JNS 5 (2015) 175-181 Synthesis Magnesium Hydroxide Nanoparticles and Cellulose AcetateMg(OH)2-MWCNT Nanocomposite M. Ghorbanali a, A. Mohammadi b, R. Jalajerdi c* Faculty of Graphic, Higher Education Institute of Art Allameh Bahrololoom, Boroujerd, Iran a b c Advertising Engineering BRS Academy, New York, USA Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran Article history: Received 11/04/2015 Accepted 19/05/2015 Published online 01/06/2015 Abstract Mg(OH)2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant) and cetyl tri-methyl ammonium bromide (CTAB as Keywords: Nanoparticles Nanocomposite Thermal Stability Cellulose Acetate cationic surfactant) on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was *Corresponding author: E-mail address:. [email protected] Phone: +98 863256414 Fax: +98 863256414 acetate (CA) matrix was studied using thermo-gravimetric analysis (TGA). Nanostructures were characterized by X-ray diffraction organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH)2 nanoparticles and modified multi wall carbon nano tubes (MWCNT) on the thermal stability of the cellulose (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH)2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH)2 and release of water which dilutes combustible gases. 2015 JNS All rights reserved 1. Introduction Applying of halogen-free flame retardants is widespread due to the increasing concern about the health and environmental risks [1-3]. One of the most commonly used mineral flame retardants is energy. Moreover, it releases non-flammable water which dilutes highly flammable gases. Magnesium hydroxide is used as halogen-free flame-retardant for polymers. Mg(OH)2 can act also as a reinforcing agent, flame retardant and smoke suppressant magnesium hydroxide. As the temperature rises magnesium hydroxide shows an endothermic additive with low or zero emissions of toxic or hazardous substances [1–5]. The main advantages decomposes (1.356 kJ/g) around 330◦C and absorbs of polymeric materials over many metal compounds 176 R. Jalajerdi et al. / JNS 5(2015) 175-181 are high toughness, corrosion resistance, low the name of Nanocyl’s innovative Multiwall Carbon density and thermal insulation. Improvement of the flame retardancy and thermal stability of polymers Nanotubes. Scanning electron microscopy (SEM) images were is a major challenge for extending their use for most applications. One of the main drawback of obtained using a LEO instrument (Model 1455VP). Prior to taking images, the samples were coated by magnesium hydroxide is that for effective flame retardancy tests high loading levels are required to a very thin layer of Au (BAL-TEC SCD 005 sputter coater) to make the sample surface conducting achieve the appropriate fire retardancy. Increasing the loading of inorganic metal hydroxides will obtain better contrast and prevent charge accumulation. In UL-94 a bar shape specimen of result in a significant decrease in physical properties. The higher level of flame retardancy of plastic 127 × 12.7 × 1.6 mm is positioned vertically and held from the top. A Bunsen burner flame is nanoparticles is due to their bigger surface to volume fractions which let them disperse into the applied to the specimen twice (10 s each). X-ray diffraction (XRD) patterns were recorded by a polymeric matrix homogeneously, and hence leads to formation of a compact char during the Philips X-ray diffractometer using Ni-filtered CuKα radiation. For preparation of nanocomposite, a combustion [6-11]. Cellulose acetate has been used in a wide range of applications due to its particular multi-wave ultrasonic generator (Bandeline MS 73) equipped with a converter/transducer and titanium advantages. It is a biodegradable polymer with applications in photographic, paper coating, oscillator operating at 20 kHz with a maximum power output of 100 W was used for the ultrasonic packaging films and adhesives. The physical and chemical properties of nanoparticles are greatly irradiation. The effect of nanostructure on flame retardant properties has been considered using UL- influenced by their shape and size distribution as well as their agglomerated state and dispersion 94 test. In UL-94 a bar shape specimen of plastic 127 × 12.7 × 1.6 mm is positioned vertically and property, which are strongly related to the preparation process [12-17].. In this work a facile held from the top. A Bunsen burner flame is applied to the specimen twice (10 s each). A V-0 and rapid method for preparation of magnesium hydroxide was used. Magnesium hydroxide and classification is given to material that is extinguished in less than 10 s after any flame modified carbon nano tubes were then added to the cellulose acetate in order to increase the thermal application, drips of particles allowed as long as they are not inflamed. A V-1 classification is stability and flame retardancy. received by a sample with maximum combustion time < 30 s, drips of particles allowed as long as 2 Experimental they are not inflamed. The sample is classified V-2 if it satisfies the combustion time criteria of V-1, 2.1 Materials and characterization Mg(NO3)2 6H2O, ammonia, ethylene glycol, sodium but flaming drips are allowed. Materials are ranked dodecyl sulfonate (SDS), cetyl tri-methyl ammonium bromide (CTAB) were purchased from as N.C. in UL-94 tests when the maximum total flaming time is above 50 s. The sample is classified Merck and cellulose acetate (CA) from SigmaAldrich. All the chemicals were used as received HB when slow burning on a horizontal specimen; burning rate < 76 mm/min [14-17]. without further purifications. Nanocyl™ NC 7000 is 177 R. Jalajerdi et al. / JNS 5(2015) 175-181 2.2. Synthesis of Mg(OH)2 nanoparticles 1g Mg(NO3)2 6H2O and 0.2 g of surfactant were dissolved in ethylene glycol. 20 mL of ammonia (12 M), was slowly added into the solution under microwave irradiation at 750 W (5 minutes, 40s on : 60s off). The white precipitate was centrifuged and washed with distilled water to removing the surfactant, and later dried at 70°C for 24h in a vacuum dryer. These stages carried out for four surfactant materials as synergetic additives including CTAB and SDS. Fig. 2. XRD pattern of Mg(OH)2 nanoparticles 2.3. Synthesis of CA-Mg(OH)2 nanocomposite 4 g of CA was dissolved in 15 mL of acetone and For preparation of samples for UL-94 test after then Mg(OH)2 (0.8 g) and MWCNT (0.2) were stirring, the product was casted on a template with dispersed in 5 mL of acetone with ultrasonic waves dimension 127 × 12.7 mm and after about 48 h of (60W, 30 min). The dispersion of Mg(OH)2 was then solvent evaporation; the nanocomposite was placed added slowly to the polymer solution. The solution in the vacuum oven for another 6 h for removal of was mixed under stirring for 6 h. residual traces of water. The final sheets for the test are 127 × 12.7 × 1.6 mm in dimension (stay at oven 90 °C for 48 h) (Fig. 1). 3. Results and discussion XRD pattern of Mg(OH)2 nanoparticles is shown in Fig. 2. It is indexed as a pure hexagonal structure with suitable agreement to literature value (reference peaks are also depicted in the XRD pattern, JCPDS card no. 78-0316, Space group: P3m1). Fig. 1. Preparation of CA-Mg(OH)2 nanocomposite 178 Fig. 3. SEM images of nanoparticles synthesized by SDS By applying sodium dodecyl sulfonate (SDS as an anionic surfactant, Fig. 3) nanoparticles with mediocre size of 30 nm were synthesized. R. Jalajerdi et al. / JNS 5(2015) 175-181 Fig. 4. SEM images of Mg(OH)2 nanoparticles obtained by CTAB SEM images of Mg(OH)2 synthesized by different surfactants cationic and anionic are shown in Fig. 34 respectively. By using cetyl tri-methyl ammonium bromide (CTAB: as a cationic surfactant) nanoparticles with average diameter of 15 nm were obtained (Fig. 4). Surfactant as a capping agent lead R. Jalajerdi et al. / JNS 5(2015) 175-181 179 to nucleation step becomes predominant compare to TGA graphs of pure CA and CA-MWCNT- growth stage. SEM images of modified MWCNTs are shown in Mg(OH)2 nanocomposite are illustrated in Fig. 6a and 6b respectively. Regarding to curves thermal Fig 5 that confirm diameter of carbon nanotubes are less than 100 nm. Modified CNT were prepared by decomposition of CA-MWCNT-Mg(OH)2 shifts towards higher temperature in presence of metal carboxylation of nanotubes by applying sulfuric acid and nitric acid simultaneously. hydroxide and onset degradation temperature was increased in compare with pure polymer. The enhancement of thermal stability of nanocomposites is because of endothermic decomposition of Mg(OH)2 that absorbs energy. It simultaneously releases water which dilutes combustible gases. Dispersed nano-tubes and Mg(OH)2 have also a obstruction effect to decrease product volatilization and thermal transport among decomposition of the polymer. Adsorption of polymer chains onto the surface of Mg(OH)2 nanoparticles and nano tubes results in a confinement of the segmental motions and suppress chain-transfer reactions [1-3]. Because of the presence of magnesium hydroxide (endothermic decomposition and absorbs energy) differential thermal analysis of the nanocomposite shows endothermic peaks [1]. Fig. 5. SEM images of MWCNT Fig. 6. TGA graphs of (a) pure CA (b) CA-MWCNTMg(OH)2 nanocomposite R. Jalajerdi et al. / JNS 5(2015) 175-181 180 Mg(OH)2 nanostructures were prepared by a rapid In CA-MWCNT-Mg(OH)2, nanoparticles and nanotubes have been appropriately distributed in microwave method. The effect of various surfactants such as SDS and CTAB on the CA matrix and because of hydrogen bonds between them a suitable barrier layer of nanoparticles is morphology nanostructures formed. nanoparticles and modified MWCNT were then added to cellulose acetate matrix. The influence of of was magnesium investigated. hydroxide Mg(OH)2 the metal hydroxide on the thermal properties of CA was studied using thermo-gravimetric analysis. Thermal decomposition of the CA nanocomposite shift towards higher temperature in the presence of Mg(OH)2 nanoparticles. The increase in flame retardancy of the nanocomposites is due to endothermic decomposition of Mg(OH)2 and release of water which dilutes combustible gases. Mg(OH)2 and MWCNT have also obstruction effect to decrease the polymer volatilization and heat transport during decomposition of the polymer. Fig. 7. FT-IR of Mg(OH)2 nanoparticles References UL-94 analysis for CA and CA-Mg(OH)2 nanocomposites are HB and V-0 respectively. The [1] M. Yousefi, J Nano Struc. 4, (2014) 383-388 [2] D. Ghanbari, M. Salavati-Niasari M. Sabet. outcomes show that the Mg(OH)2 nanostructure can enhance the flame retardant property of the CA Composites: Part B 45 (2013) 550–555. [3] AB. Morgan, CA. Wilkie, Flame retardant polymer matrix. In the presence of flame nanoparticles make nanocomposite. John Wiley & Sons; New Jersey 2007. [4] D. Ghanbari, M. Salavati-Niasari, M. Sabet, J Clust a barrier, this obstacle slows evaporation of polymeric segments and prevents oxygen and flame reaching to the protected sample. FT-IR spectrum of the Mg(OH)2 is depicted in Fig. 7; absorption at 3410 cm-1 is related to O-H bond of adsorbed water. Peak at 3668 cm-1 is attributed to the O–H bond stretching vibration in the crystal structure. Absorption at around 419 cm-1 is assigned to the Mg–O stretching vibration in Mg(OH)2 [1]. Sci. 23 (2012) 1081-1095. [5] H.R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, S. Gholamrezaei, J Nano Struc. 4 (2014) 99-104 [6] H.R. Momenian, S. Gholamrezaei, M. SalavatiNiasari, B. Pedram , F. Mozaffar , D. Ghanbari, J Clust Sci 24 (2013) 1031-1042 [7] D. Ghanbari, M. Salavati-Niasari J Indus Eng Chem. 24 (2015) 284-292. 4. Conclusion [8]. C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont, R. Cloots, J. Cryst. Growth 249 (2003) 321–330. R. Jalajerdi et al. / JNS 5(2015) 175-181 [9]. F. Laoutid, L. Bonnaud, M. Alexandre, J. LopezCuesta, Ph Dubois, Mater. Sci. Eng. R 63 (2009) 100– 125. [10]. C. S. Choi, B. J. Park, and H. J. Choi, Diam. Relat. Mater. 16 (2007) 1170–1173. [11]. W. J. Grigsby, C. J. Ferguson, R. A. Franich, G. T. Russell, Int. J. Adhes. Adhes. 25 (2005) 127–137. [12]. H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253 (2007) 8495–8499. [13]. J. Kuljanin, M. I. Comor, V. Djokovic, and J. M. Nedeljkovic, Mater. Chem. Phys. 95 (2006) 67–71. [14] D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J Nano Struc. 4, (2014) 227-232 [15] P. Jamshidi, D. Ghanbari, M. Salavati-Niasari, J Indus Eng Chem, 20 (2014) 3507-3512. [16] F. Gholamian, M. Salavati-Niasari, D. Ghanbari, M. Sabet, J Clust Sci 24 (2013) 73–84. [17] L. Nejati-Moghadam, D. Ghanbari, M. SalavatiNiasari, A. Esmaeili-Bafghi-Karimabad, S. Gholamrezaei, J. Mater. Sci. Mater. Electron. (2015, in press). doi:10.1007/s10854-015-3185-y 181
© Copyright 2026 Paperzz