^J,t^-'-"-^•^^.r'^-
I
OOOOOCDOCDCJ
LO
o
LT*
CJ LP*
f\)or^
I
t
I
IT
o
-J-
w
vDcdJ-O^J'CT'J'ON.
I
I
ao fo
L'^
C3
tX*
CJ
«xj
J' iHco-xi
I
I
I
t
t
I
I
I
I
I
I
I
« rr o^u^
OCDCDC3CDCDCDOCD
o
^ J- »o T m^r^
mir fc CD fNj
CT i-t f\j J-
''^ ir>
ojiT'
I
OC LP
-J-
• •
flo
I
CO Ct>
in IT
u~
I
J- J-
f^o
O^
• •
C3 J-
v£) r*-
(T'h-xOi-tN. a5eO«0(\J
•
(\i vX)
UMr>
o CO oj ro
o u^ cr
O IT
lT* (_j ir^
OLi'^
O O O CJ
O
C-- LT'
C_>
CD C
t->
LT
CD L"»
Owj-fNjiTii-'-J'roaju^
J- cr
^- <K C3 J- J-
'-t
COirCD'HO^LPOf^-irO
«X)
O
Lf\ (T*
J3irOiHOfi0O-rH<0
oj ir>
IT* LT* lf\ Lf\
I
I
I
I
k£)
J-
I
I
-J-
J-
I
I
LrMr^LPLTj'j-jToro
JI
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
•
I
I
I
t
t
*
•
I
I
I
I
I
toaroT-iiHj-wpo
(NjrjcjojfVjrvjrNjro^J
fvjro(Mfvjf\jojojoj(\j
00C300
oo C5 o
LP C3 U^
18
O O O
ITi
LTv
IT*
rrj
C3 C3 ra C3
Pvj CT* N-
©
>£l
^ O vD
CT* vi) (\J
-r-*
ro^ir v£) iTN cu f*^ o
^ <r
•
•••••
•HCTLT
C\j
<\i
^-
f\j
1/
J
fr
X-fv* J'
O'tT'O
Nw <r
i.r
^h^C3 J-CD-t)
Jcr>o^«:»L'^T^'^
(\J
o w ci o r
co
J- r- 0>
O
(\J
I
I
I
-O
^ LT
I
n U> fVI (T'fVi fVj
J ir^
r^j'T
liMT
Lr^lr^Lr^lr^JJJ^*^^o
I
I
I
I
I
I
I
t
I
CO 00 vD
^
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
l^.C>•T*^-''^(^I^-^-.--t
vX?
ru «D IT
ooooooooo
ir»
I
O U^ CD IT U3 O
ITi
f\j (M a> cvj ro
J- ir^ ro
*j» CO oc ou
Co c\j
o
^
00C3C30O00O
L"^
C3OC3OCD00oa
LT.
CO CO a* GO
^ CO
G3
LT
CD IT. CJ
L''
O
Lf*
--4C0rO.r-«0J<\|(\Jc0J"
-r^ ^-
OO
j^ij\s.ir\K.^£>r»^N-oo
LT
ITUMfMT
^X\Ll^l/^Lf^U^Lf^L^^t^^U^
^
c-*
C\J fS-
^
(JN (J^
^
o (M ^
*>r»
*^
f\J
« 00 o>
v£)
*X)
(C
^
CT* lA
vC
o ^ ro J-
•
I
I
I
o
I
I
J"
I
I
<T«
I
I
^ 00
fo
^ (M
v£)^u^-^«-^-aooc<^>(J^
I
I
I
r *^ cr» ^^ l^
I
I
I
•
I
«X)
oo
(\j J"
<-» t r-
JV
^ oo <^ oo
O Lf>
vX)'^^^^-N.<»*>COO^
CT^
LT^
I
fO IT «)
I
o
f*)
r^-
IT* \£l
rr
•
CO
ir> fNj
O"*
CT« fO
vOvON-N-N-tOcOtOCT'
vC
fo i/N
I
ro
N. .H LT"
oofo J-
fv.'
I
o
(VJ
J-
"15
N.
<T»
I
I
I
I
I
I
t/^
00
^
r« V o
f
•
CT^ fs-
I
«
J-
^
I
I
I
I
I
I
I
C3 <X3 <T> ro oj t;^
I
I
I
o o 00
10"
00 oo
roK-wifsairNaiftOo
fMOjroro^^ifNirsvO
*\J
00 fvj fsj (\j rvj (\j
OC50000000
(\j
oj cj oj 00 oj oj oj oa
OC30C300000
lr^olf^c^lr^
19
00 00 fO f*^ J- J- IfM/N
00 00 00 OJ <VJ OJ fVJ 00 f\J
TftB.E B-1.
TEiPERflTURE
0.8000
80 03
8803
9000
0003
.7552
3.3139
0. 0577
0. 0606
0. 063'*
0. 0656
010 63
010 31.
013 C5
•72. 215
•70. 761
3 .
'i/^O
3.323 3
3 .9328
1.0000
.
751'*
3.9127
0
3
.
3
725
.9213
3.9338
1
. J
0
.
000
7(4 1*7
.3089
. 3708
3.9208
0 . 9336
1.9030
0
3
0
0.9039
7371
0
1.3 03
3
.
0
79'*5
3.3631
0. 8800
0. 9000
1. 0000
0.9171.
0. 6000
0. 7000
3
0 .7901.
0 .
0.
0.
0.
0.
0.
1.
6000
7003
8003
8803
9000
0003
0.01107
6i». 850
0. 010 78
0. 0101.7
0. 010 23
0. QIJ 17
0. 00986
l4°l4
2.
1609
0.
0.3'»51
-68 . 5i«3
•67. li^O
C
.5 17 8
0.36 39
C.3^83
-65. 820
0.1.636
C .1*659
Oil 32
0.
t}.7Z27
9009
8092
0.85 11
0. 8910
0.9216
0 . 9291
3.9655
0.
0.35
.3959
'»6
5. 0370
5. 261.6
0.8003
1. 0003
00996
00966
0
.
9309
1.9000
.7166
9609
0.9163
0.930 1
1.0000
7107
3
.
3
3
.7861.
1
.
.3596
3.9152
0 .9292
5.5225
5. 7067
5. 7519
0.01008
01157
0.0 1127
0. 0 10 96
0. 0 13 71
828
590
63. U58
•6it.
•6i».
63.
•62. 219
•
f 1 .
•61.
26
1*
0 31.
•57. 672
-57. 1.51
•56. i»0 e
•57. 397
•56. 126
•^1..
•51..
P39
053
01185
0.01151.
-53. 631.
-52.1.06
10 97
01091
0.010 58
0.
0.
0
19. 0933
0.
19.9913
8626
0. Oil 81.
0. Oil 52
0. 0 11 26
20.
21.
21.
22.
51.30
71C8
5372
32. 7573
31..27C7
35. 71.66
36. 901.0
37. 1901.
0
12 16
0.01120
0. 010
0.
0.
0.
0.
86
0121.9
012 17
Oil 81.
837
1.8. 61.8
-1.7. 51.1
•1.6. 71 3
•1.6. 522
•1.5. 600
•1.5.
1.1..
•1.3.
987
837
767
01158
0.01151
•1.2.975
•1.2. 78 7
1.1.903
701*9
7821.
911.3
52. 71.1.5
55. 11.28
57. 1.91.5
59. 31.67
9283
3OO0
59.8061
62.0800
0.
0.
0.
0.
0.
0.
21
0.3667
9
0.5339
0.3522
0.3511
.1.91 9
.1*59 5
0
.5i.itO
0.5257
0.520
6
0.351.9
C.3539
0.3707
0
0
.5521.
.51.7 3
0.511.2
0.6332
0.6 16
3
.5961.
0.5776
3
0
0.6576
0
0
.61.0
1.
.620
3
0.6013
0 .5960
0.5623
0
.680
0
0
.6631.
.61.3
8
0
0.6238
0.618
1.
0
.531.5
067
0.7030
0.6851.
•38. 977
•38. 131
0.3689
0. 3639
0.3588
0.607 3
0.5907
0.5710
1.0. 95 3
•39. 921
01187
01152
.31.59
C 31.89
•1.2.
39. 156
C
0.i»878
012 86
91.
l^j
0.35'^-.
.
01253
01220
Oil
C.36
511.9
0.1.969
0
0.5 72
0 .5 39
0. Oil 18
3563
.51.99
0
•50. 200
1.9. 21.0
38.60 38
03
0.i»290
.'60
0
-1.9.
0 3
0 . 35 ?6
0.3'4ei
0.31.7a
0.31,13
0
51. 2 59
50. i.ri.
3
3
0.5022
0.5797
0.563 3
58. 592
10 . 2958
10. 7897
11. 6369
11. 7281
12. 1755
C.'51i.
•61. 135
•59. 822
•53. 81.1
•52. 81.0
0.01123
C.35'=e,
0.'»322
0
0
0. 01061.
0. 010 32
0.
.'1495
59.91.8
5.9731
11.2663
.'>67 7
009
7296
.7990
.9656
.9135
. 9319
.
0. 6003
0.
010 02
0.
0.
0.3661
0.36G9
0
0
.'»27<*
0. 013 1.6
0. 0 10 1.0
0
0. 6000
0. 7003
0. 800D
0. 6300
0.
0.ite28
0
0
2. 1.760
2. 1*980
2. 5952
0.8803
0. 9003
1.0000
8000
8803
9003
0003
0.2805
0. 2828
0. 2937
PTL/L P/R
•68. 1 1
•66. ^30
0982
00976
3.9198
3.9328
1.3000
3
3
0.
0.
0.
1.
0. oioei*
0. 010 55
0. 010 26
.
Q.
P
8TU/LP/R
0
C. Oil C 1
0. 010 71
3
7000
2U61
2590
0.2712
0
ENTROPY
69. 3°1
68. 359
2.2912
2. 3966
60 00
.
0. 8000
.
0.0660
0. 0685
0.
0.
0.
0.
0.
0.
.3683
3
0.7003
0.
16 0.0
BTU/LB
0. 7000
0. 8000
0. 380]
0
170.0
FT^/LO
0.6000
9000
1.0003
160.0
PSIA
0
120.0
150.0
AOOR
7
6000
7003
6000
70CD
li«0.0
ENTHALPY
3
0. 8800
0. 9000
1. 0003
130.0
VOLJME
0. 6003
0. 7000
0. eooQ
0. 330Q
0. 9000
1. 0003
0.
0.
110.0
PRESSURE
WT. F^ftCTION F2
LIQUID
100.0
THERiOOYNAlIC PROPERTIES OF LIQUID FLUORINE-OXYGEN MIXTURES
ON THE SftTJRATION BOUNDftRY
0
.661. 7
0.61.53
0 .6 399
0.605 6
0
.
36'^7
0.3609
C .3569
0.3560
0.3511
0.371.0
0 . 36 qi.
0
.
36
1.
0.3611
C.3601
C.3555
C.38C9
0.3770
0.3731
0
.36 99
0.3691
0
.
36
2
3863
0.3826
0.3769
0.3759
0 . 3752
C.3715
0.
0.39 23
0
.
38 92
C.3857
0.3829
0.3822
0.3787
f\joN.c\joforoo
o
f"^ f*-
rvj
cu
<\JO(\JfSJ(T»POaOv£)N-
WO
O rH PO
C3 ^ Co (M UMf^ ro «)
flO
(\j<o-i'P^(tJocrLrJ'
PoroPO PO po POfi
POPOP^poropo'^poP*^
POPOPOP^POPOPOPO"^
ir\ CT^ N-
^w
ro ro ro po po
m ro Po
ro
fVJ flO
oocdc:>cjoc:jcdo
cr
(\j
P**
QO*-) j-r-
po
opo
rOf\jPO<T>J-OjLrLfMP
o
O^crN- PONC0^J-P>~CDP^. LfNCO
(\JP^
wvD«>p^Lr\^u>a>o
«*-4^N-OPOLrN.O
CO^^P^C3rOlX^P--C3
p»-^^p>-ci3f\JLr-p>^a^
^Od^oir(\j«Hir»ps.
(OtMPOJ-OjCTJ-J-Cr
P^i^owo-J'fvjcaiC
-±ir'Lr>ir>v£>vo«x)>x>p*^
crcvjfo
wcopo
^
<X)
••••»
•
Ou CO J- -r-ir^fO
I
o
I
I
I
I
I
N.K.vrPOPO^Wf\J
rov^K-i^POiOON.
C3 PO LTi
>X)
p^ J- po
^^^-c^P^lr^aorT^
(T'f^JLf^«WP^^D^^(T^
OJ OC -T
^flO-J'ON. poo^ir
I
I
I
P^
«-»
I
1
I
IT
I
0
1
I
I
I
I
I
P^
«-t ir\
o ^
CT^
I
I
I
vOrr'^vri'^rNjLrP^
^
t
CDOJpno^U^fNjrOJ-^
t
I
t
t
I
I
I
t
I
«
I
I
I
I
I
I
I
I
or\j-fP^POoo«-4N.
lO^*^ P^ LP <T>
ir"ric:>p^Lr'r%^j'
iOT'r:>P^Lr(r^>J''^
00*-*«-**H«HfNJ(\Jf\J
a
UJ
CO
«••••••«
OOO OOO
OOC30C50CDC3
oooooo
OOOOOCDOO
C300C30C5CDCDO
OOOOOOOCDCT
0000C3OCD0O
OOOOOOOOO
r^ooooooon
CToooaoooo
OOO OOOOOO
CDOOOOOOOCj
1/1
UJ
ry
a
a:
o
o
OOO OO C70 0 0
0^(\iP04'Lf*\DP^<t)
UJ
X
POOf^- OUO^ POlf\
O
(\j Cj (\J Ifi
.ON- f^N-K. P^NCT"
vOvON-S. P^
roPO rotors
POPOPOPOPOPOPO
ooooo
ooo oo oo
(DOOCT'N.PO
CO
OOO oo
^ J- O PO
P*-
J- UMT^ IT
•
OPO J-CMO^
•
•
•
•
vD
(X> (T*
^
kD-r-trorvjO^p^r^oDOj
\j:)f«^p«^p«^N^K-r>-(r^T'
^rs_N.N.N,p«»-ps..<oeo
POPOPOPOPOPOPOPOPO
Porop^poPOPOPOpTJPO
ropopororor^popopo
OOO oooooo
ooooooooo
OOOOoOOOO
h^vCv^JPOO^N-O-rSf^J
J- J- 1;^ po
K (M J-
(\i
C\J
N-opnouf\juiir\c\jo
O 0> O (M
o P^ 1^ 05
'X)
cr>
^
•••• ••••
•
(\j
^«X>eccoa^^«X'(r^
<T»<C!O^J"or*^CT*C<0
ou^^^^-L^^cJ-JN'^J'
flO«-(^N-OPOtf^COO
cD»-tJ-N.OPOirNP^O
oo-r-4JP^o^ou^P^(T»
OOOOOOOOO
ooooooooo
ooooooooo
K O* CT
o
flOfT^<T^or>•-«r-tv^'^Jl^
o
LPi^O^OOvD^PO^HfVj
J- ^^
oro^£^o^fVJl^^^^^7*o
f^oPOvD(T»f\jJ'vDeo
(T*
OO N- po N-
.X)
•
J 'T^
v£O*Hf\J(\JP0-J^P^
*X>
••••••
ooooo OO
p^rvjr^ir tr
3~
vX)
Ifs
CO oo^ CM (T^ pr> flo ir» po
CO org ca Ovi
00 *X) po
i£)N-P».-N*P^P^h^«^CT*
^ K. o
MflO^OP^PO^T'l^fVI
N- P^
fMv.CP^<T<OLr»OO.iaO
j-f^^oP^'Xxro.jj-up
v£)
o
o
T
I
I
I
I
I
I
PO
0^
kDcDOPOir*
^N-^N-UMfN
o n ^ w ^ *^
r^ w
w
oooooow o
rvj
ooooo
ooooo
»-*
I
I
I
vO «) O PO
oa ^
«-!
I
LT*
<p4
I
I
I
I
W^
CO
«>
.4 fvj r\j r>j
ooooooooo
ooooo OO
I
I
I
I
I
I
I
I
^ «3 O OJ LTMi) W J"
a o *4 *4 ^ w Oj fM
(
I
I
I
I
i,r o.
I
rr*
ir
LMT J- J
I
I
•
I
^
JI
O'*HP0Ps.r0(J^C0(T'Ln
fs^
f\j
vD«3oc\jir*p^orop**
00*-*W«-IW(\jf\JfVI
ooooooooo
oOo oooooo
ooooooooo
OOO O OOO OO
ooooooooo
UJ
ooooo
k«t
a:
UJ
a
00
(/I
UJ
Q.
01
22
a
\
o
CD
-1
ITv
«••••
•
oooooo
«>
flO
O
fO l/>
^
CT* ir«
O
-T
ITt
-fH
o o N.
<X>
r\j
to
col^<o^-^-<T*«oto^^
to fo to
to fo to to to ro to to fo
fO hO to to to to to to to
OOO OOOOOO
uoooooooo
OOOOOOCJOO
o^(^Jlr^ootoa^
tof*-^^£)flOtoro«Ho
fo to fo to
C30 OOOOOO
S-
*Hir»r-«o«0'*-(oooir
iTv fO
IS
a
o
a:
IT
a;
t-
z
UJ
z
o
o
l-l
Ul
>Q.
_l
•I
I
K
t-
o
111
Z
• • •
•
• •
N.-H J-tC
W J-
m
• • •
1
1
1
w to rj criTi
J-
^ ro O O <H to
J <0O0^\C^lfNt^ CT*
vDOtOvO«T>^tO\^«
v£)crroLri<o-^'oir*NUMA »p v£) vr>
J- J-
oooooooca
ooooooooo
OOOOCDOOOO
CDOO0OC3OO0
^M
UMVJ lfM3 »-l
in 0»
ifs ro a» r»> ir\ if\
lr^
vD
(NJ
vC ITi
ts.
^
oj
M
^ J- ro o ^
^ oo N. o
«0
>-i
J' r« CT
»-i
fvjvDCPr^^-CT'^^^r'T^
1
1
1
111111)1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
a
I
I
(T> tT"
(/I
o
^DoOJ^-^^J-GO-iHtO
CT^
« •
Z3
>-
m
ir»
vDotOvOeO^to^CflO
ir\
CD
_l
*H ro ro
oo
O to »D ^ J-
^X5
vD
oooo*H*H^(\j(\j
0O00^*H---|(\Jf\J
•
I
I
oMX
I
I
<\J
I
I
<J>
»H
oooooo
oooooo
oooooooo
oooooooo
ooooooooo
ooooooooo
ooooooooo
ooooooooo
ooooooooo
ooooooooo
oooooo
oo oooooo
ooooooooo
ooooooooo
ooooooooo
ooooooooo
o
ooooooooo
ooooooooo
o*-»(\jroj"u>vDr^«>
vCvnj'(rvD'->(\jo(r
fvjajmCTKUMn
I/)
tlJ
a
X
o
o
»H <M ro
UJ
a:
3
t/)
t-t
LU
Q.
J IT »c «
o.
o
o^
>
o
Cf
UJ
a.
o
z
Ll)
Oj
-1
•V
(CC
tM IP cr>
ooooooooo
f^f^ l*5fo
r*>
ooooo
ooooooo
ooooooooo
^ 05 vC CM
o ro vC
-J-
-J«Ot^(T*tOO^OOO
i^D
N-(\jtoroo«X)o
(^wto(\joir>otoir»
«x»
h^fMOf^N.
a.
to in
cr<r
j-ifNcof^^T-tjcvicr
r^CM-J l*50
ro ro fo
T-i
-J
CT>
cr a;
••••••
-wr^
fOO^(7* ;0
ooooooooo
vX)
^c\jojcr J' aD-rHto
oro vD CO »-4 to
N^OtO^XXT^'-'J'v^XD
(T* '-t
•
w
to
(\J
j-mirMTiT'
o/
^X)o^0v£)c0w^0v^)(0
ooooo
ooooooo
ooooooooo
ooooooooo
« to
f^m-J-f^orovp
^
0 ^ N. a> oo
^ to
u^
o
w^<o-.-i
000O00C3OO
a.
>-
»>
0
a-
-t
<I
o
o
!•
I
t—
z
Ul
iiJ
iLl
r
T-
•
m
_j
^
fT*
T
m
CO (J*
l^^
•
^
>1
1
1
1
1
I
I
liMT* ITi
•
I
•
•
v£) *T> fvj
I
I
f*- fT»
••••••••
•
1
I
I
I
I
I
I
^
tOlT'K.OCVJlf*®
J- CO
^^
(T«
to
o
ro^X)ofo^^c^r•Jlr^t^
o
ro n^ur r
ifln
J-
r-»
t^vOvDiriOLTJ-J'J'
-3"
Jin oiMhfOlflN-OPJ
(y^
r\j
\£> to ro
J" iTi
roirtN.oojif»«0'«HLri
I
I
I
I
I
1
I
•
I
o
I
vi)
I
inU^ IT- J•
I
I
I
-J"
J
I
I
^OU^^•O^^J^^wo^
oorsrsw^^-ifvjfvj
ll.
ooooo
ooooo
ooooooo
ooooooo
ooooraoono
«ooa^
O OOOOOOOO
ooooooooo
ooooo
ooooo
ooooooo
ooooooooo
OOOOOOOOO
ooooooooo
I
»^«-<(VJf^J
eaoo^^
^Wt-I^<-I
^ vT
PO to LT* <X) fO r-l
(NJ tv
toiAN.cr»(\jLr»a3'-tj'
_j
o
>
IM
-rH (T^ ir»
^^
wc\j-J-t--(\J<x)t»-<cto
OOOOOOOCJO
OOCDOOOOOO
1
m
UJ
ly
III
-1
re
1
>-
»<i
Of
lU
a.
ft'
t/)
»-<
(/)
t/1
Ui
Q.
a.
23
OOOOOOO oo
a:
O
»^
J
tfN
C3 J" fO J- \0
CP
^O
o
^
ro cr
cririT'
vO CO
QO ouN ro J-
ir»
CT»mcT^<x>j-oroJ-o
IJN
1^ vD
vfl vf*
O J-
«> CT* <D fM
N- oo
rororoforoporor^ro
fororo PO fOfOfO
ooooooooo
ooooooooo
OOOC^OOOCjO
CD
a
o
O.
N-
oaO'»-<P^LrLrioOoj-
cu
J"
^^^
CT^
J- oo
J-
K <r OJ J'
<t)
^ J- N- w J- vo
(OOjrorvjCTj-ccofNj
cr»
J- J- lIMJMi^ IT <D
^3 C3 C3
X
"Xl
ocnoooorDOcrt
oo(~>cr»ooooo
Lrj-fvj.rHfsj^croii>
(^JO^U"lC7^Lf^^-orJ^o
ol^^^X)'D^^L^f^ILi^L^^
Tir-^f^^ .-<!_r '^r^ CT'
CD
>-
a
CT*
to
^
»-t
«) IT-
r^»^^^^^^ou^N.v£)«o
CD
UJ
X
H-
_j
X.
_3
criT'
f-
ti3
vO u>
1
1
1
1
t
^ ro
r^o.
o ooo C3
v4 ^ ^
vD N.
r-to>j-jr^
I
I
I
LfN
rr
o
Uj
CO
(A
UJ
IV
a
X
o
o
>
C3 0C3
«-<
«> -J
w
tr
^^
^
ir>
1
O OC}
CD r
r
I
I
^ ^^ (T
I
I
t
I
I
I
I
I
I
f
I
I
t
t
I
I
I
t
f
I
I
I
j-or^rotT'XJrvjco
o IT
I
I
I
ir*
t
^ J- J- ro
I
I
I
I
o0^o(\iiX)«Hoor^(T^
r,
r^rvi
I
^^r'^'^J
J-
^^^^^^^^
«••••••
oooooooo
^^^ ^W
oooooooo
oooooooo
oooooooo o
•
-4 W ^
o
oooooooo
ooooooooo
OOr-iOOOOO'-a
00000^«H-HW
r-ioooooooo
ooooooooo
ooooooooo
ooooooooo
C>OOCjOOOOO
ooooo^*-*«Hri„
1 1
or
.=>
d
Of
OOOOC3C3
a
•
•••••
C30000CDC30
GOOOOC^OOO
Uj
T
a
a
o
CL
i/N
J
o
f>
po
ooooo
00
UJ
p>-*-tj'f^poo(i3(\jir\
-J^
po ro oj
i^vOiOi^ isDN-
roro poro ro
p*^
ro
ooooooo
O^OJ-POJ-vDoO^iX)
fv O *X)
P^
<X) vO
«
ro
I
*
I
O
a:
f-
O)
-1
_i
<i
»H
tCD
OOC30C3
ooooooo
I
CD
_l
ro
®
•
•
^
fvjcf>
•
<r
LT
PON-
po
^
OOOOOOOOO
oooooooo
-^irf^i^vDoP^POo
f^N-«-t(50P^OiX)(\J%X>
(rrojTOotrO'Csjj-
cof\jfO(\jcrir.a>'rHPo
ooooooooo
p^i
O P^
(.3
• •
ooooooooo
u
•
1
I
1
I
I
I
I
I
I
I
y
ooooo
t-
u
o ^
rft
^
I
-.f
-f
'
CjOOOOOOOO
C
I
•
inirMT J- J- po
^o^<r>f\jvOCT^fvj-*'
I
I
•
I
I
I
ru
00
o
N.
a ao 00*4 ^
«X)vD\i5u>if\irt-*'^po
t
I
I
J- J" ir«
I
I
« po
I
I
CT^ CO
I
I
om
I
I
I
I
I
I
I
I
I
<\jP0J-vD-r-«N,.lfN^X)O
OOJJ-^^CT'^J'flO^
oanOf-3^«-t«-i(\j
oCJ.yvDCT'WjT**.*-*
r>j
ooooooo
ooooooo
OOOOOOOOO
ooooooooo
ooooooooo
OOOOOOOOO
OOOOOOOOO
ooooooo
OOOOOOOOO
ooooooooo
OOOOOOOOO
OfM^N-CrrjlTi
rn
_i
—I
o
»
I
>X)
UMTN-OirXM^POCr
UJ
-1
.-f-
••••••••
^ lO
1
p^MJ-mm.j'
roiDo^«>-*-i^N-ff>
•
i-
UJ
jtp»-
v£)
J«^c>^-.po<oo^^«
'»-ll^^^^^^Jlr^
>-
Of
vi;;
o oo o o oo o o
>-
o
X
po PT J- u ^
vi.
PTf^POPOPororoPOPo
-T J- liMT^ IT* IT* -.D
z
u.
0>ro J-
n
r>
»o 1.0 ^- oc
»0 »^ >D
or
O
tjj
lf>
mromporopompopo
Q-
CL
pv.^U^POJP^v£)ir>PO
po
ro ro po po p^ po
(vj
«-t
r^oooo«-*W»-ifVJ
oooo<->oooo
UJ
at-
o:
ILI
a
ooooo
ooooo
O^fVJM J^^^^^
UJ
CL
24
(T^h- J- LT
LP*
IT
iTi
^
«^ vC
^o f*o
LTiLTLr
O N. M
fVJ
^-
v£) ^r* vfi
J-tr^vT
^vO'Xl'C'r^-
CO f\)
^ «D
00C->000CJC30
cc
CM LO
in
LTi
LT* (\J
N.
f-^
fVJ IT'
f\j
J-
X
Cr
J^
t/^
f^J vT!
(C
fOvDtJ^fMU^S.orvj
LT
CO i£> LT
(T*
o oj
(T*
h^L'^cocv;(\jwr^ coro
o J• •••••
-T o
Jer r^j
\£)p^O'vi>r\jcru^^cc>
(X5
vX) L/N LT" Lr>
t
I
I
f\'
I
I
^
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
n-*
car^ 00
00 O O OCD
-r*
cDrr*
o oc?o 00
I
•
••«••••
CDOOOOOOC?
t
I
I
I
I
I
I
I
vC
o
-T vP
rr- r\j
I
I
I
X vC
I
I
<ti --I
I
IT
I
I
r>u
I
--J
r
C3C3CDOOCDOOC3
C300CD00000
I
OCDOCD<r>C:.CJO'~>
ooooooooo
OOCDOC3CDOOC3
C3CDC300000CD
cDwcsjroJ'irXr^cc
(X>
c\i CT"
m
X^^ oO' o i^N-
J-'»HmOLO(\JOXO
u^N-^ooror-^XJ-
LTM^.oi^XvOin
LTLrxxXirtxr*--!)
LfMTV'.DXiDXXK.*
ooooooooo
ooooooooo
ro
000C30
00 LT^
X
W
o
LfNLT X
CT^
X ro ou CO ro o
X U> Co O rO IT
^j'a>j-^xcr(\j'^
OJ-LTCOOITCCOCNJ
^-
P^X^CVJLTP^OCNJJ"
roXO^fMU^f^CrcNj-J"
noXiJ*f\Jir>N-vPOjj-
J--J--TiriLf^LfvXXX
-J-^J-LrvLTL/MrXX
J- J- J-
0000000
OOOOOcJOOO
ooooooooo
ooooooooo
^ CO 001^ rvjco ^
^^ N- 00 X 0 1^ ^^
cr fVJ --I fu
f\J(TJ"XXfOfT«0^'^
•^^J'coC^'^-^Xl^
fvjX'Hi^O^njXtT^w
'^fO (T) CVJ
XwL^CT^^o^---^J^-
(\j L"^
X IT
(\j
LTi
ro
CT^
CM
iTi
J- J- J-
LT*
«MXo
^ ^ ^ ^^ ,f
X X X LT
I
© X J-
I
I
t
(\jc\jroX^
COO(\J J' PS.
X
XXX
I
I
I
ifN
t
irir*
•
•
csjfVjroXoNas
O
(\J -J-
-i"
I
X
N- CT* 00
0'»H--(
ooooo
moo
•J
ooo
^^
C3 *H W
o o o o 00 o
oooora
r->o
OOraOO
OOOOO
0000000
fT-O r-i
OO
ooooooooo
ir» t\j
oj CO
C\J
Oj
OO O o o
I
pr
0000000
X *r
CT^
^C^>•.-Hl^^oc^^v.x^-
r-( tr>
»-t
«3 (M
(NJ
XXXUMf^LTvJ'J'r"-)
I
I
I
I
I
I
i
I
I
W-r-IOOLT^OXU^h^OO
<OOCM-*'N-CrOOLrMT»
U>O«-*Xf\jfMX0^f^
X XX
I
I
wo
I
X O *0
C-«
ir*
I
V
I
XX
f*
U^U^ J- J" fO
I
U'^ ITS L'> L'N
I
J- CO J- OJ
I
I
IT)
CO
XXXiri^J-^-J-ro
I
I
I
I
I
I
I
I
I
<T»0^of\JX'WCrcrro
©OOO-J'XCTOOLr'flO
(T»(T^OOOO^-J«-<
OO'^'W-r-l'^WWW
ooooooooo
ooocaooooo
ooooooooo
OOOOOOOOO
OOOOOOOOO
00 0000000
ooooooooo
o^ojf^j'LrvXs.iO
50000000
J- *£>
cr
o a*
i£)
(T*
ro
<x)
^ o ro
vO
^ O N.
rooooo^roir>poco
vD
onr^
T-*o<T»*Ho^Do
uMnmu^«^vf>«^p^p^
I^IA
popo
ro
to
ropofopopof^fopor^
popop^pofnror^pop^
CJOOCJOOCDOO
CD
>-
q:
Q.
O
p^
fsj
tr
tt'
^
(\J
-J J"
J
^ ^ ro «) J-
O J- UN
(T* Ln
J-
CT« fVJ
\X)(j^oaoir>oPo^p^
ro
<o
fvj
p^
of^Jf^
fVI
LT* ITi
J- J-
-T
ir>
LT 'X>vC
LT
oooooorac^r:!
cr
z
>•
o
-I
*^
^
(J*0 vO
v4 vO
m
»H
X
<\i>X)ir>(T»i/NPOirMA(T*
f\JOirP^-COv£)»-l'.-tJ'
«X«-i»f^*~'ir\r^N-tP--.'3
X
'X>pr)0'^ut\j<Lir.r-*ff5
»^vDlr'U^l^^^J-^po
'jj
r"
1
1
1
t
1
t
<o^*o -J" ^
UJ
T
(Tt
^ J"
:>
t
v£) ir\
1,0 (7^
Z5
o
I
CT^
ro
>—
t/5
I
I
I
I
I
o JO O O O «H
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
1
T-t
CT^
oooo^ ^
I
I
I
I
I
I
I
t
^HoorvjiT'cra^J'vX)
(/MO *^ 03 c\j flof^ CO ro
N.
I
*-t
oocDrDofscDOo
oooo oo
OOC300C3CDC3
ocdoooocdoo
3c_>ooorDooo
CTOCDCDOOCTCJO
oooooo
oooooooo
OOOOOOOC3C:>
o oooooooo
OOOOOOOOO
Vt
UJ
n<
1x1
(V
Q.
a:
o
o
O.
UJ
^^^^^^
o.
3:
UJ
^
UJ
U3
<x
-X)
(/)
J-
t/l
00
UJ
a
a
a.
s.
O
t\jcja>oo J-
J- fvj JJ- tXJ
O
OJ
1
o
U.
-1
V
»CD
ll.
O
M
^'^
OOOOO
^
J- (VJ
(T»
PO
p^ \£) J- LA
CT»
J- ro
^
N. «o
«.0
—jwcoCTo
worof
(Nj>^v-4(r'Or«j(\J^O
OJ v£)
i/Mr\
p^mPOnoPOPOPOPorri
OOOOO OO
OOOOOOO OO
h-o^oN* r^jin
P»*-O^^OvD^U^cOG^
'JMrMrv vo o
po p^
po PT) ro
ifN
roPofT'Poropopopom
<
o n p^
V
m
••••••••
*
•
p^ fr
ooooooooo
OOCj CJCJOOOO
QC
liJ
M
1-
0.
o:
a:
o
a.
o
CL
-1
Mv£>0>(\J J'
z
3
J- J- J-UMTi
• • • • •
LU
tCD
Of
a
OOOOC3
_l
m
<I
-1
TT
X
t—
z
CI
l>J
o
•
• •
m
Of
UJ
i:
CD
T-
r>
_i
1
ooooooooo
OOOOOOOOO
oocr»rDooooo
^-fT*^^tf^'^'^<^JPOP^
p^p^LrrMfvt,f>K.m^
vDJ"CT*^WOOPOOj^
O^-taSPor^o^N-T"
P^
P»^..^-0^-P^r3i£>f\J'*^
P^ jf r>h- p^rTif-M^rt
v£) v£> \C
J- J- J- PO
OOOOO OO
^^IT>0 ^
UMTMA ^ vD
:>
fu.
(T»
O O^U"' O J-
J-J-J-UMTiLTNir-XivD
^O-r-i
j-mrofTOLT
aop*-fVvrl«>^*LO<ol^
vr^^DOj-OO'^-ILrf*^
• •
UMT
1
1
1
1
1
I
I
I
I
I
I
I
I
t
•
I
I
I
I
t
I
I
I
I
I
I
I
I
•
I
N.cr«-tPO^Da0'^-*'<O
OOOOOOO
o O
^ ®
o ^
^a
^ ^o W
OOo
ooooooooo
OOOOOOO no
OOOOOOO
ooooooooo
ooooooooo
t£\£>^^o^'^o
lf\ ITi
^* <T»
N.
^ J- 1^ m eg
OO^^^H
o
'
(NjiriCT^-r-U-P^-CT^THPO
ir»
1-
UJ
•
U^a^'oajLT^oroLTvC
PO GO P**- J-
^ J" J-
CTfT*
vOw^LTc-joroN-O^
00 PO
<X) CD
f^JU^a^^^^^a'^po
cj J- pN.
^=-y J- UMTS U^ U%
fSJ v£) (J^
>
0.
M
lfMf\
PO PO PO to PO PO PO
OOOOO
CT>
PO
«0
tX)
ro »D CT»
U^
ft*
-r-l
rT^n>ooor^«-*<^«-4
I
•
I
I
I
I
1
I
I
fT*fT»0O00^*^'-l
C30<r-(*-)«H^W<-(«H
OOOOOOOOO
OOOOOOOOO
-r-»
1
CO
UJ
a-
I.I
n
OOOOO
OOOOO
o»<f»jr»>^
-i
m
<
>-
a;
Ul
•r-4W«-*^«-l
£
UJ
<I
o
o
o
</)
t-t
•
</)
to
a.
UJ
UJ
0^
a
26
OOOOOOOOO
ir»
in
^
LO LfMH
Lf^
LT LT
vX)
X
ir iTir
IT
0000C30
LTOC CPS- J-CT"
IT
J- ~T
CT» (\J
<x>
w
J IT
LTi
OC3 CJO OO
OOOC30C3000
^ J' ^^ to f*^r^
lT*
CM CT
(T
vf vT) LT LT
JI
I
I
X
-T
o
^
LT- --J L*^
-r*
.
^
^
I
rT
I
I
1
vD.riTLr
I
t
I
I
I
I
I
I
I
i
I
(
I
t
I
I
I
I
I
I
I
I
I
*
I
I
o C3
CO CMCD
^
J-
T^r
(V
L!^
CT'CTCJ'ocnoo —*—
OOOC3C3C3000
on
O CDO
OC300C30C30
ooocaooCDoo
OOOCJOC3
OOOC3CDOOO
0C3OO0OO00
CD CD Cr
OCIJOC3CDCC300
UJ
a
o
o
l-t
o
OC3000rDC30C3
a:
u.
\
•
_l
u.
3
a.
o
O
1oc
Ul
a
o
>-
or
a:
t—
_l
a
o
z
w
no ^^ CO
O-rHlT'
o^irv J-
O 0^
J J- N-
f\J
J-
\
>—
GC
b.
CO
Ul
HI
cc
_1
ooooo
\
c
3
1—
irCTCTT^
J-
^ -J W 0>
U".
OD
J- 03
CO '-"^
J- J- J- LP U>
•
• •
•
•
ooooo
rr>
LA
cDO^^O'-Do^vDaoO^oj
«H^N-oocDr^r^CiCT'
CJ^(^JLl^tO*-^^0\X)(^>o
CTTSJLO
oooooooco
CnnOCDCDCZ)OCDC3
c\-
CJ^CSJ LT'
PO J- J- J- ITN
ir» L'^ ir*
ooo oooooo
0C300000
(O
IT
CDOO OOOO
^ wrOLT CO CD
CE
a.
>f >
a
-1
<i
X
z
?
>-
1—
o
o
U)
Of
UJ
T
t-
Ul
JI
orTify^K. CO
tn
_i
-1
o
•
y-
(M
u.
iT'Oiroj-crfsjvrtT^
•
^X
1
1
1
1
1
I
I
fV"^ LT
(T
-JI
i
I
I
fT*
'
t'
'
1
I
OOO'H.-l
OOOOO
ooooo
I
I
I
I
I
J- JI
I
^ ro
I
I
tr^
I
I
I
I
CT^
C3
\S\^
C\J
O O 63 O
000C3000
(Ti
X IT OMT
J"
v£
V
^ w ®
>^
<X
C3
-J ^£
m
J
fv
(\j
V
iro
C5
rr* fT^ -r*
cr ro 00
LT
« ^••••••
rt>
r-iac3raaao
I
I
(TtLTi (NJ
•J^ncocaroLn-D^LT
fT*
I
I
I
I
I
I
I
I
I
I
I
I
N.
«oo
ocsooooaoa
C300000000
ooraooaoca o
oooooocaoo
ooooooooo
«
CD
UJ
ooooo
ooooo
OWtM'*'^
III
m
<r
*-
or
UJ
ooooooooo
a.
£
UJ
1—
o
a
o
UJ
0£
•
(/I
l/l
10
UJ
0.
QC
a.
27
FORM NBS-114A
(«-7l)
DEPT. OF COMM.
U.S.
1.
BIBLIOGRAPHIC DATA
PUBLICATION OR REPORT NO.
AnaCTr)
n
i
o
IN ijoiK IJ-JJO
-i
SYi££j
2.
Gov't Accession
^
i
Calculated
Liquid Phase Thermodynamic
Properties and Liquid-Vapor Equilibria for Fluorine -Oxygen
4.
TITLE
iiiLt AINU
AND SUBTITLE
suDiiiLt
i
i
.
9.
AUTHOR(S)
Recipient's Accession No.
5.
Publication Date
September 1973
t.Pctlotmiag Organization Code
(FLOX) Mixtures
7.
3.
-3
n Parrish
u and
j i.^
W. R.
M.
-,,r
•
-r
J.
8.
ttHiza
PERFORMING ORGANIZATION NAME AND ADDRESS
NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
Boulder, Colorado
12. Sponsoring Organization
,
SUPPLEMENTARY NOTES
16.
ABSTRACT
Project/Task/Work Unit No.
11.
Contract/Grant No.
2750547
Purchase Req.C-32369--C
80302
13.
Center
Type of Report & Period
Covered Final
Nov
21000 Brookpark Rd.
Cleveland, Ohio 44135
15.
10.
Boulder Laboratories
Name and Address
NASA Lewis Research
Performing Organization
14.
(A 200-word or less factual summary of most significant information.
bibliography or literature survey, mention it here.)
If
'72 -- Sept '73
%>onsoring Agency Code
document includes
a significant
Liquid phase thermodynamic properties and liquid-vapor equilibria of fluorine-
oxygen mixtures, for which no experimental data exist, have been calculated.
results are based on excess properties predicted
tions, with an adjusted
55 to 90
K
up
the Snider
-He rrington equa-
combining rule, and the corresponding data for the pure fluids.
Mixtures considered are
from
from
The
to 70
0
.
6
0.7, 0.8, 0.88, and 0. 9 weight fraction of fluorine
,
x 10
5
Pa.
In the
compressed
liquid,
molar volumes,
enthalpy, entropy, and constant pressure specific heat were determined.
Along the
saturation boundary, coexistent vapor compositions and solution vapor pressures
were determined as well.
Corresponding properties
data have also been included.
17.
KEY WORDS
Results are tabulated
(Alphabetical order, separated by semicolons)
of
pure fluorine from experimentkl
in both British and S.I. units.
Calculated thermophysical properties;
compressed
18.
liquid phase, fluorine -oxygen mixtures, hard-sphere model;
liquid-vapor equilibria.
21. NO. OF PAGES
19. SECURITY CLASS
AVAILABILITY STATEMENT
(THIS REPORT)
[3n UNLIMITED.
I
I
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE
TO NTIS.
UNCLASSIFIED
20.
SECURITY CLASS
22. Price
(THIS PAGE)
UNCLASSIFIED
USCOMM-DC 66244-P7I
USCOMH
tRl.