Tuskegee University Tuskegee Scholarly Publications College of Agriculture, Environment and Nutrition Sciences Graduate Theses and Dissertations Spring 5-9-2015 Genetic Diversity of Miscanthus in the US Naturalized Populations Based on Molecular Marker Suma Basak Tuskegee University Follow this and additional works at: http://tuspubs.tuskegee.edu/caens_etds Part of the Agriculture Commons Recommended Citation Basak, Suma, "Genetic Diversity of Miscanthus in the US Naturalized Populations Based on Molecular Marker" (2015). College of Agriculture, Environment and Nutrition Sciences Graduate Theses and Dissertations. Paper 2. This Thesis is brought to you for free and open access by Tuskegee Scholarly Publications. It has been accepted for inclusion in College of Agriculture, Environment and Nutrition Sciences Graduate Theses and Dissertations by an authorized administrator of Tuskegee Scholarly Publications. For more information, please contact [email protected]. THESIS APPROVED BY: C.S. Prakash, PhD _____________________________ Major Professor Walter A. Hill, PhD _____________________________ Dean of College Cesar D. Fermin, PhD _________________________________________ Dean of Graduate Programs FOR: Suma Basak Student GENETIC DIVERSITY OF MISCANTHUS IN THE US NATURALIZED POPULATIONS BASED ON MOLECULAR MARKER Title of Thesis GENETIC DIVERSITY OF MISCANTHUS IN THE US NATURALIZED POPULATIONS BASED ON MOLECULAR MARKER By Suma Basak A Thesis Submitted to the Graduate Faculty of Tuskegee University in Partial Fulfillment of the Requirements of the Degree MASTER OF SCIENCE IN PLANT AND SOIL SCIENCES TUSKEGEE UNIVERSITY Tuskegee, Alabama 36088 November, 2014 DEDICATION Dedicated to my family ACKNOWLEDGEMENTS All praises are solely for the “Almighty God” who helped me to complete the research work and thesis successfully for the Master of Science in Plant and Soil Sciences program, Department of Agriculture and Environmental Sciences in Tuskegee University, Tuskegee, Alabama, USA. Thanks to the United Sates Department of Agriculture (USDA) for funding of this project and George Washington Carver Agricultural Experimental Station (GWCAES), Tuskegee University, AL. I would like to express my heartfelt respect, deep sense of gratitude and immense indebtedness to my advisor Dr. C. S. Prakash for his keen motivation, constant guidance, enthusiasm, valuable advice, scholastic supervision and continuous support throughout my graduate studies. I could not have imagined having a better advisor and mentor for my study. Besides my advisor, I am also indebted and grateful to Dr. Guohao He for his constant supervision and guidance during my research work and preparation of this manuscript. I would like to acknowledge to Dr. Erik Sacks, a valuable collaborator of our Miscanthus project, for allowing me to collecting the leaf samples of Miscanthus from University of Illinois at Urbana-Champaign. I would like to thank my advisory committee members Dr. Marceline Egnin, Dr. Desmond Mortley and Dr. Conrad Bonsi for their valuable advice, exclusive suggestions, constructive criticism, realistic comments, and support needed to undertake this research work. I am grateful to Dr. Conrad Bonsi and Dr. Jacqeulyn Jackson for the financial support during my first semester. My sincere thanks also go to Dr. Egnin for developing a new DNA isolation protocol for Miscanthus to conduct subsequent research. I am really indebted to my beloved parents, most loving younger brother and husband for their great sacrifice, patience, inspiration, moral support, talented suggestions, and untiring efforts to make me an educated person. Last but not the least I feel much pleasure to convey the profound thanks to my lab mates, friends and staff members for the worthy suggestions and cooperation for improving my knowledge, academic and research skills throughout my graduate study. iv ABSTRACT Miscanthus is a fast growing bioenergy grass, tolerant of adverse conditions and has high biomass production, and is increasingly attractive as a potential source of cellulosic ethanol. An understanding of genetic variation in naturalized populations of Miscanthus in the US may help in selecting appropriate parents for breeding superior cultivars that are adapted in the wide-ranging and changing environments. The molecular marker analysis of Miscanthus is an important tool towards the genetic improvement program of this bioenergy grass. As sugarcane is closely related to Miscanthus, we employed its DNA markers as probes to explore genetic diversity within and among naturalized populations of Miscanthus. When 53 sugarcane specific gene markers including EST-SSR markers were initially tested for their transferability in the Miscanthus genome, all showed a high transferability. Of thirteen sugarcane EST-SSR markers tested, seven markers readily amplified the Miscanthus DNA, producing clear and unambiguous polymorphic bands at most loci. Six markers were monomorphic. To understand the genetic diversity of Miscanthus germplasm and naturalized populations, which is a useful step in the genetic resource conservation and utilization, cluster analysis was performed using polymorphic marker data. Eleven clusters in the dendrogram were formed and genotypes collected from North Carolina (NC) were spread into ten clusters suggesting that NC naturalized populations had a large genetic variation. Plants arising from Virginia (VA) formed only three clusters indicating a low genetic variation. One (SSR30-1) of monomorphic EST-SSRs was used to amplify all Miscanthus genotypes for DNA sequencing to examine the genetic variation. Genetic distance among genotypes was calculated on the basis of DNA sequence data of Miscanthus using MEGA v software. The highest mean of genetic distance (0.012) was found in the genotypes of NC. The lowest mean genetic distance of 0.004 was observed in the VA genotypes. Based on those sequences, phylogenetic relationship was constructed among all genotypes using MEGA software. Miscanthus genotypes from NC showed large variation spread in five clades, while genotypes from VA had the smallest variation and concentrated in one clade. Both polymorphic marker and sequence data showed large genetic variation in NC genotypes, implying that genotypes might have been collected from several different sources, while VA genotypes with small genetic variation could have originated from a single source. The genetic diversity analysis from this study could be used in the breeding of Miscanthus to develop novel and productive cultivars. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................... IV ABSTRACT ................................................................................................................................... V TABLE OF CONTENTS ............................................................................................................. VII LIST OF FIGURES ...................................................................................................................... IX LIST OF TABLES ......................................................................................................................... X LIST OF ABBRIVIATIONS ........................................................................................................ XI CHAPTER 1 : INTRODUCTION .................................................................................................. 1 CHAPTER 2 : LITERATURE REVIEW ....................................................................................... 6 2.1 Genetic diversity .............................................................................................................. 6 2.2 Molecular markers............................................................................................................ 7 2.3 Simple Sequence Repeat (SSR) markers ......................................................................... 8 2.4 SSR markers and their transferability in different crops .................................................. 9 2.5 Sugarcane markers in Miscanthus .................................................................................. 11 2.6 Cluster and Phylogenetic study ...................................................................................... 12 CHAPTER 3 : MATERIALS AND METHODS ......................................................................... 15 3.1 Location, duration, and year of the experiments ............................................................ 15 3.2 Experimental materials and Sources .............................................................................. 15 3.3 Methods .......................................................................................................................... 17 3.3.1 Processing of leaf samples ...................................................................................... 17 3.3.2 DNA isolation ......................................................................................................... 18 3.3.3 Transferability test of sugarcane DNA markers in Miscanthus .............................. 23 3.3.4 Data analysis ........................................................................................................... 23 CHAPTER 4 : RESULTS AND DISCUSSION ........................................................................... 25 4.1 Results ............................................................................................................................ 25 4.1.1 DNA concentration and quality .............................................................................. 25 4.1.2 Transferability of Sugarcane DNA markers in the Miscanthus genome and their amplification prototypes ....................................................................................................... 25 4.1.3 Determination of genetic diversity within and among naturalized populations in Miscanthus ............................................................................................................................ 29 4.2 Discussion ...................................................................................................................... 40 CHAPTER 5 : SUMMARY AND CONCLUSIONS ................................................................... 43 vii CHAPTER 6 : RECOMMENDATIONS...................................................................................... 46 REFERENCES ............................................................................................................................. 47 APPENDIX A ............................................................................................................................... 58 APPENDIX B ............................................................................................................................... 63 APPENDIX C ............................................................................................................................... 70 APPENDIX D ............................................................................................................................... 73 viii LIST OF FIGURES Figures Pages Figure 3.1: Source of naturalized populations of Miscanthus, collected across six states of USA, for the study. ........................................................................................ 15 Figure 3.2: Young leaf samples of Miscanthus, collected from UIUC. ....................................... 16 Figure 4.1: Polymorphic amplification of Miscanthus genomic DNAs using sugarcane genic markers SMC226 and EST-SSR29 ............................................................................................... 26 Figure 4.2: Monomorphic amplification profile of Miscanthus obtained with sugarcane markers SSR30-1, SSR 34, SSR 36 and SSR 38-1, respectively. ................................................ 28 Figure 4.3: Dendrogram showing the genetic relationship among 228 populations of Miscanthus with four sugarcane EST-SSR markers. .................................................................... 31 Figure 4.4: Cluster I, II, III and IV ............................................................................................... 33 Figure 4.5: Cluster V, VI, and VII ................................................................................................ 34 Figure 4.6: Cluster VIII and IX..................................................................................................... 35 Figure 4.7: Cluster X and XI......................................................................................................... 35 Figure 4.8: Neighbor- joining radiation tree showing phylogenetic relationships among 228 Miscanthus genotypes based on sequence analysis using MEGA software. ................................ 37 Figure 4.9: Circular phylogenetic tree of Miscanthus obtained by sequence analysis using MEGA software. ........................................................................................................................... 38 ix LIST OF TABLES Tables Pages Table 1.1: Biomass production, potential ethanol production, and land area needed for different potential bioenergy systems to reach the 35 billion gallon US renewable fuel goal ...... 2 Table 3.1: Descriptions of the ecological and geographical data of six natural populations of Miscanthus sinensis sampled ........................................................................................................ 16 Table 3.2: List of stock solution and their final concentration ..................................................... 19 Figure 3.3: DNA extraction from leaf samples ............................................................................. 22 Table 4.1: List of the genetic distance of genotypes in each state based on sequence data ......... 29 Table A.1: List of selected pairs of primer sequences that were used for SSR analysis on Miscanthus genotypes (Cordeiro et al. 2000, Parida et al. 2010 & Silva et al. 2006). ................. 58 Table B1: DNA concentration and quality of the samples from the six naturalized populations of Miscanthus: ........................................................................................................... 63 Table C1: Genetic distance of OH ................................................................................................ 70 Table C2: Genetic distance of NC 1.5 ......................................................................................... 70 Table C3: Genetic distance of NC ............................................................................................... 71 Table C4: Genetic distance of DC ................................................................................................ 71 Table C5: Genetic distance of KY ................................................................................................ 72 Table C6: Genetic distance of PA ................................................................................................. 72 Table C7: Genetic distance of VA ................................................................................................ 72 Table D1: The DNA sequences of 228 genotypes ........................................................................ 73 x LIST OF ABBREVIATIONS AFLP Amplified Fragment Length Polymorphism CM Centimorgan DNA Deoxyribonucleic Acid DTT Dithiothreitol EDTANa Ethylenediaminetetraacetic Acid Sodium Sal EST Expressed Sequence Tag GD Genetic Distance GS Genetic Similarity ISSR Inter Simple Sequence Repeats MEGA Molecular Evolutionary Genetics Analysis NTSYS Numerical Taxonomy System PCR Polymerase Chain Reaction PVP Polyvinylpyrrolidone QTL Quantitative Trait Loci RAPD Random Amplified Polymorphic DNA RFLP Restriction Fragment Length Polymorphism RNaseA RibonucleaseA SAHN Sequential Agglomerative Hierarchical Nested Cluster Analysis SNP Single Nucleotide Polymorphism SSR Simple Sequence Repeats TBE Tris-Borate- Ethylenediaminetetraacetic Acid UPGMA Unweighted Pair Group Method with Arithmetic Mean xi 1 CHAPTER 1 : INTRODUCTION Miscanthus is a monocotyledonous, perennial cross-pollinated grass that belongs to the Poaceae family. Because of its dense growth, high ligno-cellulose content, woody, tall, C4 and rhizomatous nature, it is suitable for bioenergy production. Compared to switchgrass (9.4 t/ha), Miscanthus (35.76 t/ha) is 2-3 times more productive (Khanna et al. 2008). Miscanthus has a fast growth rate, high biomass yield, and high photosynthesis activity (with high light, water and nitrogen-use efficiency), making it increasingly attractive as a potential source of cellulosic ethanol and thermal energy. It requires relatively little fertilizer and water to grow compared to maize and switchgrass (Zhuang et al. 2013; Lewandowski et al. 2000 and 2003). Heaton et al. 2008 presented the comparison of Miscanthus compared to other bioenergy crops in terms of biomass yield, ethanol production and land requirement (Table 1.1). From their analysis, it is evident that Miscanthus is very potential and attractive source of producing biomass and biofuel, which can efficiently replace any other bioenergy crops and can meet the demand of US biofuel production without any additional land requirement. Miscanthus is tolerant to adverse environmental conditions and can be grown on marginal lands on a wide range of soil types; for example, M. sinensis var. condensatus can be cultivated on seashores with high salinity, M. sinensis var. transmorrisonensis can be grown on high mountains, and M. sinensis var. glaber can withstand high density of heavy metals (Chiang et al. 2003). The genus of Miscanthus includes 20 species, most of which are indigenous grasses to the pacific islands, tropical and subtropical areas of Africa and southeastern Asia, namely, Japan, Korea, China, Taiwan, and parts of Russia (Chou, 2009; Clifton-Brown et al. 2008; Chen and Renvoize, 2006). Miscanthus offers a more stable 2 habitat for wildlife (Sang, 2011), and thus has a smaller ecological footprint than any other energy crops. Unlike swtichgrass, Miscanthus is not native to the United States, and thus has no natural wild relatives with potential out-crossing risks. For this reason, it represents an attractive candidate crop for future transgene modifications (ex. to develop clones producing in-planta enzymes or with targeted modification of biomass genes; because of the reduced biosafety concern related to gene flow, with consequent low regulatory burden (Somverville et al. 2010; Bransby et al. 2010; Jakob et al. 2009; Yuan et al. 2008). Table 1.1: Biomass production, potential ethanol production, and land area needed for different potential bioenergy systems to reach the 35 billion gallon US renewable fuel goal (Heaton et al. 2008) Feedstock Harvestable Biomass (Tons/acre) Ethanol (gal/acre) Corn grain 4.5 456 Corn stover Corn total Switchgrass Miscanthus 3.3 7.8 4.6 13.2 300 756 421 1198 Million Acres % 2006 Needed for 35 Harvested Billion Gallons of U.S. Ethanol Cropland 12.6 24.4 19.1 7.6 13.6 4.8 37.2 14.8 26.5 9.3 Miscanthus is newly-developed and is ranked among the top potential bio-energy producing plants in Europe (Glowacka, 2011). It can potentially be used for paper manufacturing, conservation of soil and water, and prevention heavy metal pollution (Heaton et al. 2004; Sun et al. 2010). This bioenergy grass is cultivated as a potential energy source for electricity generation and liquid biofuel production in Europe and North America (Xu et al. 2013). The fertile diploid Miscanthus sinensis (2n= 2x= 38) and the sterile triploid Miscanthus giganteus (2n=3x=57) were first introduced as ornamental grasses and 3 subsequently became attractive for biomass production in Europe. In addition, M. giganteus is a hybrid, derived from a natural interspecific cross between diploid M. sinensis and allotetraploid M. sacchariflorus (2n=4x=76). Both parents of M. giganteus originated from China (Greef et al.1993; Deuter et al. 2000; Linde-Laursen, 1993). Figure 1.1: Representation of the hybrid origins of giant Miscanthus (Heaton et al. 2008) M. giganteus has erect stems which are 8 to 12 feet tall. It has a genome size of 7.0 pg, while M. sinensis and M. sacchariflorus have genome sizes of 5.5 and 4.5 pg, respectively (Rayburn et al. 2009). The dry matter production in M. giganteus is higher than other crops, 5-10 tons per acre according to European research and 10-15 tons per acre (Illinois) in US research. As the triploid progeny is sterile, there is no need for reseeding each spring but it can be propagated vegetatively through rhizome division (Lewandowski et al. 2003; Chou, 2009). 4 M. sinensis, however, has the ability to produce viable seeds for sexual reproduction and could be sown using conventional farming implements. These seeds are small, light with silky soft fur and can be spread widely by wind and propagated through cross-pollination (Huang et al. 2009; Stewart et al. 2009). Since allowing easier hybridization, it possesses high heterozygosity that results in a complicated genetic background. In North America, M. sinensis is already a well-known ornamental grass for gardeners and landscapers as well as commercially available as several horticultural cultivars (Quinn et al. 2012). In the late 1800’s, M. sinensis (then called Eulalia japonica) was imported from Japan to the US (Washington D.C.) for ornamental purposes and later on, in the 1970’s, it was brought as a horticultural cultivar (e.g. cosmopolitan, morning light and cabaret) and planted in Asheville, North Carolina (Alexander 2007). Thus, the numerous cultivars were imported from Japan and cultivated in the US during different periods of time. The hybridization between fertile cultivars would improve the genetic diversity within naturalized populations (Ellstrand and Schierenbeck 2000; Culley and Hardiman 2009). As our knowledge of Miscanthus genome is scant and the reliable information on Miscanthus SSR markers is inadequate, we explored the transferability of sugarcane DNA markers in the corresponding genome of Miscanthus and used them as tools to determine genetic diversity within and among naturalized populations in the genus of Miscanthus. Additionally, to better understand genetic variation in naturalized populations of Miscanthus, cellulose synthase in Miscanthus were amplified using cellulose synthase gene markers of sugarcane, and then PCR products were sequenced to obtain the gene sequences of cellulose synthase of Miscanthus. Analysis and comparison of gene sequences would 5 reveal actual genetic variation in Miscanthus naturalized populations. Therefore, the aim of this study is to gain an insight into genetic variations of the naturalized populations of Miscanthus with following specific objectives: (a) To test whether sugarcane DNA markers can be used as heterologous probes to detect the variability among Miscanthus genotypes. (b) To determine the genetic diversity within and among naturalized populations on the basis of sugarcane molecular markers. (c) To conduct phylogenetic analysis of Miscanthus naturalized populations in the US using DNA sequences of cellulose synthase. 6 CHAPTER 2 : LITERATURE REVIEW 2.1 Genetic diversity The study of genetic diversity is important for the effective conservation, management, and utilization of plant genetic resources. It is also a prerequisite in plant breeding to select a desirable plant. Better understanding of the genetic diversity within and among naturalized populations may provide useful information about how to breed novel Miscanthus cultivars and insights into the genetic adaptation of this species to the changing environments in the US. Usually, genetic diversity studies are based on morphological characteristics for the study of taxonomy. A few experiments were accomplished on the genetic diversity of Miscanthus. Dwiyanti et al. (2012) discovered three putative new triploid hybrids of M. giganteus by morphological analysis, and all those triploids showed heterozygous natures and the awns on their inflorescent found in the species of M. giganteus. Zhu et al. (2000) found a higher yield (89%) and less severity of blast disease (94%) in rice from the mixed cultivation of the disease-susceptible cultivars and disease resistant cultivars. They concluded that the ecological diversity of intraspecific crop production could be useful for solving the problem of disease severity in a vast area. Scally et al. (2001) found the most relevant characteristics to identify species of Miscanthus, such as the presence or absence of awns on their florets, the axis length and the nature of the spikelets on the florets. However, those morphological analyses are less informative, insufficient, variable, and costly when compared to molecular practices, which can provide precise differentiation of species along with intraspecific variation by studying DNA based polymorphism. Hodkinson et al. (2002) 7 demonstrated the genetic characterization of 75 samples of seven Miscanthus species in Europe using AFLP and ISSR markers to detect a high degree of intraspecific variation within M. sinensis. A total of 998 polymorphic bands were found by testing three marker pairs. Zhong et al. (2009) found that 76.1% of bands were polymorphic in 15 individuals of Miscanthus after screening 30 pairs of maize SSR markers. Zhang et al. (2013) evaluated the genetic variation within and among M. sinensis populations which were sampled from Zhejiang and Guangdong, China and found 97.1% clear and unambiguous polymorphic DNA fragments by using nine ISSR markers. 2.2 Molecular markers Molecular markers are considered important tools for plant breeding programs, evolutionary and conservation studies. These have been utilized for germplasm evaluation, parent identification, genetic analyses, new cultivar development and marker assisted selection (Selvi et al. 2003). Von Wuhlisch et al. (1994) were the first to use thirteen isozymes to evaluate the genetic diversity of 65 plants of M. sinensis, M sacchariflorus and M. giganteus. They found nine different patterns for one isozyme and the zymograms were mostly different for a particular isozyme. Hamrick and Godt (1990) observed, while analyzing allozymes, that the narrowly distributed populations had low levels of genetic diversity compared to the widely distributed populations. Now a days, a variety of markers, such as mitochondrial DNA sequences, chloroplast restriction enzyme site mutation associate DNA sequencing (RNA-seq) SNPs, GoldenGate SNPs, chloroplast microsatellites, rDNAIGS/ITS sequences, inter-simple sequence repeat (ISSR), AFLP, RAPD, and RFLP, have been practiced for estimating the genetic diversity of Miscanthus species (Glowacka, K. 8 2011, Greef et al 1997, Chou et al. 2000, Chiang et al. 2003, Iwata et al. 2005, Hung et al. 2009). Atienza et al. (2002) constructed a genetic linkage map of M. sinensis using RAPD makers to identify quantitative trait loci (QTL) influencing agronomic traits and combustion quality (Atienza et al. 2003a and 2003b). Zhang et al. (2013) found by studying ISSR markers that the high levels of genetic diversity were associated at the species level (Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioripariusn) (YAN et al. 2012) and the low levels of genetic diversity were found at the populations level in China. These RAPD, ISSR, AFLP markers, however, are labor-intensive and complicated to apply among populations (Hoarau et al. 2001; Aitken et al. 2005). 2.3 Simple Sequence Repeat (SSR) markers Among the molecular markers, Simple Sequence Repeat (SSR) or Microsatellite markers are the most effective for the genome analysis. These markers consist of tandem repeated arrays of short (generally 2-6 nucleotide units in length) DNA motifs and arbitrarily distributed in the genomes of eukaryotes. The difference in the number of repeat units occurs due to the slippage of DNA polymerase during replication, causing the high degree of allelic variation revealed by these markers (Gupta et al.1996; Litt and Lutty 1989; Silva et al. 2006). SSRs are the markers of choice because of their abundance, hypervariability, ease of PCR based recognition, Mendelian inheritance, co-dominace transmission, reproducibility, wide genome reporting, transferability among species and genera, and ubiquitous distribution in the genome and detection of higher frequency polymorphisms in the multi-loci (Brown et al.1996; Cordeiro, et al. 2000) compared to other markers, such as AFLPs, RFLPs and RAPDs. The SSR markers have been widely employed for the study of evolution and genetic 9 diversity, locating quantitative trait loci (QTL), gene mapping, high resolution genetic map construction, populations and conservation studies, clone identification, controlled crosses certification, species and hybrid identification, paternity determination, and marker assisted selection (Devey et al.1996; Paglia et al.1998; Powell et al.1995; Dayanandan et al.1998; Van de Ven and Mc Nicol 1996; Weising et al.1998). Though the advantages of SSRs as molecular marker are obvious, the identification of SSRs primers from genomic DNA is an expensive and lengthy process, requiring library construction as well as clone sequencing (Zhao et al. 2011). Selvi et al. (2003) established a cost-effective technique for molecular analysis of sugarcane by the means of 34 maize microsatellite markers. The transferability of maize markers in Saccharum, commercial hybrid and Erianthus was found as 41.2%. Hernández et al. (2001) developed another cost-efficient protocol for the molecular investigation of Miscanthus species resulting 10 of 20 Gramineae RFLP probes hybridized well to Miscanthus DNA and 74.5 % (57 out of 76 pairs) maize SSRs from genomic libraries provided highly reproducible amplification with Miscanthus DNA. 2.4 SSR markers and their transferability in different crops The transferability of SSR markers has been reported in numerous plant species, such as soybeans, rice, maize, tropical trees, sunflowers, grapevines, barley, cotton, wheat and Brachypodium distachyon grass (Akkaya et al.1992; Morgante and Oliveri 1993; Wu and Tanksley 1993; Senior and Heun 1993; Condit and Hubbell 1991; Brunel 1994; Thomas and Scott 1993; Saghai-Maroof et al.1994; Roder et al.1998; Vogel et al. 2010). Amplified DNA from PCR products of microsatellite or SSR markers with conserved sequences across genera and species have been utilized in animals (Moore et al. 1991; Ammer et al.1992; Kondo et al. 10 1993) and later on, those markers have also been used in plants species (Kresovich et al.1995; Provan et al. 1996; Brown et al. 1996; Ishii and McCouch 2000; Hernandez et al. 2001). The cross species, tomato and potato have originated from the same genus, Solanum, and the same species, Solanaceae. The SSR primer pairs of tomato have been successful transferred into the genome of potato. Consequently, tomato SSR primer pairs are considered an importance source of genetic probes in potato (Provan et al. 1996). The maize and bamboo SSR markers have been derived from rice markers, which were designed from a region of greatly repeated elements that were found among the monocot species (Zhao and Kochert, 1993). Thus, transferable SSR markers from gramineae species would be useful for the genetic analyses of Miscanthus. For example, Xu et al. (2013) observed the efficiency of cross species amplification as 66.7% in Miscanthus genome using 20 pairs of sorghum EST SSR (potential technique for gaining high class nuclear markers; Bhat et al. 2005; Gupta et al. 2003) markers, implying markers from other closely related species are essential for M. sinensis mapping and linkage with other grasses. James et al. (2012) investigated a saturated genetic map in the sorghum genome generated through 1,203 SSR markers analysis and that huge collection of SSR markers would be a valuable resource for mapping quantitative trait loci in sugarcane genomic research including crop improvement and comparative genomic analyses. Silva and Solis-Gracia (2006) developed the sugarcane SSR markers and found that 29 markers were positive for the presence of SSR out of 271 stress resistance genes associated with ESTs. They suggested that the presence of SSR within disease resistance genes may contribute to immunity to new pathogens and/or insect damage in sugarcane, and increase the chance of tagging genes for preventing stress resistance. Zhao et al. (2011) found 11 that out of 57 SSR markers of Brachypodium distachyon, 86% were transferrable to M. sinensis. Zhou et al. (2011) indentified 14 SSR loci of M. sinensis to study the genetic diversity and populations structure of the three species of Miscanthus (M. sacchariflorus, M. floridulus, and M. lutarioriparius). They found that 85.71% (12 out of 14) SSR markers were transferable to those three species. But the limited number of SSR markers creates a bottleneck for genetic analyses and molecular breeding of Miscanthus. 2.5 Sugarcane markers in Miscanthus Sugarcane and sorghum are more closely related to Miscanthus than corn (Hodkinson et al. 2002). However, sugarcane is evolutionarily the closest to Miscanthus, so SSR markers from sugarcane could be employed to distinguish SSRs in Miscanthus. The homology in the flanking regions of SSR loci has enlarged the usefulness of these markers in related species and genera where no information on SSRs is available. Kim et al. (2012) designed two genetic linkage maps in Miscanthus. A total of 261 and 303 loci were mapped in the populations of M. sacchariflorus and M. sinensis using sugarcane EST-SSRs. A large number of unigenes in sugarcane deposited in GenBank provides potential for development of gene-based markers in Miscanthus. For example, of the 15,594 sugarcane unigenes, 767 were found to contain SSRs (Parida et al. 2010). They also tested EST-SSRs among sugarcane varieties and five cereals, and found that all primers gave fragment length polymorphisms within functional domains. 12 2.6 Cluster and Phylogenetic study Cluster analysis and phylogenetic study have gained interest among scientists to study genetic identity, genetic similarity and dissimilarity, and genetic distance using molecular marker analyses for estimating the genetic variation of different crops. For example, Ghosh et al. (2011) studied the 12 species of bamboo for understanding the taxonomic grouping based on six pairs of AFLP markers. They carried out the cluster analysis using NTSYS software and found that five species of the genus Bambusa clustered together (clusterI) and four species of the Dendrocalamus genus formed a second cluster (cluster II) and the other three genera formed independent clusters. Shimono et al. (2013) investigated the chloroplast DNA (cpDNA) variation of 30 M. sinensis within and among the native populations in Japan and found that the genetic variation was relatively low among the populations. Eevera et al. (2008) performed the cluster analysis based on the banding pattern obtained from 26 bamboo species using ten RAPD markers. Their cluster analysis showed that two species (Denderocalamus stocksii and Oxytenanthera stocksii) belonged to cluster I and three species (D. strictus, D. hamiltoni and D. asper) formed another cluster (cluster II) and also three species (Bambusa nutans, B. vulgaris and B. mugalba) were found as closely related species. Zhang et al. (2013) developed a dendrogram using the UPGMA method based on ISSR markers to study the genetic variation within and among the Miscanthus sinensis populations that were collected from two different provinces (Zhejiang and Guangdong) of China. They found that some populations sampled from Zhejiang formed the most distant group compared to others, belonging to cluster I. They also observed that some populations were grouped 13 together due to their genetic similarity even though the geographical locations were very far, but some were not. There are a few reports available on cluster analysis and phylogenetic study using SSR markers in Miscanthus. Selvi et al. (2003) identified four different clusters from the five species of Saccharum and the related genus Erianthus using maize SSR markers. They found that the S. officinarum and S. robustum clones were clustered together, forming cluster I, and the S. sinense and S. barberi formed cluster II. In cluster III, the clones of seven S. spontaneum were grouped independently. Zhao et al. (2011) found that 21 M. sinensis populations were clustered into three groups based on the geographical distribution and ecotype classification. Four Miscanthus populations (PMS232, PMS7, PMS364 and PMS427) formed cluster I and ten Miscanthus populations formed cluster II. Both cluster I and II populations originated from South China. The remaining seven populations were grouped in cluster III and originated from North China. Chou and his colleagues (1984a, 1984b and 1985) analyzed different isozymes to study the phylogenetic relationships among bamboo species and Chou et al. (1986) studied the phylogenetic relationships among ten bamboo species using phenolics and isozymes of peroxide and esterase. They found that three species of Arundinaria and Semiarundinaria fastuosa were grouped to one cluster (cluster I), the genera Pseudosasa, Shibataea and Sinobambusa formed cluster II. However, one species, Yushania niitakayamensis formed a unique group away from the other two clusters. Later on, they worked on Miscanthus, and Chou et al. (1987) demonstrated the four different clusters using isozymes patterns based on peroxidase and esterase among 27 M. floridulus populations. The populations from Taoyuan 14 and Hwalien coastal areas formed the first cluster and the populations from Hoshe, Tapinting and Yushan area formed a second cluster, the populations of Chingjing and Tayuline areas were found in cluster III and the populations of Taoyuan industrial area was observed in cluster IV. Chou et al. (1988) indentified four clusters among the nine populations of Miscanthus. The first two clusters (I and II) contained five populations of M. floridulus collected from the elevation of 1,200-2000 m, the third cluster contained two populations of ecotone of these species sampled at the elevation of 2200 m and the fourth cluster included two populations of M. transmorrisonensis sampled at the elevation above 2400 m. Chou and Chen (1990) studied 20 populations of M. floridulus based on peroxidase and esterase. Three clusters were found in the seven populations of Green Islet and four clusters were found in the populations from Orchid Islet (Taiwan), so they inferred that four major clusters could be formed by combining of the populations of both islets. Chou et al. (1992) studied the phylogenetic relationships among eight taxa of Miscanthus populations in Taiwan for analysis of four isozymes. They designated the taxa as M. sinensis (Ms), M. floridulus (Mf), M. flavidus (Mfa), M. sinensis var. formosanus (Msf), hybrid of Ms×Msf (Ms-Msf), hybrid of Mf×Ms (Mf-Ms), hybrid of Mf×Ms×Msf (Mf-Ms-Msf). From the similarity coefficient of four isozymes, the taxa of Ms, Msf, Ms-Msf and Ms-Mf-Msf were found in cluster I group due to their high similarity coefficient (0.738) and genetic closeness to each other. In cluster II group, the Mfa and Mt were identified, whereas M. floridulus and several hybrids were found between these two clusters. They also found M. sinensis as the most primitive taxon based on the Euclidean distance. 15 CHAPTER 3 : MATERIALS AND METHODS The study employed a variety of experimental techniques. The details of various materials and methodologies used are described in this chapter. 3.1 Location, duration, and year of the experiments Experiments were conducted during the period of August 2012 to December 2014 at George Washington Carver Agricultural Experimental Station in the Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, Alabama. 3.2 Experimental materials and Sources Miscanthus sinensis germplasm were collected from six states (Ohio, North Carolina, Washington D.C., Kentucky, Pennsylvania, and Virginia) considered as six naturalized populations (Fig. 3.1). Plants of these six naturalized populations were grown in the University of Illinois at Urbana-Champaign (UIUC) from which young leaf samples were collected (Fig. 3.2) for DNA isolation, and served as experimental materials in the present study to analyze the genetic variation within and among naturalized populations. Figure 3.1: Source of naturalized populations of Miscanthus, collected across six states of USA, for the study. 16 Figure 3.2: Young leaf samples of Miscanthus, collected from UIUC. Two hundred and twenty eight (228) accessions from the six naturalized populations of Miscanthus sinensis provided the source for leaf samples. The six different naturalized populations were habituated with complex topography and various climate conditions, especially cold tolerance, within the major distribution areas of M. sinensis (Table 3.1) in the Eastern United States. Table 3.1: Descriptions of the ecological and geographical data of six natural populations of Miscanthus sinensis sampled Populations number Location OH 2009-001 Elevation (m) Latitude Longitude 1094 N 39.4760 W -81.3045 Number of plants found Number of accession 19 Sample Size 34 NC-2010-001.5 Biltmore deer park 571.5 N 35°33.010' W 82°34.034' 1000 18 31 NC-2010-001 Biltmore, Madison co, Cody rd. Rock creek park 698 N 35°32.032' W 82°32.834' 3000 64 26 48 N 38°56.354' W 77°02.958' 100 39 36 1293 N 37.8034 W -83.6628 20 33 20 36 10 32 DC-2010-001 KY-2009-001 PA-2010-003 Route 252 92.0496 N 39°57.814' W 75°23.778' VA-2010-002 Prince-William national park 655.0152 N 37.23 W 80.21 200 17 3.3 Methods Following major methods were employed and are described below. 1. Processing of leaf samples 2. DNA isolation 3. Transferability test of sugarcane DNA markers in Miscanthus 4. Data analysis Sterilization of glassware, instruments and working area To ensure aseptic condition, all instruments were sterilized properly by autoclaving. Glassware, pipette tips, mortars and pestles, micropipette tips, glass rod (5, 2 and 1.5ml) Eppendorf and microcentrifuge tubes were wrapped with aluminum foil, and then sterilized in an autoclave at a temperature of 127oC for 30 minutes at 1.5 kg cm-2 pressure. Gloved hands and (10-50 ml or 1.5-2 ml) Oakridge were rinsed with 70% alcohol. The temperature (370C) was maintained into the boiling water bath. The working surface areas were sterilized by wiping with 75% ethyl alcohol. All the precautions were taken to obtain maximum contamination-free condition during the leaf grinding with liquid Nitrogen and DNA extraction from the leaf samples of Miscanthus. 3.3.1 Processing of leaf samples About 10-15 g of fresh leaf samples were collected from each plant. As DNA quality is negatively affected by oxidation in preliminary experiments, the samples were immediately preserved on dried ice in plastic tubes. The tubes were later stored in a freezer at the University of Illinois at Urbana-Champaign, and later freeze-dried by the following steps: 18 i. Freezing in freeze drier at -30°F overnight ii. Turning on vacuum and freeze drying at -20°F for 24 hours iii. 28°F for 12-24 hours iv. 40°F for 12-24 hours v. 60°F for 12-24 hours vi. 75°F for 12-24 hours To prevent condensation on the dried tissues, the leaf samples were allowed to stand at room temperature before the tubes were opened. The freeze dried samples were stored in tubes at room temperature for later use. 3.3.2 DNA isolation Genomic DNA of Miscanthus plants were extracted from young freeze-dried leaf samples using a newly developed Miscanthus DNA extraction protocol (a modified version of the protocol developed earlier by Egnin et al. 1998). In the course of the present investigation, the following steps were followed for DNA isolation from leaf samples: 3.3.2.1 Preparation of leaf tissue About 5 g freeze-dried leaf tissues were cut into small pieces and ground with liquid nitrogen using sterile sand to a very fine powder with a mortar and pestle (Fig. 3.3). The weighted powder approximately 250-750 mg of each samples were transferred to a 5 ml Eppendorf tube for DNA extraction. 19 3.3.2.2 Preparation of Extraction Buffer (EB and other reagents) All solutions were prepared in sterile conditions and kept on ice. The reagents Isopropanol, 7.5M Ammonium acetate, 2M Ammonium acetate, 1×TE buffer, 80% ethanol and 10mg/ml RNase enzyme were used in the DNA extraction procedure. The extraction buffer was freshly prepared in sterile conditions each time and kept on ice. The procedure for extraction buffer preparation from stock solutions and final concentration are described in table 3.2. Table 3.2: List of stock solution and their final concentration Serial Stock solution Final Concentration Extraction Buffer No. 1. 1M Tris HCL, pH 8, 100mM 2. 5M NaCL 500mM 3. 0.5 M EDTA,Na pH 8(ethylenediaminetetraacetic acid) 25mM 4. 10% Sodium Ascorbate, Freshly made 0.2% 5. 1M DTT (Dithiothreitol) 5mM 6. PVP-40 (polyvinylpyrrolidone) (40000 wt.) dry powder 2% (W/V) 7. Sodium Metabisulfite dry powder 1g/100mL (W/V) 8. 20% Sarkosine 2% 9. Sterile water Added sterile water to desired volume The following stock solutions were obtained from Sigma Chemicals: 1M TRIS-HCL; pH8, 5M NaCl; 0.5M EDTANa, pH 8; 7.5M Ammonium acetate; 10mg/ml RNase A; 1M DTT; PVP-40; Sodium Metabisulfite; sodium lauryl sakosine and selected stocks used to make the following: 10% Sodium Ascorbate (2 mL) 20 Sodium Ascorbate comprised of 0.2 g sodium ascorbate powder dissolved in 1ml nuclease free sterile water and brought to a final volume of 2 ml by additional distilled water. The concentration of sodium ascorbate in buffer was 0.2% 20% Sarkosine (50mL) 10 g of sodium lauryl sakosine powder were dissolved in 30 ml of warm sterile distilled water and the tube containing solution was placed into a hot water bath at 65oC for 30 min with intermittent mixing by inversion every 10 min. After complete dissolution and cooling, the volume was adjusted to 50 ml with sterile distilled water. To prepare 100 ml of extraction buffer, the following steps were followed: The reagents, 10 ml of 1M TRIS-HCl, PH 8.0, 10 ml of 5M NaCl, 5 ml of 0.5M EDTA, 2ml of 10% sodium ascorbate and 0.1 ml of 1M DTT, were added to 35 ml (one-third volume) of sterile distilled water in a 250 ml sterile erlenmeyer flask on a stirrer. Two grams of PVP-40 powder and 1 g of Sodium Metabisulfite dry powder were added directly to the solution and stirred well until completely dissolved. Ten milliliter of 20% sarkosine were slowly added to the buffer and stirred well. The final volume was brought to 100 ml with sterile distilled water. The buffer solution was cooled on ice prior to extraction. 3.3.2.3 DNA isolation from leaf Samples The powdered tissue from each leaf sample was homogenized with 2 ml of ice cold DNA extraction buffer as described above (1M TRIS-HCl, 5M NaCl, 0.5M EDTA, 10% sodium ascorbate, 1M DTT, PVP-40 powder, Sodium Metabisulfite dry powder, 20% sarkosine) in a 5 ml sterile tube. This tissue-buffer mixture was further disrupted by grinding to slurry with a sterile rod-bar. The slurry mixture was vortexed for 30 seconds and subjected 21 to 3 cycles of freeze and thaw for 5 min each at -20oC. The thawed samples were mixed well by inversion prior to the next freezing cycle for further tissue disruption. Following the last cycle of freezing, the frozen samples were thawed by boiling in water bath at 65oC for 8 min and then incubated in ice for 5 min. The homogenate was transferred quickly to a new 2 ml sterile tube and micro-centrifuged at 14000 rpm for 10 min. After centrifugation, the supernatant (about 900µL) was carefully transferred to another 2ml new labeled tube. The nucleic acids were precipitated by the addition of 90 µL of 7.5M ammonium acetate and an equal volume of cold isopropanol (990 µL). After 20min incubation at room temperature, the nucleic acid was pelleted by centrifugation at 10,000rpm for 10 min at 15oC. The supernatant was discarded and the pellet was washed with 1 ml of 80% (v/v) ethanol. The tube was inverted three times and spun at 14000 rpm for 5 min, and then vacuum dried. The pellet was resuspended in 750 µL of 2M ammonium acetate in 1X TE for 30 minutes, by flicking the tube frequently to completely disrupt the pellet and resuspended the DNA without disturbing the junk. The resuspended solution was incubated on ice for 10 min and then centrifuged at 14000 rpm for 10 min to pellet the junks. The supernatant was carefully transferred to a 1.5 ml tube without disturbing the junky pellet. After transferring to a new tube, 750 µL of isopropanol were added immediately and mixed by inversion, incubated at room temperature for 30 min and centrifuged at 14000 rpm for 10 min. The upper layer was discarded and the pellet was air dried. The precipitated nucleic acids were resuspended in 400 µL of TE (10mM tris, 1mM EDTA, PH 8.0) for about 30 min with occasional inversion. The nucleic acids solution was treated with 3 µL RNaseA (10mg/mL) and incubated at 37 oC for 30 min and then immediately placed on ice. Two hundred micro liters of 7.5 M 22 ammonium acetate and the chilled 600 µL of isopropanol was added and mixed well for reprecipitation of DNA. The DNA was pelleted by centrifugation at 10000 rpm for 10 min at 4oC and then the supernatant was removed. The DNA pellets were washed with 1 mL of 80% (v/v) ethanol; the tube was inverted three times and was spun at 14000 rpm for 5 min. The ethanol was drained from the DNA pellet by vacuum drying. Then, the DNA pellet was completely resuspended in 100 μL of TE buffer. The DNA suspension stock were diluted in sterile nuclease free water at a ratio of 1:20 for SSR amplification and stored at -20oC. Figure 3.3: DNA extraction from leaf samples 3.3.2.4 DNA concentration and quality test The concentration and purity of the extracted DNA were measured using Spectrophotometer NanoDrop (ND)-2000 at wavelengths of 260 nm and 280 nm. The DNA concentration is calculated using optical density (OD) at 260 nm reading, (OD260* 50ng/µl * dilution factor (1)) and the purity is computed from the ratio of 260nm and 280 nm readings. 23 3.3.3 Transferability test of sugarcane DNA markers in Miscanthus The fifty-three primer pairs of sugarcane DNA markers, including gene markers and Simple Sequence Repeat (SSR) markers, were initially screened for amplification of Miscanthus genomic DNA (Appendix A, Table A1). Polymerase Chain Reaction (PCR) amplification of Miscanthus DNA was carried out on a thermal cycler with a 96-well plate under the following conditions: an initial step of 5 min at 94oC, followed by 35 cycles of denaturation at 94oC for 30 sec, annealing at 50-55oC for 30 sec depending on SSR primers used, extension at 72oC for 1 min and final extension at 72oC for 7 min. The total volume of each PCR reaction was 10µL containing 25ng template DNA, 1.0 µL of the 10X reaction buffer (MgSO4 free), 1.0 µL or 25 mM Mg++, 0.2 µL or 10 mM dNTP, 1.0 µL or 5 µM (0.5 µL Forward and 0.5 µL Reverse) primer, and 0.05 µL of 5 u/µl Taq polymerase. The amplified products were separated on 1.0% metaphor agarose gel using 1X Tris-borateEDTA (TBE) buffer. After electrophoresis, the gel was stained with 1% ethidium bromide solution and the image of the gel was visualized under UV light. The sizes of the amplified fragments were quantified by using a 100 bp to 1000 bp DNA ladder. The PCR amplification was run more than once to ensure reproducibility. 3.3.4 Data analysis The unambiguous bands across all the sampled populations were scored in this study. The amplified fragment size from the SSR markers was estimated manually by the presence or absence of the bands for each primer–genotype combination was scored as either 1 or 0, respectively. Only reliable and intensive bands were scored. The resulting 1/0 data matrix 24 were analyzed using Numerical Taxonomy System (NTSYSpc2.2) software (Rohlf, 1993; Gosh et al. 2011). On the basis of DNA marker polymorphism data, genetic similarities among the different populations of Miscanthus sinensis were estimated using the Unweighted Pair-group Method with Arithmetic mean (UPGMA) in cluster analysis. The genetic distance among genotypes was calculated and the phylogenetic relationship was reconstructed among all genotypes based on the gene sequence data of the cellulose synthesis genes using the Molecular Evolutionary Genetics Analysis (MEGA, version 6.0) software. 25 CHAPTER 4 : RESULTS AND DISCUSSION 4.1 Results 4.1.1 DNA concentration and quality The genomic DNA of leaf samples were isolated using a novel protocol tailored for Miscanthus DNA (Egnin et al. 1998). The DNA concentration ranged from 35 to 1604.2 ng/µl. The average purity of DNA (A260/A280 ratio) were found to be 1.81 with a standard deviation 0.09, indicating that isolated DNA had an excellent quality (ND-2000, user manual). A ratio less than 1.6 indicates a high level of protein contamination in the DNA whereas a ratio of greater than 2 represents an excess of RNA. Additionally, resolved DNA on a 1% agarose-ethidium bromide gel showed high molecular weight DNA with no smearing. The DNA concentration and quality were measured using a spectrophotometer ND-2000, and presented in appendix B, Table B1. 4.1.2 Transferability of Sugarcane DNA markers in the Miscanthus genome and their amplification prototypes Because of the paucity of available genetic markers in Miscanthus (Hodkinson et al. 2002; Atienza et al. 2002), molecular markers from closely related sugarcane (both in the gramineae family) were used (Tang et al. 2008) in the present study to identify genetic markers in Miscanthus. DNA markers including genomic markers and gene-specific ESTSSR markers (Cordeiro et al. 2000; Silva and Solis-Gracia, 2006) from sugarcane were selected and tested to amplify isolated genomic DNA from Miscanthus. Sugarcane and sorghum are both closely related to Miscanthus than corn (Hodkinson et al. 2002), but sugarcane is evolutionarily the closest cultivated to Miscanthus, we reasoned that it might 26 provide the most useful candidate genes for the development of SSR markers for the bioenergy grass. Initialy, the repeatability of amplicons (the PCR products amplified) was examined by running the samples on 1% agarose gels. All fifty-three sugarcane DNA markers were proven to be effective in detecting markers in Miscanthus. These produced clear and unambiguous amplicons and detected high levels of DNA polymorphism among the 228 genotypes of Miscanthus sinensis (Fig. 4.1). SMC226 (A) EST-SSR29 (B) Figure 4.1: Polymorphic amplification of Miscanthus genomic DNAs using sugarcane genic markers SMC226 and EST -SSR29. Line: 1) DC416 2) DC436 3) DC417 4) DC437 5) DC418 6) DC438 7) DC419 8) DC439 9) DC4110 10) DC4310 11) DC4111 12) DC4311 13) DC4112 14) DC4312 15) DC421 16) KY712 17) DC422 18) KY713 19) DC423 20) KY714 21) DC424 21) KY715 22) DC425 23) KY716 24) DC426 25) KY717 26) DC427 27) KY718 28) DC428 29) KY719 30) DC429 31) KY7110 32) DC4210 33) KY7111 34) DC4211 35) KY7112 36) DC4212 37) KY721 38) DC431 39) KY722 40) DC432 41) KY723 42) DC433 43) KY724 44) DC434 45) KY725 46) DC435 47)KY726 48) DC436 27 The high transferability of sugarcane markers in Miscanthus thus confirms our presumption that Miscanthus and sugarcane are closely related species. Complicated banding models were observed in Miscanthus suggesting high levels of heterozygosity. The degree of transferability was not affected by the regulation of PCR condition and gel electrophoresis. Among all 53 sugarcane DNA markers tested, thirteen EST-SSR markers, all of which readily amplified the Miscanthus DNA. Seven of these (SSR29, SSR30-2, SSR31-2, SSR33, SSR35, SSR37 and SSR38-2) produced polymorphic bands at most loci. The polymorphic bands resulted from various lengths of SSR motifs, which were separated using gel electrophoresis. The length of SSR motifs was caused by the slippage in different genotypes. Thus, these polymorphic SSR markers were appropriately used to reveal the genetic diversity of naturalized populations. While most SSR markers showed high levels of DNA polymorphism, six sugarcane markers (30-1, 31-1, 32, 34, 36 and 38-1) were monomorphic, i.e. each amplified similar size of amplicon among the genotypes used (Fig. 4.2). Cordeiro et al. (2000) found nine monomorphic markers over 100 SSR markers examined in five sugarcane varieties. Selvi et al. (2003) also observed a high level (71.4%) of monomorphism in Erianthus cultivar. 28 SSR 30-1 SSR 34 SSR 36 SSR 38-1 Figure 4.2: Monomorphic amplification profile of Miscanthus obtained with sugarcane markers SSR30-1, SSR 34, SSR 36 and SSR 38-1, respectively. 29 4.1.3 Determination of genetic diversity within and among naturalized populations in Miscanthus The genetic distance (GD) of Miscanthus genotypes across six US states was calculated based on the sequence data using MEGA software (employing pair wise distance calculation). The lowest genetic distance (0.004) was observed in genotypes from Virginia (VA) state, sampled from latitude N 37.23, longitude W 80.21 and elevation 655.0152m. While the highest genetic distance (0.012) was found among the genotypes collected from North Carolina (NC) (Table 4.1), sampled from latitude N 35°32.032', longitude W 82°32.834' and elevation 698 m. Table 4.1: List of the genetic distance of genotypes in each state based on sequence data Serial No. Genotypes Maximum genetic distance 0.018 Mean genetic distance 1. Ohio (OH) 2. 0.024 0.008 3. North Carolina 1.5 (NC1.5) North Carolina (NC) 0.049 0.012 4. Washington D.C. (DC) 0.026 0.006 5. Kentucky (KY) 0.029 0.005 6. Pennsylvania (PA) 0.021 0.007 7. Virginia (VA) 0.013 0.004 0.006 The results indicated that genotypes from OH had the highest GD (0.018) among four combinations (Appendix C, Table C1), while highest GD (0.024) was found between NC1.5 236-NC1.5 224 and NC1.52311-NC1.5 224 (Table C2), in NC highest GD (0.049) was found between NC337 and NC3210 (Table C3), in DC highest GD (0.026) was found between DC 30 4210 and DC425 (Table C4), in KY highest GD (0.029) was found in KY728-KY718 and KY737-KY728 (Table C5), PA highest GD (0.021) was found in PA1031-PA10110 and PA1032-PA1023 (Table C6), in VA highest GD (0.013) was found between VA1031and VA1218 (Table C7) 4.1.3.1 Cluster Analysis of Miscanthus Genetic similarity (GS) was determined based on the allele frequencies of four ESTSSR markers data among the 228 genotypes using Jaccard’s coefficient (Xu et al. 2013). The mean genetic similarity between genotypes was 0.0044. Overall genetic similarities among 228 genotypes ranged 0.0–1.0. Cluster analysis was performed using clustering method UPGMA with the NTSYSpc 2.2 software on the basis of the similarity matrix among all genotypes. A dendrogram was generated using Sequential agglomerative hierarical nested cluster analysis (SAHN). Eleven clusters were formed in the dendrogram and showed that some genotypes formed a unique group related to geographic area whereas most of the genotypes from different states were mixed in groups (Fig.4.3). 31 OH121 NC1. 5214 OH142 NC319 NC331 DC425 KY716 KY738 PA1028 VA1234 OH134 VA12312 OH143 NC1. 5236 NC335 PA1022 PA10311 OH128 OH129 OH136 PA1039 OH1310 DC435 PA10110 OH147 KY734 VA1225 DC4310 DC4311 DC421 KY715 PA10111 PA1024 PA1025 KY735 PA1026 PA1034 VA1233 VA12311 NC326 DC4210 DC4212 VA1211 VA1218 VA1219 NC312 VA12212 235 NC1. 52311 PA1014 PA10310 OH148 NC1. 5 239229 VA1227 NC327 NC1. 5 2312 VA1229 VA1231 VA12110 VA1222 NC322 PA1015 VA12112 OH1212 VA1232 VA1235 NC1. 5226 DC432 PA1029 PA1033 VA1215 DC427 PA1036 VA1224 NC318 VA12111 DC411 DC426 PA10212 DC438 VA12211 KY7110 KY721 VA1228 VA1236 VA1221 VA1239 PA10210 VA1216 NC1. 5228 DC437 DC439 PA1027 KY739 NC324 PA1023 DC4110 PA10112 DC436 DC4112 PA1011 DC422 DC4211 KY712 KY719 PA1013 NC311 PA10211 VA1223 VA1214 VA1217 OH146 NC1. 55216218 PA1021 NC1. KY718 KY723 OH132 NC1. 5219227 KY732 OH1410 OH133 NC1. 552122342310 DC423 NC1. DC429 KY_713 KY7310 NC314 PA10312 KY714 DC433 NC316 DC4111 DC434 PA1016 KY7311 DC413 KY722 DC4312 KY7111 KY7210 KY7211 OH137 DC418 OH138 NC3110 VA1212 VA1226 OH144 DC419 DC424 PA1018 PA1038 NC334 KY717 KY7312 OH1311 NC1. 5232 KY_726 PA1037 KY728 KY733 KY737 KY7212 PA1031 DC417 KY729 PA1032 KY727 OH_1411 NC1. 52152110 DC412 OH131 DC428 VA1213 NC1. 552111 NC315 NC325 NC1. NC328 NC1. 5231225217 PA1035 DC431 PA1012 NC1. 5222 PA1017 KY7112 KY724 KY725 OH_122 OH125 OH_1211 OH135 OH123 NC1. 52242211 OH124 OH126 OH127 OH149 NC1. 5211 OH141 DC414 NC317 OH139 NC1. 52112 223 NC329 NC3210 NC337 DC415 NC3211 NC1. 5 221 NC3111 DC416 0H1412 NC1. NC332 PA101952210 0.10 0.33 0.55 0.78 XI X IX VIII VII VI V IV III II I 1.00 Similarity coefficient Figure 4.3: Dendrogram showing the genetic relationship among 228 populations of Miscanthus with four sugarcane EST-SSR markers. 32 The results indicated that the genotypes OH1412, NC1.52210, NC332, PA1019 and DC416 from Ohio, North Carolina, Pennsylvania and Washington D.C. were the most distant in comparison to the others, and formed group I. Although their geographical distances were not close, they were genetically similar. Only genotypes NC1.5221 and NC3111 comprised group II, and these genotypes came from the same state in each group and have a closed genetic distance. OH121 and NC1.5214 formed group XI. But all these three groups (I, II, and XI) have a large genetic distance from remaining genotypes and formed a basal cluster. Group III included most genotypes from Ohio and North Carolina, and only two from Washington D.C. (OH149, NC1.5211, OH141, DC414, NC317, OH139, NC1.52112, NC1.5223, NC329, NC3210, NC337, DC415 and NC3211), while genotypes in group IV came only from Ohio and North Carolina (OH122, OH125, OH1211, OH135, OH123, NC1.52211, NC1.5224, OH124, OH126 and OH127). Thus, genotypes from Ohio and North Carolina were mixed in groups and might have a similar genetic information, although Ohio genotypes were sampled from latitude N 39.4760, longitude W -81.3045 and elevation 1094 m, and the North Carolina genotypes from latitude N 35°33.010', longitude W 82°34.034' and elevation 571.5m (Fig.: 4.4). 33 IV III II I Figure 4.4: Cluster I, II, III and IV In group V, the genotypes were collected from similar latitudes North Carolina (latitude N 35°33.010'), Washington D.C. (latitude N 38°56.354'), Pennsylvania (latitude N 39°57.814') and Kentucky (latitude N 37.8034). The mixture of genotypes from Ohio, North Carolina, Washington D.C., Pennsylvania and Virginia comprised the group VI. In group VII, genotypes from Ohio, North Carolina, Washington D.C., Kentucky and Pennsylvania were clustered but without Virginia’s genotypes (Fig.4.5). 34 DC418 OH138 NC3110 VA1212 VA1226 OH144 DC419 DC424 PA1018 PA1038 NC334 KY717 KY7312 OH1311 NC1.5232 KY_726 PA1037 KY728 KY733 KY737 KY7212 PA1031 DC417 KY729 PA1032 KY727 OH_1411 NC1.5215 NC1.52110 DC412 OH131 DC428 VA1213 NC1.52111 NC315 NC325 NC1.5231 NC328 NC1.5217 NC1.5225 PA1035 DC431 PA1012 NC1.5222 PA1017 KY7112 KY724 KY725 OH_122 0.10 0.33 0.55 0.78 1.00 Similarity coefficient Figure 4.5: Cluster V, VI, and VII The genotypes from Ohio, Washington D.C., Pennsylvania, Kentucky and Virginia were detected in cluster VIII. However, the genetic distances of North Carolina genotypes were very high (0.012) and they were not grouped together with other genotypes into cluster VIII. In cluster IX, the genotypes from Ohio, North Carolina, Washington D.C., Kentucky and Pennsylvania (Fig.4.6). Group X was the biggest and included genotypes from most states. (Fig.4.7). VII VI V 35 NC1.5227 KY732 OH1410 OH133 NC1.5212 DC423 NC1.5234 NC1.52310 DC429 KY_713 KY7310 NC314 PA10312 KY714 DC433 NC316 DC4111 DC434 PA1016 KY7311 DC413 KY722 DC4312 KY7111 KY7210 KY7211 OH137 DC418 OH138 NC3110 VA1212 VA1226 OH144 DC419 DC424 PA1018 PA1038 NC334 KY717 KY7312 Figure 4.6: Cluster VIII and IX 0.10 0.33 0.55 0.78 IX VIII 1.00 Similarity coefficient OH121 NC1.5214 OH142 NC319 NC331 DC425 KY716 KY738 PA1028 VA1234 OH134 VA12312 OH143 NC1.5236 NC335 PA1022 PA10311 OH128 OH129 OH136 PA1039 OH1310 DC435 PA10110 OH147 KY734 VA1225 DC4310 DC4311 DC421 KY715 PA10111 PA1024 PA1025 KY735 PA1026 PA1034 VA1233 VA12311 NC326 DC4210 DC4212 VA1211 VA1218 VA1219 NC312 VA12212 NC1.5235 NC1.52311 PA1014 PA10310 OH148 NC1.5239 NC1.5229 VA1227 NC327 NC1.52312 VA1229 VA1231 VA12110 VA1222 NC322 PA1015 VA12112 OH1212 VA1232 VA1235 NC1.5226 DC432 PA1029 PA1033 VA1215 DC427 PA1036 VA1224 NC318 VA12111 DC411 DC426 PA10212 DC438 VA12211 KY7110 KY721 VA1228 VA1236 VA1221 VA1239 PA10210 VA1216 NC1.5228 DC437 DC439 PA1027 KY739 NC324 PA1023 DC4110 PA10112 DC436 DC4112 PA1011 DC422 DC4211 KY712 KY719 PA1013 NC311 PA10211 VA1223 VA1214 VA1217 OH146 NC1.5216 PA1021 0.10 0.33 0.55 0.78 1.00 Similarity coefficient Figure 4.7: Cluster X and XI Eleven groups were formed from cluster analysis based on the similarity among 228 genotypes derived from different state naturalized populations. The genotypes of North XI X 36 Carolina were spread in several groups due to its large genetic variation (mean genetic distance 0.012). On the other hand, genotypes from the Virginia populations with the lowest mean genetic distance 0.004 were observed in only two groups. It was considered that the phylogenetic analysis with DNA sequences of cellulose synthase is a more reliable, efficient and informative method than cluster analysis based on PCR band scores. Firstly, the main problem arose in the manual scoring of polymorphic bands on agarose gels which was not as accurate as automated genotype sequencing method. Secondly, the same score obtained from the PCR products (bands) with the same length might have different sequences in their composition or arrangement of nucleotides. Thirdly, the gel was stained by 1% ethidium bromide solution and the image of the gel was visualized under UV light. Sometimes, the gel could not be properly stained with ethidium bromide and bands could not be distinguished well. SSR has proven useful for assessing genetic diversity within different crops including grasses such as, soybeans, rice, maize, tropical trees, sunflowers, grapevines, barley, cotton, wheat and Brachypodium distachyon grass (Akkaya et al.1992; Morgante and Oliveri 1993; Wu and Tanksley 1993; Senior and Heun 1993; Condit and Hubbell 1991; Brunel 1994; Thomas and Scott 1993; Saghai-Maroof et al. 1994; Roder et al. 1998; Vogel et al. 2010). 4.1.3.2 Phylogenetic relationship Phylogenetic relationships of the 228 genotypes were constructed based on DNA sequences (shown in appendix D) of cellulose synthase using the MEGA software. Although some SSRs detected polymorphism among genotypes of Miscanthus, some such as SSR30-1 showed monomorphism. In order to reveal genetic variation deeply in these Miscanthus 37 genotypes, all PCR products of these genotypes amplified by SSR30-1 primer pair were subjected to sequencing, and the resulting data used for phylogenetic analysis. The radiation and circular tree are shown in Fig 4.8. Both trees illustrated clear genetic relationships among the 228 genotypes. The phylogenetic tree consisted of five main clades. DC DDCC4 PPKA 43 AY D1Y17C002215 4121912 K NC 742 72 VO KD AD1H C 14Y24C24 233 VVVAAAO 2 H 11122112712131172302 2336121 ON H 1 C 2241112 OOH NN NN1 D H C 1 C 1 C CC2339 4214 O DH O C12 3129174 PNA C1N NC3 N 212 30H 1 4 2 2 C 1 1 C 0 3 32359 NN N CC PA 3213 2212618 1C 15 DC40221 37 9 D PVVC A A2 A44 N D DC NC 14 C 1 21 13 C PA OH127 11 02 13821 10 14 23266 OH 2 46 236 1 H O O HH 14 112 23 OH1 O312 H142190 OH13 3972 NC 033 2 3 1 K1YH PA 371 6 1231 KYO7NC239 NC 5 32 C1 N 527 CC 134 NN 12113 42232 C 10 2 1 A DC P 3 C 2 NN 2 31 P1A210 OH 1 VVV A PA1 A 032 1 1 V A 112 1V 031 33269 A 222 1 A 26 11 PA A010 PPA1 222147 171202 K7Y4 7 KY 15 DC213204 C 1 3 N 4211 4110 C3C 1D C 2 2 NN 14128 ONHC Y K D7C43243 D2C 27112226 K Y37211 110Y 1 VPAAK VA A. Radiation Tree V VVAA VVAAA1112122 V A 1 2 31 VV AA 1211222113155442 VV AA 1213231128176 VA 28 VA12110 2219 11 112 VA VA121 1100910 100222313 PAAY1K7Y7 P K VVAA11221235 PA 4 819113 24 201213213 10 7110 A7C PA P Y KKY734 7177411 Y Y Y K KD K KY 114221843 1H321112 O CH2YH7 O NO K I II III 2 NC 31 V KY725A122 NC316 DDCC441181 NC 313286 DC 41 D C 4 K Y 742 33579 ND CC 2 141 K 271 PA1037 PAY10 PA 10116 PA 10 295 KY717 NC2394 KY72 NC33 13213725 DC424 D 1C0743 AY P PK DC426 C741121605260 K DY 27 OH C231213 4 2 C N C D NN 1 143221311307 DCC H N O C 41 DNNCC423742117538 C 22 KY D C N 712431186 C K H NY C123042111085484 O A7C Y 03 PND K N1C 10 P PA101213551 PANAC1H0121313345891 PONCH10221 9 POACC3 0411229 N 1 2 1 4 3 N PA DA1C10Y732331312151 PVA K NCC 433 3120 N NCC C2321 8 D N CC4HC1313233996 DNO H1 N O OH O H ON 1 OOHHHC1121310 14442371 0.008 0.006 0.004 0.002 0.000 IV V Figure 4.8: Neighbor- joining radiation tree showing phylogenetic relationships among 228 Miscanthus genotypes based on sequence analysis using MEGA software. 25 1 K1Y2723116 VANC 18 4 DC 436 DCC31182 N 4 9 DCC4335 D Y7 271 K 41 DC22 4 NC Y7013176 K1 0 5 P A 1 01 9 PAA1 102 17 P A 7 P KY B. Circlular tree O N H OOHC32138 H113 9 369 0.002 V IV I III II 41110 HC13 24 5 ON C3 23 7 0 NNC 4111 1 DKCY7 7120211 6 KPYA 100231 PAA11033211 P A 10 6 PPA 23 1 9 VAA122321 V A1 24 V A12 27 V A12 V 122 4 03 OH PAC12311 N C4211 D 2112 NC 223 NC 325 NC 327 NC 9 NC23 5 NC31 OH126 KY7311 PA1039 KY73 2 NC337 OH1 2 OH1331 OH14122 O H 1 2 9 O PAH10410 6 OH1 123 OH OH11464 N 2 N C2 7 DCC23162 D D C 416 PAC441318 V V A1102 1 DCA122322 P NCA143 33 NPCA13201271 NN 3 01 2 N CC332 2102 NNCC22 1161 C321 5 289 33 5 H1 1229 2 OOHC4 114291 4 1 1 H D OOH H1231 2 ONC 2219 NNCC333117 C 341241010 N 7 2 1 NDCC KY 10 923110 0 A 3 1 P 7 KPPYAA10 3 22 VA112216112 A V A123 1 V 141 2 OH DC421 2210 C1 NH O 75 Y73 KPA 102 43217 DC PA10 KY7212 KY723 DC N C423 23212 KY OH71 1211 OH OH 128 OH 144 DC41123 3912 DC K 421 K Y713 Y KY7718 71119 1 K D Y7 DCC4321 K P Y743 1 PAA102141 10 23 PK 24 V AY7 V A 10314 1 A 122133 25 N K C NCY7 23 D D C 3329 4 PAKYC4424 2 PA 1072 35 DC101337 K 4 1 D Y7 26 OHC4216 NC 1 5 NC211307 DC 2 2 4 N 1 6 DCC4231102 21 N OH1C3330 NC2311 DC43 17 NC 11 NC 227 KY721254 DC4 NC22183 KY738 NC218 OH148 NC216 PA1014 KY73105 DC41 NC314 PA11001288 PA10110 PA C215 N 35 PA1H0131 O C2145 N H1338 O 0 PA1C222191 N3 9 NCA10122 P C422192 D11 VA10 33 PA KY733342 NCC23115 N C 3311 N C 4 121 NC332 D C 2 210 N C 33 N C4 NC D VA1222 VA121 11 VA12 VA1228 110 VA V A12 1219 312 VA12138 11 VA VA112217 VA 16 VA11215 V 235 VAA11214 VA 234 V P A 1212 VAA1102311 122 12 12 KY KY 72 KDYC47246 7 DDCC 13132 OH 44128 1 O O H 14 0 ONCH11432 N H121 47 C2 311 21 0 38 Figure 4.9: Circular phylogenetic tree of Miscanthus obtained by sequence analysis using MEGA software. 39 The variation of sequences within clade was smaller than that between clades. The clade I included genotypes from all states and indicated that all these genotypes might have been introduced from the same origin and adapted in these states. Clade II also enclosed genotypes of all states. This group of genotypes diverged from those in Clade I at the DNA sequence level and may suggest that they were descended from a different ancestry. Clade III was unique and only contained three genotypes from NC, three from OH, and one from DC. Clade IV covered genotypes from five states (NC, OH, PA, DC, and KY) with the exception of one VA genotype. Only two genotypes (one from NC and one from KY) were found in the clade V, the most divergent of the five clades. The genotypes of NC were included in all five clades and further confirmed that genotypes within NC have the largest genetic variation, implying that genotypes of NC might be collected from different places of origin. In contrast, the genotypes from VA had the smallest genetic variation and concentrated in Clade I and very few genotypes of Virginia were found in the clades II and IV, indicating that VA genotypes with small genetic variation could come from a single original location, while genotypes of PA and KY were extended into only three different clades I, II, and IV (Fig. 4.8). 40 4.2 Discussion Since the flanking sequences of Simple Sequence Repeats (SSR) loci were conserved across different species and genera, various SSR marker were used for the reorganization crop species through the closely related species (Kresovich et al. 1995; Provan et al. 1996; Brown et al. 1996; Ishii and McCouch 2000; Provan et al. 1996; Zhao et al. 2011; Kim et al. 2012; James et al. 2012 and Quinn et al. 2012). Xu et al. (2013) found that 20 of 30 pairs of sorghum EST SSR primers could detect polymorphic bands (93.2%) in the genome of Miscanthus sinensis. However, Zhong et al. (2009) evaluated that only 24.6% (94 out of 382) maize microsatellite markers could amplify Miscanthus DNA. Zhao et al. (2011) found that of 57 SSR markers of Brachypodium distachyon, 86% were transferrable in M. sinensis. Zhou et al. (2011) employed 14 SSR loci of M. sinensis to study the genetic diversity and populations structure of the three species of Miscanthus (M. sacchariflorus, M. floridulus, and M. lutarioriparius). Twelve of 14 SSR markers (85.71%) showed a high transferability in these three species. In this study, sugarcane DNA markers were used to test transferability of PCR amplification with Miscanthus DNAs. All 53 sugarcane DNA markers tested including 13 sugarcane EST-SSR markers were effective in DNA amplification in Miscanthus. Seven of thirteen EST-SSRs (SSR29, SSR30-2, SSR31-2, SSR33, SSR35, SSR37 and SSR38-2) produced polymorphic bands at each locus while the remaining six sugarcane markers (30-1, 31-1, 32, 34, 36 and 38-1) showed monomorphism in Miscanthus. Thus, these polymorphic markers could provide informative tools in Miscanthus genetic and genomic studies, such as genetic linkage mapping and genetic diversity studies. 41 These seven polymorphic markers identified were utilized for genetic diversity study in the six naturalized populations of Miscanthus. Plant genotype samples were collected from different states with a larger span of latitude, longitude and elevation to explore the effect of geographical variation on the levels of genetic variation. The genotypes of Ohio (OH) were sampled from latitude N 39.4760, longitude W -81.3045 and 1094 m; North Carolina (NC) genotypes were accumulated from latitude N 35°32.032', longitude W 82°32.834' and elevation 698 m/ 571.5 m; Washington D.C. (DC) were gathered from latitude N 38°56.354', longitude W 077°02.958' and elevation 48 m; Kentucky (KY) were assorted from latitude N 37.8034, longitude W -83.6628 and elevation 1293m; Pennsylvania (PA) were found N 39°57.814', W 075°23.778' and elevation 92.0496 m; and Virginia (VA) genotypes were sampled from latitude N 37.23, longitude W 80.21 and elevation 655.0152 m. A total of 228 plant samples were used to reveal the genetic variation within each state and among states. The highest mean genetic distance (0.012) was obtained among genotypes from NC, while the lowest mean genetic distance (0.004) was measured in VA. The dendrogram of 228 genotypes based on PCR amplified data further confirmed that genotypes from NC State were distributed in almost all groups, indicating its large genetic variation. On the other hand, genotypes from VA showed small genetic variation and were distributed in only two groups. The large genetic variation in NC genotypes might suggest that they were originally introduced from different places from the center of origin of Miscanthus, while VA genotypes with the lowest level of genetic variation might have descended from a single family. The genotypes from other states (OH, PA, DC, and KY) had similar distribution 42 across groups with those in NC and did not form unique groups, implying that Miscanthus genotypes in US naturalized populations were derived from a similar genealogy. When DNA markers displayed monomorphism based on the length of amplicons due to size homoplasy, the sequence of amplicon would provide additional information on the genetic variation because of nucleotide mutant or sequence rearrangement. In this study, all amplicons of 228 genotypes amplified by the monomorphic marker EST-SSR30-1 were sequenced. Analysis of sequences showed that the total genetic variation among 228 sequences was 0.0044, which was similar with other grass species. Phylogenetic relationship among 228 genotypes from six naturalized populations was determined based on the sequences of amplicons by EST-SSR30-1 marker related to cellulose synthase gene. There were five clades, in which clades I and II were sister subclades including genotypes from all six states. However, clades III, IV, and V contained genotypes from five states without VA genotypes with one exception. The clades III and V were unique in their sequences. The result may suggest that all genotypes of six naturalized populations were descent from four ancestries. Both polymorphic markers and DNA sequences displayed that large genetic variation was found in NC genotypes and small variation in VA genotypes. The result also indicated that the higher genetic gain would be obtained within NC State for Miscanthus breeding while less genetic advance would be reached in VA. 43 CHAPTER 5 : SUMMARY AND CONCLUSIONS Miscanthus has become a promising bioenergy crop due to its large biomass, rapid growth and marginal land use. Miscanthus is presented in several states of the US for a long period. These naturalized Miscanthus populations might have been introduced from different centers of origin at the earlier time. However, genetic diversity of naturalized Miscanthus is remaining unknown. Therefore, the aim of our study was to understand genetic diversity of the naturalized Miscantus in the US. A total of 228 Miscanthus genotypes were collected from six states (Ohio, North Carolina, Washington D.C., Kentucky, Pennsylvania, and Virginia). The genotypes collected from a state were considered as naturalized populations. Thus, six naturalized populations were analyzed to reveal the genetic diversity of Miscanthus among states and within state using sugarcane SSR markers because of lack of SSR markers in Miscanthus and close related species of Miscanthus and sugarcane. The concentration of isolated DNA from Miscanthus was in the range from 35 to 1604.2 ng/µL and DNA quality was in the range 1.6 – 1.8 at the ratio of A260/A280, analyzed using spectrophotometer ND-2000. Initially, the fifty-three (53) sugarcane DNA markers, including SSR markers and gene markers, were tested for their transferability in Miscanthus. All fifty-three sugarcane DNA markers generated expected size of bands through PCR amplification, indicating high transferability of sugarcane DNA markers on 228 Miscanthus sinensis genotypes. Due to most gene markers showing less polymorphism among Miscanthus genotypes, the dataset derived from polymorphic EST-SSR markers were used for the diversity study. The average genetic similarity value among 228 genotypes was 0.0044 based on the PCR amplified bands data. 44 Cluster analysis was performed using UPGMA method in NTSYSpc software on the basis of genetic similarity matrix. Eleven distinct clusters formed in the dendrogram. The results indicated that the genotypes from North Carolina were spread in ten groups due to its largest genetic variation and the genotypes from Virginia were accumulated into three groups due to its less genetic variation. In non-polymorphic SSR markers, SSR alleles could be similar in length, but might be different in descent. To further understand genetic diversity among these Miscanthus genotypes, PCR products of 228 genotypes amplified by one of non-polymorphic EST-SSR 30-1 maker was sequenced. Sequence data showed a nucleotide variation among these genotypes. The genetic distance (GD) within each population was calculated to estimate the extent of their divergence using MEGA software. The highest genetic distance (0.012) was found in North Carolina state which was sampled from latitude N 35°32.032', longitude W 82°32.834' and elevation 698 m. However, the lowest genetic distance (0.004) was observed in Virginia (VA) state, sampled from latitude N 37.23, longitude W 80.21 and elevation 655.0152 m. The results suggested that Miscanthus genotypes in NC had a large genetic variation while genotypes in VA showed small variation. Phylogenetic relationships among all genotypes were constructed on the basis of amplified sequences using the MEGA 6 software. The results also indicated that the highest numbers of genotypes of North Carolina were accumulated into all five clades, indicating that genotypes might have been collected from several different sources and they were close ancestor to others genotypes. While Virginia genotypes were mainly concentrated into one clade, representing that genotypes had small genetic variation could originate from single source. 45 From this study, the newly developed genic SSR markers in Miscanthus will be useful for further analyzing populations genetics and evolutionary history of Miscanthus or its closely related species. Those markers will be valuable for germplasm evaluation, genetic studies and molecular breeding of Miscanthus in US. They will also be helpful in choosing different genes or vigorous parents with respect to traits of interest for efficient breeding, highly productive varieties for biofuel or ethanol production, and tracking the potential genetic materials responsible for adaptation into different environmental situations. Moreover, the reliable information on the genetic diversity of Miscanthus naturalized populations can be generated by studying those markers that may be used as new tools for identifying varieties and will allow us to enhance our understanding of the distribution and extent of genetic variation within and among Miscanthus naturalized populations. All these study would be very beneficial for better utilization of Miscanthus resources in US and for the development of alternative or second-generation energy crops. 46 CHAPTER 6 : RECOMMENDATIONS In this research the genetic diversity of Miscanthus within and among naturalized populations was investigated and a very few markers were developed in Miscanthus for generating reliable information to better utilize Miscanthus naturalized resources in US. Based on observation, scope for the future work and directions are suggested. In this research, only sugarcane SSR markers were employed to analyze the genetic diversity of Miscanthus. Other type of markers such as AFLP, RFLP, RAPD, and ISSR from related crops can also be tested for genetic diversity study. More SSR markers can be developed which could be used as a tool for understanding the mechanisms of biomass accumulation, populations demography, populations structure, gene flow, and reproduction system of Miscanthus. Most of the Miscanthus populations in this study were collected from Eastern part of US. It is recommended to collect Miscanthus populations from also other parts of US and continue such genetic diversity analysis. 47 REFERENCES Alexander, B. (2007). The Biltmore Nursery: A Botanical Legacy. Natural History Press, Charleston, SC. Aitken, K. S., Jackson, P. A, & McIntyre, C. L. (2005). A combination of AFLP and SSR markers provides extensive map coverage and identification of homologous linkage groups in sugarcane. Theor Appl Genet., 110, 789–801. Akkaya, M. S., Bhagwat, A. A., & Cregan, P. B. (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 132, 1131–1139. Brunel, D. (1994). A microsatellite marker in Helianthus annuus L. Plant Mol. Biol, 24, 397– 400. Brown, M., Hopkins, M. S., Mitchell, S. E., Smior, M. L., Wang, T. Y., Duncan, R. R., Gonfzle C. F., & Kresovich, S. (1996). Multiple method for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolar (L.) Moench). Theor. Appl. Genet., 93, 190–198. Burnquist, W., Sorrells, M. E., Irvine, J. E., & Paterson, A. H. (1998). Alignment of Sorghum and Saccharum chromosomes: comparative organization of closely-related diploid and polyploidy genomes. Genetics, 150, 1663–1682. Culley, T. M., & Hardiman, N. A. (2009). The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions, 11, 1107–1119. Chou, C.H. (2009). Miscanthus plants used as an alternative biofuel material: the basic studies on ecology and molecular evolution. Renew. Energy, 34, 1908– 1912. 48 Chiang, Y. C., Schaal, B. A., Chou, C. H., Huang, S., & Chiang , T. Y. (2003) . Constrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). American Journal of Botany 90, 561 – 570. Chen, S. L., & Renvoize, S. A. (2006). Miscanthus Andersson. In: Wu, Z.Y., Raven, P.H. (Eds.), Flora of China, vol. 22. Science Press, Beijing, St. Louis, MO: Missouri Botanical Garden Press. pp. 581–583. Clifton-Brown, J. C., Chiang, Y. C., & Hodkinson, T. R. (2008). Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris, W. (Ed.), Genetic Improvement of Bioenergy Crops. Springer, New York, pp. 273–294. Cordeiro, G. M., Taylor, G.O. & Henry, R. J. (2000). Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploidy species. Plant Sci., 155, 161-168. Condit, R., & Hubbell, S.P. (1991). Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome, 34, 66–71. Chou, C. H. & Ueng, J. J. (1992). Phylogenetic relationship among species of Miscanthus populations in Taiwan. Bot. Bull. Academia Sinica. 33, 63-73. Chou, C. H. & Chen, Y. Y. (1990). Populations study of Miscanthus floridulus III. Populations variation of M. floridulus in Green and Orchid Islets of Taiwan. Bot. Bull. Academia Sinica. 31, 223-233. 49 Chou, C. H. & Chang, F. C. (1988) Populations study of Miscanthus floridulus ecotypic variation of M. floridulus and M. transmorrisonensis as affected by altitude in Nantou, Taiwan. Bot. Bull. Academia Sinica. 29, 301-314. Chou, C. H., Hwang, S. Y., & Chang, F. C. (1987). Populations study of Miscanthus Floridulus (Labill.) Warb. I variation of peroxidase and Esterase in 27 populations in Taiwan. Bot. Bull. Academia Sinica 28, 247-281. Chou, C. H., Hwang, Y. H. & Hwang, S. Y., (1986). A biochemical aspect of phylogenetic study of Bambusaceae in Taiwan IV. The genera Arundinaria, Pseudosasa, Seminarundinaria, Shibataea, Sinobambusa and Yushania. Bot. Bull. Academia Sinica 27, 117-131. Chou, C. H. & Hwang, Y. H. (1985). A Biochemical aspect of phylogenetic study of Bambusaceae in Taiwan III. The genera Arthrostylidium, Chimonobambusa, and Dendrocalamus. Bot. Bull. Academia Sinica 26, 155-170. Chou, C. H., Sheen, S. S. & Hwang, Y. H. (1984a). A Biochemical aspect of phylogenetic study of Bambusaceae in Taiwan II. The genus Bambusa. Bot. Bull. Academia Sinica 25, 177-198. Chou, C. H., Yang, C. M. & Sheen, S. S. (1984b). A Biochemical aspect of phylogenetic study of Bambusaceae in Taiwan I. The genus Phylostachys. Proc. Natl. Sci. Counc., ROC (B) 8, 89-98. Deuter, M. (2000). Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe, in European Miscanthus Improvement (FAIR3 CT-96-1392) Final Report, ed by Lewandowski I and Clifton-Brown J. C. Stuttgart, pp. 28–52. 50 Devey, M.E., Bell, J. C., Smith, D. N., Neale, D. B., & Moran, G. F. (1996). A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor. Appl. Genet., 92, 673–679. Dwiyanti, M. S., Rudolph, A., Swaminathan, K., Nishiwaki, A., Shimono, Y., Kuwabara, S., Matuura, H., Nadir, M., Moose, S, Stewart. J. R. & Swaminathan, T. Y. (2013). Genetic Analysis of Putative Triploid Miscanthus Hybrids and Tetraploid M. sacchariflorus Collected from Sympatric Populations of Kushima, Japan. Bioenerg. Res., 6, 486–493. Dayanandan, S., Rajora, O.P., & Bawa, K.S. (1998). Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor. Appl. Genet., 96, 950–956. Eevera, T., Rajandran, K. Saradha, S. & Lashmi, A. (2008). Analysis of genetic variation in selected bamboo species using RAPD. Tree and Forestry Sci. Biotech., 21 (2), 54-56 Ellstrand, N. C., & Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants. Proc Natl Acad Sci. USA, 97, 7043–7050. Glowacka, K. (2011). A review of the genetic study of the energy crop Miscanthus. Biomass and bioenergy, 35, 2445-2454. Ghosh, S., Devi, S. W. Mandi, S. S. & Talukdar, N. 2011. Amplified Fragment Length Polymorphism based study of phylogenetic relationship and genetic variability among some edible Bamboo species of North-East India. J Plant Mol Biol Biotechnol 2, (2) 8-15. 51 Greef, J. M., Deuter, M., & Jung, C., et al. (1997). Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Res. Crop Evol., 44, 185–195. Gupta P.K., Balyan H.S., Sharma P.C., & Ramesh B. (1996). Microsatellites in plants: a new class of molecular markers. Curr Sci., 70, 45–53. Greef, J. M., & Deuter, M. (1993). Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angew. Bot., 67, 87–90. Huang, K. H., Chiang, T. Y., Chiu, C.T. Hsu, T. W. & Ho, C. W. (2009). Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conserv. Genet., 10, 1377–1380. Hernández, P. Dorado, G. Laurie, D. A. Martin, A. & Snape, J. W. (2001). Microsatellites and RFLP probes from maize are efficient sources of molecular markers for Miscanthus. Theor Appl Genet., 102, 616–622. Hamrick, J. L., & Godt, M. J. W., (1990). Allozyme diversity in plant species. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L. (Eds.), Plant Populations Genetics. Sinauer, Sunderland, MA, pp. 43–63. Hoarau J.Y., Offmann B., D’Hont A., Risterucci A.M., Roques D., Glaszmann J., & Grivet L. (2001). Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet., 103, 84–97. Hung, K. H. (2009). Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis(Poaceae). Conservation Genetics, 10 (5), 13771380. 52 Heaton, E., Voigt, T., & Long, S.P., (2004). A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg, 27, 21–30. Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14(9), 2000-2014. Hodkinson, T. R., Chase, M. W. & Renvoize, S. A. (2002). Characterization of a Genetic Resource Collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals of Botany, 89, 627-636. James, B.T., Chen, C., Rudolph, A., Swaminathan, K., Murray, J.E., Na, J.K., Spence, A.K., Smith, B., Hudson, M. E., Moose, S.P., & Ming, R. (2012). Development of microsatellite markers in autopolyploid sugarcane and comparative analysis of conserved microsatellites in sorghum and sugarcane. Mol Breeding, 30, 661–669. Kim, C., Zhang, D., Auckland, S.A., Rainville, L. K. Jakob, K., Kronmiller, B., Sacks, E.J., Deuter, M. & Peterson, A. H. (2012). SSR based genetic maps of Miscanthus sinensis and M. saccahriflorus, and their comparison to sorghum. Theor Appl Genet., 124, 1325-1338. Khanna, M. Dhungana, B. & Clifton-Brown, J. (2008) Costs of producing Miscanthus and switchgrass for bioenergy in Illinois. Biom. Bioen. 32, 482–493. Lewandowski, I., Scurtock, J. M. O., Lindvall, E., & Christou, M., (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg, 25, 335–361. 53 Lewandowski, I., Clifton-Brown, J.C., Andersson, B., Basch, G., Christian, D. G., Jørgensen, U., Jones, M.B., Riche, A.B., Schwarz, K.U., Tayebi, K., Teixeira, F. (2003). Biofuels: Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron. J. 95, 1274–1280. Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O., Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biom. Bioen. 19, 209–227. Linde-Laursen, I. B. (1993). Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas, 119, 297–300. Litt, M., & Lutty, J.A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet., 44, 397–401. Morgante, M., & Olivieri, A. M. (1993). PCR amplified microsatellites in plant genetics. Plant J., 3, 175–182. Paterson, A.H., Lin, Y.R., Li, Z., Schertz, K., Doebley, J.F., Pinson, S.R.M., Liu, S.C., Stansel, J.W., & Irvine, J.E. (1995). Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science (Washington, D.C), 269, 1714–1718. Paglia, G.P., Olivieri, A.M., & Morgante, M. (1998). Towards second generation STS (sequence -tagged sites) linkage maps in conifers: A genetic map of Norway spruce (Picea abies K.). Mol. Gen. Genet., 258, 466–478. 54 Powell, W., Morgante, M., McDevitt, R., Vendramin, G. G., & Rafalski, J. A.(1995). Polymorphic simple sequence repeat regions in chloroplast genomes: Application to populations genetics of pines. Proc. Natl. Acad. Sci. (U.S.A.), 92, 7759–7763. Quinn L. D, Culley T. M, Stewart J. R. (2012). Genetic comparison of introduced and native populations of Miscanthus sinensis (Poaceae), a potential bioenergy crop. Grassl. Sci. 58 (2), 101-111. Rohlf, F.J. (1993). NTSYS-PC: Numerical taxonomy and multivariate analysis system. Version 2.1. Exeter publishing. Setauker, NY. Rayburn, A. L., Crawford, J., Rayburn, C. M. & Juvik, J. A. (2009). Genome size of three Miscanthus species. Plant Mol Biol Rep., 27, 184-188. Roder, M.S., Korzum, V., Wendehake, K., Plaschke, J., Zixier, M.H., Leroy, P., & Ganal, M.W. (1998). A microsatellite map of wheat. Genetics, 149, 2007–2023. Sun, Q., Lin, Q., Yi, Z.L., Yang, Z.R., & Zhou, F.S. (2010). A taxonomic revision of Miscanthuss.l. (Poaceae) from China. Biol. J. Linn. Soc. Lond, 164, 178–220. Shimono, Y., Kurokawa, S., Nishida, T., Ikeda, H. & Futagami, N. (2013). Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Bot., 91 (7), 449-456. Stewart J.R., Toma Y., Fernandez F.G., Nishiwaki A., Yamada T., Bollero G. (2009). The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob Change Biol Bioenergy, 1, 126–153. 55 Scally, L., Hodkinson, T., & Jones, M. B. (2001). Origins and taxonomy of Miscanthus. In: Jones, B.M, Walsh, M., editors. Miscanthus for energy and fibre. London: James & James. p.1-9. Silva, J. A. & Nora, S. G. (2006). Development of simple sequences repeat markers from genes related to stress resistance in sugarcane. Subtropical Plant Sci., 58, 5-11. Selvi, A. Balasundaram, N. N. & Mohapatra, T. (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome, 46, 394–403. Saghai-Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q., & Allard, R.W. (1994). Extraordinarily polymorphic icrosatellite DNA in barley: species diversity, chromosomal locations and populations dynamics. Proc. Natl. Acad. Sci. (U.S.A.), 91, 5466– 5470. Senior, M. L., & Heun, M. (1993). Mapping maize microsatellites and polymerase chain reaction confirmation of the repeats using a CT primer. Genome, 36, 884–889. Thomas, M. R., & Scott, N.S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence- tagged sites (STS). Theor. Appl. Genet., 86, 985–990. Von Wuhlisch, G., Deuter M. Muhs, H-J. (1994). Identifizierung verschiedener Miscanthus- sorten mittles Isoenzymen. Agron .crop Sci., 172, 247-254. Van de Ven, W. T. G., & McNicol, R. J. (1996) Microsatellites as DNA markers in Sitka spruce. Theor. Appl. Genet., 93, 613–617. 56 Vogel, J. P, Garvin, D. F., Mockler, T.C., Schmutz, J., Rokhsar, D., Bevan, M. W., Barry, K., Lucas, S., Harmon-Smith, M., Lail, K. et al. (2010) The International Brachypodium Initiative Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768. Wu, K.S., & Tanksley, S.D. (1993). Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet., 241, 225–235. Weising, K., Winter, P., Huttel, P.B., & Kahl, G. (1998). Microsatellite markers for molecular breeding. J. Crop Prod., 1, 113–143. Xu, W. Z., Zhang, X.Q., Hung, L.K., Nie, G. & Wang, J.P. (2013). Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochemical Systematics and Ecology, 48, 174–181. Yan, J., Chen, W., Luo, F., Ma, H., Meng, A., Li, X., Zhu, M., Li, S., Zhou, H., Zhu, W., Han, B., Ge, S., Li, J. & Sang, T. (2012). Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy, 4, 49–60. Zhang, Q.X., Shen, Y.K. Shao, R.X. Fang, J., He, Y. Q. Ren, J. X. Zheng, B. S. & Chen, G. J. (2013). Genetic diversity of natural Miscanthus sinensis populations in china revealed by ISSR markers. Biochemical Systematics and Ecology, 48, 248-256. Zhao, X., & Kochert, G. (1993). Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol. Biol., 21, 607–614. 57 Zhao, H., Yu, J. You, F. M., Luo, M. & Peng, J. (2011). Transferability of Microsatellite Markers from Brachypodium distachyon to Miscanthus sinensis, a Potential Biomass Crop. J. of Integrative Plant Biol., 53 (3), 232–245. Zhao, X., and Kochert, G. (1993) Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol. Biol. 21, 607–614. Zhong, Z. L., Jiang, J. X., Yang, L. & Yi, Z. L., (2009). Genetic diversity analysis of Miscanthus species by maize SSR primers. Progress in Modern Biomedicine (in Chinese), 9, 2076–2079. Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., Mew, T. W., Teng, P S., Wang, Z., & Mundt, C. C. (2000). Genetic diversity and disease control in rice. Nature, 406, 718-722. Zhuang, Q., Qin, Z., and Chen, M (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8, 15-20. 58 APPENDIX A Table A.1: List of selected pairs of primer sequences that were used for SSR analysis on Miscanthus genotypes (Cordeiro et al. 2000, Parida et al. 2010 & Silva et al. 2006). Serial No. Marker code Primer sequence Forward: (5’-3’) Reverse: (3’-5’) Microsatellite Tm repeat-motifs Produ Characteristics ct size (bp) 1. SMC222CG F: TTT CAC GAA CAC CCC ACC TA R: AGG GAC TAG CAC ACA TTA TTG TG (CA)24 55 198 2. SMC226CG F: GAG GCT CAG AAG CTG GCA T R: ACC CTC TAT TTC CGA GTT GGT (CA)10 50 136 3. SMC248CG F: TGC GCC TAG ATG TAC GAT ATG T R: TTG TGT TAT CCC AAC TAT TAT GTC A (TTA)6 50 142 4. SMC319CG F: CCT TTC ATC CAC AGA GGA CAG R: GGT TCA CCG AAG CAA GAG AAC (CA)17 50 183 5. SMC477CG F: CCA ACA ACG AAT TGT GCA TGT R: CCT GGT TGG CTA CCT GTC TTC A (CA)31 55 168 6. SMC863CG F: CGG TCG CTG TTG CAT TGT AG R: TGG ATC ACT CAA TCT CAC TTC G (TC)9 55 296 7. SMC1039CG F: AGG TGA GAG TTC CTG GCT TTC CA R: TGT GCT GGC AAG CCC CTA CTT (TG)17 55 189 8. EST-SSR29 F: CGA CTG CTG CTT CGA CTA CA R: GAC CGA TCC ACC GAA TCT C (CGGA)5 pathogenesis-related protein (Oryza sativa) 59 9. EST-SSR30-1 F: ACC ATC AAG CCG AAT CAA TC R: CCT TTG AGG GAT CAA CCG TA (GA)5 cellulose synthase 10. EST-SSR30-2 F: AGC TAG CAA GCG TGT CCC T R: CTC GCC CTA CCA GAT CTC C (GCC)6 cellulose synthase 11. EST-SSR31-1 F: AAG TGG AAG ACC AAG CAG GA R: GTG ATC CGG AAC TTG AGG AA (CGA)5 cellulose synthase 12. EST-SSR31-2 F: CGT CGT CTT CTT CGA CAT CA R: TTG TCT TTC TTG CTC CGC TT (TGC)6 cellulose synthase 13. EST-SSR32 F: TCA ACA ACG GCG TGT ACA AT R: AGG CAG TCA ACT AGC GAA GC (TG)5 Polygalacturonase 14. EST-SSR33 F: CTA GGT CGA CGA CAG GGA TG R:CAC AAC ACG GTT CCT CCT G (GC)5 15. EST-SSR34 F: CGA GTC GAC AAA GAA CAC CA R: CTC GGT GAC TTC AGA GCC TT (CGA)5 16. EST-SSR35 (CG)5 17. EST-SSR36 F: GTA CTC GAT GTG CGG GTA GG R: GGC CTG CAC TTC ATC AAC TC F: GTA CTC GAT GTG CGG GTA GG R: GGC CTG CAC TTC ATC AAC TC 18. EST-SSR37 F: GCT TCT ACC GCG ACT TCG T R: CGA TAT GAT GAT TGG GAT GG (CGC)6 flavanone 3hydroxylase-like protein 4-coumarate--CoA ligase 4CL3 [Lolium perenne]; [SC.13] Secondary metabolism anthranilate Nbenzoyltransferase Sorbi small protein inhibitor of insect alphaamylase2.1 Caffeoyl CoA Omethyltransferase 19. EST-SSR38-1 F: CAT TTT ATT ACA CAA AAC ATC ACA A R: CGT TCC TCA CCC TTG ACG (CA)5 type-1 pathogenesisrelated protein - 20. EST-SSR38-2 F: GTA GTC CTG CGC GTA CTT GG R: TAG CAA ACA TGG CGT TTC TG (GC)5 type-1 pathogenesisrelated protein - (CG)5 60 21. CA127223 F: AAG AAG AGC CGT AGA AAC AAC R: AAG AAG AGC CGT AGA AAC AAC (TA)36 55 227 Cellulose_synt 22. CA278282 F: GCG TCT TCA TCA TCT GCA AC R: TAG AGA GAC ATG GGG TGC AT (AT)18 56 282 NB-ARC 23. CA149322 F: GTC CTA GCA GGT CTA GGT CTT G R: AAA TCT GAG CTA GAT CCT CTC C (CGC)7 55 112 Ufd2P_core 24. CA213570 F: AAC ACA CAC ACA CAC ACA CAC R: ACTA ATC TCT CCT TGC TTT GG (TGC)6 56 160 Nuc_sug_transp 25. CA282680 F: AAC AAC GGA TAC AAA TGA AAG R: CGA TTG ATG GAT GGT AAT G (ATT)6 54 299 NB-ARC 26. AY596612 F: ACGAGTTCAGGGCGCTGATAGAG R: ATCACGACGTCATAGTCCGTAAC (TAT)5 66 166 OpcA_G6PD_assem 27. CA107157 F: GCTGCTATATACCAAACAAGAAAT R: GTACTTCAATGGGTGATAAGTGT (GCG)5 55 393 G6PD_bact 28. CA154198 F: ATACCCTGCACAAGGTTACTAC R: AGAAGGTGCAAGGAATAGAGTA (GCA)5 51 187 Sugar_transport 29. CA183376 F: GTCCAACCTCACCTCCTC R: GAGAAAGAGCCACGACCT (CGT)5 55 146 LRR_1 30. CA232822 F: TTGTTAGTTTATTGGAGGGAA R: GGCACATCTCTTGCTGTC (GCC)5 54 279 SUN 31. CA248171 F: CCTCATAACCGAGAAGAACTG R: TACCTCCACTGCCACGAC (GCC)5 56 247 Sugar-bind 32. CA256489 F: GTTTACATCCACCTCCGCC R: GCTCTCCCTTCATCTCCTC (CGC)5 60 302 Glycogen_syn 61 33. CA270923 F: TGGATTTGATTTCGTGACTT R: CTACTCTCATTGCTGCCAC (CGC)5 55 372 UDP-g_GGTase 34. CA282616 F: AGATGAGGAAGAGGATGATG R: AGATGAGGAAGAGGATGATG (CTC)5 54 274 GTP_EFTU 35. CA158818 F: CATGAGCCTTTGGATGTAGTT R: TCAGAGTTTCCTTGACCCA (GT)7 55 379 Sugar_tr 36. CA198392 F: GGGTTTACAACAATCAGTTCTT R: TTGATATCATCTAAGCTCCACA (AT)6gatat...(TA) 37 55 361 TrmB 37. CA084731 F: CGATCTCGAGAATCCCAAGT R: AGAGAAAGATCAAACCGTACAC (CGC)5cgac...(G AG)8 59 234 Sucrose_synth 38. PF 03552 F: AAG AAG AGC CGT AGA AAC AAC R: ATT GAG CGA GGG ATG AAC 55 56 Cellulose synthase 39. PF00931 F: GCG TCT TCA TCA TCT GCA AC R:TAG AGA GAC ATG GGG TGC AT 59 58 NB-ARC domain 40. PF10408 F: GTC CTA GCA GGT CTA GGT CTT G R: AAA TCT GAG CTA GAT CCT CTC C 57 56 Ubiquitin factor core 41. PF04142 F: AAC ACA CAC ACA CAC ACA CAC R: ACT AAT CTC TCC TTG CTT TGG 56 55 Nucleotide-sugar transporter 42. PF10128 F: ACG AGT TCA GGG CGC TGA TAG AG R: ATC ACG ACG TCA TAG TCC GTA AC 66 60 Glucose-6-phosphate dehydrogenase 43. PF10786 F: GCT GCT ATA TAC CAA ACA AGA AAT R: GTA CTT CAA TGG GTG ATA AGT GT 56 55 Glucose-6-phosphate 1dehydrogenase elongating 62 44. PF06800 F: ATA CCC TGC ACA AGG TTA CTA C R: AGA AGG TGC AAG GAA TAG AGT A 55 55 Sugar transport protein 45. PF 00560 F: GTC CAA CCT CAC CTC CTC R: GAG AAA GAG CCA CGA CCT 55 55 Leucine Rich Repeat 46. PF03856 F: TTG TTA GTT TAT TGG AGG GAA R: GGC ACA TCT CTT GCT GTC 54 55 Beta-glucosidase (SUN family) 47. PF04198 F: CCT CAT AAC CGA GAA GAA CTG R: TAC CTC CAC TGC CAC GAC 57 58 Putative domain 48. PF05693 F: GTT TAC ATC CAC CTC CGC C R: GCT CTC CCT TCA TCT CCT C 60 56 Glycogen synthase 49. PF06427 F: TGG ATT TGA TTT CGT GAC TT R: CTA CTC TCA TTG CTG CCA C 56 54 UDPglucose:Glycoprotein Glucosyltransferase 50. PF00009 F: AGA TGA GGA AGA GGA TGA TG R: GGT AGG TGT GGG AGC ACT T 54 58 Elongation factor Tu GTP binding domain 51. PF00083 F: CAT GAG CCT TTG GAT GTA GTT R: TCA GAG TTT CCT TGA CCC A 57 57 Sugar (and transporter 52. PF01978 F: GGG TTT ACA ACA ATC AGT TCT T R: TTG ATA TCA TCT AAG CTC CAC A 55 55 Sugar-specific transcriptional regulator 53. PF00862 F: CGA TCT CGA GAA TCC CAA GT R: AGA GAA AGA TCA AAC CGT ACA C 59 55 Sucrose synthase sugar-binding other) 63 APPENDIX B Table B1: DNA concentration and quality of the samples from the six naturalized populations of Miscanthus Sample ID Plot Row Range DNA Concentration ng/µl A260 OH 1-2-1 OH 1-2-2 OH 1-2-3 OH 1-2-4 OH 1-2-5 OH 1-2-6 OH 1-2-7 OH 1-2-8 OH 1-2-9 OH 1-2-11 OH 1-2-12 OH 1-3-1 OH 1-3-2 OH 1-3-3 OH 1-3-4 OH 1-3-5 OH 1-3-6 OH 1-3-7 OH 1-3-8 OH 1-3-9 OH 1-3-10 OH 1-3-11 OH 1-3-12 OH 1-4-1 OH 1-4-2 OH 1-4-3 OH 1-4-4 OH 1-4-6 OH 1-4-7 OH 1-4-8 OH 1-4-9 50.6 64.5 201.3 215.4 127.6 88.6 245.1 187.3 189.9 143.2 104.8 433.9 558 243.3 129 147.7 210.7 40.4 539.6 171.1 182.4 161.8 70.4 139.8 143.3 175.8 238.6 536.2 146.6 261.3 187.9 1.012 1.29 4.025 4.307 2.551 1.772 4.901 3.746 3.798 2.863 2.096 8.679 11.159 4.866 2.58 2.954 4.213 0.808 10.792 3.421 3.647 3.236 1.408 2.795 2.865 3.516 4.772 10.723 2.932 5.225 3.759 A280 0.567 0.753 2.195 2.361 1.39 0.976 2.615 2.126 2.136 1.576 1.17 4.538 6.197 2.658 1.378 1.561 2.29 0.521 7 1.882 1.982 1.835 1.18 1.558 1.562 1.962 2.619 6.302 1.592 2.911 2.083 DNA purity 260:280 1.78 1.71 1.83 1.82 1.84 1.82 1.87 1.76 1.78 1.82 1.79 1.91 1.8 1.83 1.87 1.89 1.84 1.55 1.54 1.82 1.84 1.76 1.19 1.79 1.83 1.79 1.82 1.7 1.84 1.79 1.8 64 OH 1-4-10 OH 1-4-11 OH 1-4-12 386.6 110 91.8 7.732 2.199 1.837 Sample ID Plot Row Range DNA Concentration ng/µl A260 NC 1.5 2-1-1 NC 1.5 2-1-2 NC 1.5 2-1-4 NC 1.5 2-1-5 NC 1.5 2-1-6 NC 1.5 2-1-7 NC 1.5 2-1-8 NC 1.5 2-1-9 NC 1.5 2-1-10 NC 1.5 2-1-11 NC 1.5 2-1-12 NC 1.5 2-2-1 NC 1.5 2-2-2 NC 1.5 2-2-3 NC 1.5 2-2-4 NC 1.5 2-2-5 NC 1.5 2-2-6 NC 1.5 2-2-7 NC 1.5 2-2-8 NC 1.5 2-2-9 NC 1.5 2-2-10 NC 1.5 2-2-11 NC 1.5 2-3-1 NC 1.5 2-3-2 NC 1.5 2-3-4 NC 1.5 2-3-5 NC 1.5 2-3-6 NC 1.5 2-3-9 NC 1.5 2-3-10 NC 1.5 2-3-11 NC 1.5 2-3-12 809.1 153.4 89.8 150.7 142.8 186.5 183.9 137.4 155.1 111.8 201.6 131.4 69.7 219.5 131.9 76.9 106.3 66.3 161.3 116.2 254.3 110.7 64.8 103.7 103.8 46.2 276.9 124.9 217.1 84.5 116.3 16.181 3.067 1.797 3.015 2.856 3.73 3.678 2.749 3.103 2.237 4.033 2.627 1.395 4.389 2.638 1.538 2.126 1.326 3.227 2.325 5.086 2.214 1.296 2.074 2.076 0.924 5.539 2.498 4.341 1.689 2.326 4.261 1.257 1.018 A280 8.738 1.705 1.019 1.612 1.603 2.146 1.942 1.54 1.732 1.238 2.223 1.511 0.78 2.463 1.465 0.842 1.243 0.779 1.829 1.278 2.757 1.222 0.719 1.143 1.178 0.509 3.052 1.354 2.391 0.954 1.301 1.81 1.75 1.8 DNA purity 260:280 1.85 1.8 1.76 1.87 1.78 1.74 1.89 1.79 1.79 1.81 1.81 1.74 1.79 1.78 1.8 1.83 1.71 1.7 1.76 1.82 1.84 1.81 1.8 1.82 1.76 1.82 1.81 1.85 1.82 1.77 1.79 65 Sample ID Plot Row Range DNA Concentration ng/µl A260 NC 3-1-1 NC 3-1-2 NC 3-1-4 NC 3-1-5 NC 3-1-6 NC 3-1-7 NC 3-1-8 NC 3-1-9 NC 3-1-10 NC 3-1-11 NC 3-2-2 NC 3-2-4 NC 3-2-5 NC 3-2-6 NC 3-2-7 NC 3-2-8 NC 3-2-9 NC 3-2-10 NC 3-2-11 NC 3-2-12 NC 3-3-1 NC 3-3-2 NC 3-3-3 NC 3-3-4 NC 3-3-5 54.5 43.3 101.6 842.9 145.6 95.6 341.2 260.4 69 85.9 294.3 314.7 478.9 283.7 512.1 90.8 65.5 71.2 155.3 134.1 138.8 34.9 345.1 104.9 86.3 1.09 0.866 2.031 16.859 2.912 1.912 6.824 5.208 1.38 1.717 5.887 6.294 9.578 5.673 10.243 1.817 1.309 1.425 3.105 2.681 2.777 0.697 6.902 2.098 1.726 A280 0.581 0.501 1.109 9.569 1.583 1.05 3.701 2.78 0.76 0.952 3.27 3.554 5.195 3.251 5.698 1.006 0.706 0.75 1.697 1.751 1.502 0.471 3.706 1.126 0.947 DNA purity 260:280 1.87 1.73 1.83 1.76 1.84 1.82 1.84 1.87 1.82 1.8 1.8 1.77 1.84 1.74 1.8 1.81 1.85 1.9 1.83 1.53 1.85 1.48 1.86 1.86 1.82 66 Sample ID Plot Row Range DNA Concentration ng/µl A260 A280 DC 4-1-1 DC 4-1-2 DC 4-1-3 DC 4-1-4 DC 4-1-5 DC 4-1-6 DC 4-1-7 DC 4-1-8 DC 4-1-9 DC 4-1-10 DC 4-1-11 DC 4-1-12 DC 4-2-1 DC 4-2-2 DC 4-2-3 DC 4-2-4 DC 4-2-5 DC 4-2-6 DC 4-2-7 DC 4-2-8 DC 4-2-9 DC 4-2-10 DC 4-2-11 DC 4-2-12 DC 4-3-1 DC 4-3-2 DC 4-3-3 DC 4-3-4 DC 4-3-5 DC 4-3-6 DC 4-3-7 DC 4-3-8 DC 4-3-9 DC 4-3-10 DC 4-3-11 DC 4-3-12 405.3 176.4 143 179.9 399.7 211.4 746 198.6 411.6 431.4 470.1 625.9 155 433.3 216.7 270.8 97.7 157 315.5 1604.2 620.3 72.6 214.2 82.5 74.1 140.1 332.4 324.2 544.7 325.5 180.6 157.8 166.9 368.5 143.7 212.4 8.106 3.529 2.86 3.598 7.993 4.228 14.92 3.971 8.232 8.628 9.402 12.518 3.1 8.665 4.335 5.416 1.954 3.141 6.31 32.083 12.407 1.453 4.284 1.651 1.483 2.801 6.649 6.484 10.893 6.509 3.612 3.156 3.338 7.37 2.874 4.249 5.166 1.9 1.609 1.998 4.274 2.321 7.978 2.277 4.451 4.676 5.058 6.705 1.673 4.782 2.375 2.935 1.064 1.655 3.583 21.929 6.804 0.773 2.408 0.927 0.809 1.535 3.653 3.58 5.968 3.636 1.981 1.79 1.801 3.961 1.587 2.346 DNA purity 260:280 1.57 1.86 1.78 1.8 1.87 1.82 1.87 1.74 1.85 1.85 1.86 1.87 1.85 1.81 1.82 1.84 1.84 1.9 1.76 1.46 1.82 1.88 1.78 1.78 1.83 1.83 1.82 1.81 1.83 1.79 1.82 1.76 1.85 1.86 1.81 1.81 67 Sample ID Plot Row Range DNA Concentration ng/µl A260 KY 7-1-2 KY 7-1-3 KY 7-1-4 KY 7-1-5 KY 7-1-6 KY 7-1-7 KY 7-1-8 KY 7-1-9 KY 7-1-10 KY 7-1-11 KY 7-1-12 KY 7-2-1 KY 7-2-2 KY 7-2-3 KY 7-2-4 KY 7-2-5 KY 7-2-6 KY 7-2-7 KY 7-2-8 KY 7-2-9 KY 7-2-10 KY 7-2-11 KY 7-2-12 KY 7-3-2 KY 7-3-3 KY 7-3-4 KY 7-3-5 KY 7-3-7 KY 7-3-8 KY 7-3-9 KY 7-3-10 KY 7-3-11 KY 7-3-12 44.4 299.8 189.8 188.1 203 172.6 328.4 228.4 349.2 48.9 132.1 177.5 180.9 125 35.7 200.9 339.4 118.2 110.5 161.4 96.2 136 65.8 98 37.3 159.3 117.1 70.4 141.4 108.7 57.3 38.2 60.8 0.888 5.995 3.796 3.762 4.061 3.452 6.568 4.568 6.985 0.977 2.641 3.55 3.617 2.501 0.714 4.017 6.789 2.363 2.211 3.228 1.924 2.721 1.315 1.959 0.747 3.186 2.341 1.409 2.827 2.175 1.147 0.765 1.217 A280 0.471 3.218 2.125 2.026 2.128 1.921 3.615 2.352 3.954 0.527 1.395 1.91 1.999 1.345 0.38 2.131 3.87 1.305 1.206 1.786 1.019 1.516 0.725 1.048 0.375 1.722 1.276 0.735 1.505 1.194 0.606 0.406 0.634 DNA purity 260:280 1.89 1.86 1.79 1.86 1.91 1.8 1.82 1.94 1.77 1.85 1.89 1.86 1.81 1.86 1.88 1.88 1.75 1.81 1.83 1.81 1.89 1.79 1.82 1.87 1.99 1.85 1.84 1.92 1.88 1.82 1.89 1.88 1.92 68 Sample ID Plot Row Range DNA Concentration ng/µl A260 PA10-1-1 PA10-1-2 PA10-1-3 PA10-1-4 PA10-1-5 PA10-1-6 PA10-1-7 PA10-1-8 PA10-1-9 PA10-1-10 PA10-1-11 PA10-1-12 PA10-2-1 PA10-2-2 PA10-2-3 PA10-2-4 PA10-2-5 PA10-2-6 PA 10-2-7 PA 10-2-8 PA 10-2-9 PA 10-2-10 PA 10-2-11 PA 10-2-12 PA 10-3-1 PA 10-3-2 PA 10-3-3 PA 10-3-4 PA 10-3-5 PA 10-3-6 PA 10-3-7 PA 10-3-8 PA 10-3-9 PA 10-3-10 PA 10-3-11 PA 10-3-12 118.5 524.7 129 142.3 505.8 654.5 47.5 60.7 59.9 211.8 168.3 72.3 100.3 93.3 62.8 143.8 238.5 80.8 184.5 247 165.5 244.5 254.7 207 518.4 192.2 236 236.3 713.6 704 378.4 197 153.1 286 117.3 182.1 2.369 10.493 2.58 2.847 10.115 13.089 0.949 1.214 1.199 4.235 3.367 1.446 2.006 1.866 1.255 2.877 4.771 1.616 3.69 4.94 3.311 4.889 5.094 4.141 10.368 3.843 4.72 4.726 14.273 14.081 7.568 3.941 3.063 5.719 2.346 3.642 A280 1.352 5.545 1.411 1.532 5.535 7.045 0.517 0.714 0.618 2.295 2.711 0.751 1.16 0.978 0.692 1.564 2.592 0.881 1.974 2.671 1.832 2.631 2.779 2.278 5.83 2.154 2.565 2.575 7.751 7.688 4.173 2.134 1.676 3.061 1.278 2.003 DNA purity 260:280 1.75 1.89 1.83 1.86 1.83 1.86 1.84 1.7 1.94 1.85 1.24 1.92 1.73 1.91 1.81 1.84 1.84 1.83 1.87 1.85 1.81 1.86 1.83 1.82 1.78 1.78 1.84 1.83 1.84 1.83 1.81 1.85 1.83 1.87 1.84 1.82 69 Sample ID Plot Row Range DNA Concentration ng/µl A260 VA 12-1-1 VA 12-1-2 VA 12-1-3 VA 12-1-4 VA 12-1-5 VA 12-1-6 VA 12-1-7 VA 12-1-8 VA 12-1-9 VA 12-1-10 VA 12-1-11 VA 12-1-12 VA 12-2-1 VA 12-2-2 VA 12-2-3 VA 12-2-4 VA 12-2-5 VA 12-2-6 VA 12-2-7 VA 12-2-8 VA 12-2-9 VA 12-2-11 VA 12-2-12 VA 12-3-1 VA 12-3-2 VA 12-3-3 VA 12-3-4 VA 12-3-5 VA 12-3-6 VA 12-3-9 VA 12-3-11 VA 12-3-12 388.5 381 540.3 497.6 255.5 428.2 265.4 454.6 324 363.2 286.2 363.3 440 377.9 560.1 526.6 422.1 533.2 587.6 275.9 151 471.4 362.1 432.8 140.8 247.8 139.7 136.1 175.6 189.4 265.1 152.7 7.77 7.621 10.805 9.951 5.11 8.563 5.309 9.092 6.48 7.265 5.723 7.265 8.8 7.557 11.203 10.532 8.443 10.664 11.752 5.518 3.02 9.429 7.242 8.656 2.816 4.956 2.794 2.722 3.512 3.789 5.301 3.054 A280 4.368 4.096 5.918 5.468 2.775 4.704 2.893 5.056 3.607 3.974 3.079 4.045 4.395 4.186 6.044 5.558 4.577 5.713 6.116 2.963 1.668 5.152 3.914 4.767 1.596 2.754 1.336 1.444 1.96 2.181 2.857 1.626 DNA purity 260:280 1.78 1.86 1.83 1.82 1.84 1.82 1.84 1.8 1.8 1.83 1.86 1.8 2 1.81 1.85 1.89 1.84 1.87 1.92 1.86 1.81 1.83 1.85 1.82 1.76 1.8 2.09 1.88 1.79 1.74 1.86 1.88 70 APPENDIX C Table C1: Genetic distance of OH Pop ID OH121 OH122 OH123 OH124 OH125 OH126 OH127 OH128 OH129 OH1211 OH1212 OH131 OH132 OH133 OH134 OH135 OH136 OH137 OH138 OH139 OH1311 OH1312 OH141 OH142 OH143 OH144 OH146 OH147 OH148 OH149 OH1410 OH1411 OH1412 OH121 OH122 0.004 OH123 0.007 0.004 OH124 0.004 0.000 0.004 OH125 0.007 0.004 0.000 0.004 OH126 0.004 0.000 0.004 0.000 0.004 OH127 0.007 0.004 0.007 0.004 0.007 0.004 OH128 0.000 0.004 0.007 0.004 0.007 0.004 0.007 OH129 0.011 0.007 0.004 0.007 0.004 0.007 0.004 0.011 OH1211 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 OH1212 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 OH131 0.011 0.014 0.011 0.014 0.011 0.014 0.011 0.011 0.007 0.011 0.011 OH132 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 OH133 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 OH134 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 OH135 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 OH136 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 0.000 0.004 0.004 OH137 0.007 0.004 0.000 0.004 0.000 0.004 0.007 0.007 0.004 0.007 0.007 0.011 0.007 0.007 0.011 0.011 0.007 OH138 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.004 0.007 0.004 0.004 0.014 0.004 0.004 0.007 0.007 0.004 0.004 OH139 0.011 0.007 0.004 0.007 0.004 0.007 0.004 0.011 0.000 0.004 0.004 0.007 0.004 0.004 0.007 0.007 0.004 0.004 0.007 OH1311 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 0.000 0.004 0.011 0.007 0.007 OH1312 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 0.000 0.004 0.011 0.007 0.007 0.000 OH141 0.007 0.004 0.000 0.004 0.000 0.004 0.007 0.007 0.004 0.007 0.007 0.011 0.007 0.007 0.011 0.011 0.007 0.000 0.004 0.004 0.011 0.011 OH142 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 0.000 0.004 0.004 0.000 0.007 0.004 0.004 0.004 0.004 0.007 OH143 0.011 0.014 0.018 0.014 0.018 0.014 0.011 0.011 0.014 0.011 0.011 0.007 0.011 0.011 0.007 0.007 0.011 0.018 0.014 0.014 0.007 0.007 0.018 0.011 OH144 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 0.000 0.004 0.004 0.000 0.007 0.004 0.004 0.004 0.004 0.007 0.000 0.011 OH146 0.004 0.007 0.011 0.007 0.011 0.007 0.011 0.004 0.014 0.011 0.011 0.014 0.011 0.011 0.007 0.007 0.011 0.011 0.007 0.014 0.007 0.007 0.011 0.011 0.014 0.011 OH147 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 0.000 0.004 0.004 0.000 0.007 0.004 0.004 0.004 0.004 0.007 0.000 0.011 0.000 0.011 OH148 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 0.000 0.004 0.011 0.007 0.007 0.000 0.000 0.011 0.004 0.007 0.004 0.007 0.004 OH149 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 0.000 0.004 0.011 0.007 0.007 0.000 0.000 0.011 0.004 0.007 0.004 0.007 0.004 0.000 OH1410 0.004 0.007 0.011 0.007 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.000 0.000 0.004 0.011 0.007 0.007 0.000 0.000 0.011 0.004 0.007 0.004 0.007 0.004 0.000 0.000 OH1411 0.011 0.007 0.011 0.007 0.011 0.007 0.004 0.011 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.007 0.004 0.011 0.007 0.007 0.007 0.007 0.011 0.004 0.007 0.004 0.014 0.004 0.007 0.007 0.007 OH1412 0.007 0.004 0.007 0.004 0.007 0.004 0.000 0.007 0.004 0.000 0.000 0.011 0.000 0.000 0.004 0.004 0.000 0.007 0.004 0.004 0.004 0.004 0.007 0.000 0.011 0.000 0.011 0.000 0.004 0.004 0.004 0.004 Table C2: Genetic distance of NC 1.5 Pop ID NC1.5211 NC1.5212 NC1.5214 NC1.5216 NC1.5217 NC1.5218 NC1.5219 NC1.52110 NC1.52111 NC1.52112 NC1.5221 NC1.5222 NC1.5223 NC1.5224 NC1.5225 NC1.5226 NC1.5227 NC1.5228 NC1.5229 NC1.52210 NC1.52211 NC1.5231 NC1.5232 NC1.5234 NC1.5235 NC1.5236 NC1.5239 NC1.52310 NC1.52311 NC1.52312 NC1.5211 NC1.5212 0.014 NC1.5214 0.010 0.003 NC1.5216 0.014 0.007 0.003 NC1.5217 0.014 0.007 0.003 0.000 NC1.5218 0.014 0.007 0.003 0.007 0.007 NC1.5219 0.017 0.003 0.007 0.003 0.003 0.010 NC1.52110 0.014 0.007 0.003 0.007 0.007 0.000 0.010 NC1.52111 0.014 0.000 0.003 0.007 0.007 0.007 0.003 0.007 NC1.52112 0.010 0.003 0.007 0.010 0.010 0.010 0.007 0.010 0.003 NC1.5221 0.017 0.003 0.007 0.003 0.003 0.010 0.000 0.010 0.003 0.007 NC1.5222 0.014 0.000 0.003 0.007 0.007 0.007 0.003 0.007 0.000 0.003 0.003 NC1.5223 0.003 0.010 0.007 0.010 0.010 0.010 0.014 0.010 0.010 0.007 0.014 0.010 NC1.5224 0.010 0.017 0.014 0.017 0.017 0.017 0.021 0.017 0.017 0.014 0.021 0.017 0.014 NC1.5225 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 NC1.5226 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 0.000 NC1.5227 0.007 0.007 0.003 0.007 0.007 0.007 0.010 0.007 0.007 0.003 0.010 0.007 0.003 0.010 0.003 0.003 NC1.5228 0.017 0.010 0.007 0.003 0.003 0.010 0.007 0.010 0.010 0.014 0.007 0.010 0.014 0.014 0.007 0.007 0.010 NC1.5229 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 0.000 0.000 0.003 0.007 NC1.52210 0.010 0.010 0.007 0.003 0.003 0.010 0.007 0.010 0.010 0.007 0.007 0.010 0.007 0.014 0.007 0.007 0.003 0.007 0.007 NC1.52211 0.010 0.003 0.007 0.010 0.010 0.010 0.007 0.010 0.003 0.000 0.007 0.003 0.007 0.014 0.007 0.007 0.003 0.014 0.007 0.007 NC1.5231 0.010 0.010 0.007 0.003 0.003 0.010 0.007 0.010 0.010 0.007 0.007 0.010 0.007 0.014 0.007 0.007 0.003 0.007 0.007 0.000 0.007 NC1.5232 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 0.000 0.000 0.003 0.007 0.000 0.007 0.007 0.007 NC1.5234 0.010 0.010 0.007 0.010 0.010 0.010 0.014 0.010 0.010 0.007 0.014 0.010 0.007 0.007 0.007 0.007 0.003 0.014 0.007 0.007 0.007 0.007 0.007 NC1.5235 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 0.000 0.000 0.003 0.007 0.000 0.007 0.007 0.007 0.000 0.007 NC1.5236 0.021 0.007 0.010 0.014 0.014 0.007 0.010 0.007 0.007 0.010 0.010 0.007 0.017 0.024 0.010 0.010 0.014 0.017 0.010 0.017 0.010 0.017 0.010 0.017 0.010 NC1.5239 0.010 0.003 0.000 0.003 0.003 0.003 0.007 0.003 0.003 0.007 0.007 0.003 0.007 0.014 0.000 0.000 0.003 0.007 0.000 0.007 0.007 0.007 0.000 0.007 0.000 0.010 NC1.52310 0.014 0.014 0.010 0.007 0.007 0.007 0.010 0.007 0.014 0.010 0.010 0.014 0.010 0.017 0.010 0.010 0.007 0.010 0.010 0.003 0.010 0.003 0.010 0.010 0.010 0.014 0.010 NC1.52311 0.014 0.007 0.010 0.014 0.014 0.007 0.010 0.007 0.007 0.010 0.010 0.007 0.010 0.024 0.010 0.010 0.014 0.017 0.010 0.017 0.010 0.017 0.010 0.017 0.010 0.007 0.010 0.014 NC1.52312 0.014 0.000 0.003 0.007 0.007 0.007 0.003 0.007 0.000 0.003 0.003 0.000 0.010 0.017 0.003 0.003 0.007 0.010 0.003 0.010 0.003 0.010 0.003 0.010 0.003 0.007 0.003 0.014 0.007 71 Table C3: Genetic distance of NC Pop ID NC311 NC311 NC312 0.004 NC314 0.007 NC315 0.004 NC316 0.007 NC317 0.004 NC318 0.007 NC319 0.004 NC3110 0.004 NC3111 0.007 NC324 0.000 NC325 0.004 NC326 0.004 NC327 0.007 NC328 0.004 NC329 0.022 NC3210 0.029 NC3211 0.018 NC3212 0.022 NC331 0.007 NC332 0.011 NC333 0.014 NC334 0.011 NC335 0.011 NC337 0.037 NC312 NC314 NC315 NC316 NC317 NC318 NC319 NC3110 NC3111 NC324 NC325 NC326 NC327 NC328 NC329 NC3210 NC3211 NC3212 NC331 NC332 NC333 NC334 NC335 NC337 0.004 0.007 0.004 0.000 0.004 0.000 0.000 0.004 0.004 0.007 0.000 0.004 0.000 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.011 0.007 0.004 0.007 0.004 0.004 0.000 0.007 0.011 0.004 0.000 0.004 0.014 0.022 0.011 0.014 0.000 0.004 0.007 0.004 0.004 0.037 0.011 0.007 0.011 0.007 0.007 0.011 0.004 0.000 0.007 0.011 0.007 0.018 0.033 0.014 0.018 0.011 0.014 0.011 0.014 0.007 0.033 0.004 0.007 0.004 0.004 0.007 0.007 0.011 0.004 0.007 0.004 0.022 0.029 0.018 0.022 0.007 0.011 0.014 0.004 0.011 0.037 0.004 0.000 0.000 0.004 0.004 0.007 0.000 0.004 0.000 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.004 0.004 0.007 0.007 0.011 0.004 0.007 0.004 0.014 0.022 0.018 0.014 0.007 0.011 0.014 0.011 0.011 0.029 0.000 0.004 0.004 0.007 0.000 0.004 0.000 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.004 0.004 0.007 0.000 0.004 0.000 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.007 0.011 0.004 0.000 0.004 0.014 0.022 0.011 0.014 0.000 0.004 0.007 0.004 0.004 0.037 0.004 0.004 0.007 0.004 0.022 0.029 0.018 0.022 0.007 0.011 0.014 0.011 0.011 0.037 0.007 0.011 0.007 0.018 0.033 0.014 0.018 0.011 0.014 0.011 0.014 0.007 0.033 0.004 0.000 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.004 0.014 0.022 0.011 0.014 0.000 0.004 0.007 0.004 0.004 0.037 0.018 0.026 0.014 0.018 0.004 0.007 0.011 0.007 0.007 0.033 0.014 0.004 0.000 0.014 0.011 0.007 0.018 0.011 0.033 0.018 0.014 0.022 0.018 0.022 0.026 0.026 0.049 0.004 0.011 0.007 0.004 0.014 0.007 0.037 0.014 0.011 0.007 0.018 0.011 0.033 0.004 0.007 0.004 0.004 0.037 0.004 0.007 0.011 0.007 0.004 0.007 0.037 0.033 0.041 0.033 Table C4: Genetic distance of DC Pop ID DC411 DC412 DC413 DC414 DC415 DC416 DC417 DC418 DC419 DC4110 DC4111 DC4112 DC421 DC422 DC423 DC424 DC425 DC426 DC427 DC428 DC429 DC4210 DC4211 DC4212 DC431 DC432 DC434 DC435 DC436 DC437 DC438 DC439 DC4310 DC4311 DC4312 DC411 DC412 DC413 DC414 DC415 DC416 DC417 DC418 DC419 DC4110 DC4111 DC4112 DC421 DC422 DC423 DC424 DC425 DC426 DC427 DC428 DC429 DC4210 DC4211 DC4212 DC431 DC432 DC434 DC435 DC436 DC437 DC438 DC439 DC4310 DC4311 DC4312 0.011 0.014 0.000 0.007 0.007 0.007 0.007 0.007 0.000 0.007 0.007 0.007 0.007 0.007 0.011 0.007 0.011 0.011 0.011 0.007 0.018 0.007 0.004 0.007 0.007 0.011 0.011 0.011 0.007 0.011 0.007 0.007 0.007 0.011 0.004 0.011 0.004 0.004 0.011 0.004 0.004 0.011 0.004 0.004 0.004 0.004 0.004 0.007 0.011 0.007 0.007 0.007 0.004 0.022 0.004 0.007 0.011 0.011 0.007 0.007 0.007 0.004 0.007 0.004 0.004 0.004 0.007 0.014 0.007 0.007 0.007 0.007 0.007 0.014 0.007 0.007 0.007 0.007 0.007 0.011 0.015 0.004 0.011 0.004 0.007 0.022 0.007 0.011 0.007 0.007 0.004 0.004 0.004 0.007 0.004 0.007 0.007 0.007 0.004 0.007 0.007 0.007 0.007 0.007 0.000 0.007 0.007 0.007 0.007 0.007 0.011 0.007 0.011 0.011 0.011 0.007 0.018 0.007 0.004 0.007 0.007 0.011 0.011 0.011 0.007 0.011 0.007 0.007 0.007 0.011 0.000 0.007 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.011 0.015 0.004 0.011 0.004 0.007 0.015 0.007 0.004 0.007 0.000 0.004 0.004 0.004 0.007 0.004 0.007 0.007 0.007 0.004 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.000 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.007 0.007 0.007 0.007 0.007 0.011 0.007 0.011 0.011 0.011 0.007 0.018 0.007 0.004 0.007 0.007 0.011 0.011 0.011 0.007 0.011 0.007 0.007 0.007 0.011 0.000 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.004 0.015 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.018 0.007 0.007 0.007 0.004 0.022 0.004 0.007 0.011 0.011 0.007 0.007 0.007 0.004 0.007 0.004 0.004 0.004 0.007 0.018 0.018 0.018 0.015 0.026 0.015 0.011 0.015 0.015 0.018 0.018 0.018 0.015 0.018 0.015 0.015 0.015 0.018 0.007 0.000 0.004 0.018 0.004 0.007 0.004 0.004 0.000 0.000 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.007 0.004 0.022 0.004 0.007 0.011 0.011 0.007 0.007 0.007 0.004 0.007 0.004 0.004 0.004 0.007 0.004 0.018 0.004 0.007 0.004 0.004 0.000 0.000 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.018 0.000 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.018 0.015 0.022 0.015 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.004 0.007 0.007 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.011 0.004 0.007 0.007 0.007 0.004 0.007 0.004 0.004 0.004 0.007 0.007 0.004 0.004 0.004 0.007 0.004 0.007 0.007 0.007 0.004 0.004 0.004 0.004 0.007 0.004 0.007 0.007 0.007 0.004 0.000 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.000 0.004 0.004 0.004 0.000 0.004 0.000 0.000 0.004 0.000 0.004 0.004 72 Table C5: Genetic distance of KY Pop ID KY712 KY713 KY714 KY715 KY716 KY717 KY718 KY719 KY7110 KY7111 KY7112 KY721 KY722 KY723 KY724 KY725 KY726 KY727 KY728 KY7210 KY7211 KY7212 KY732 KY733 KY734 KY735 KY737 KY738 KY739 KY7310 KY7311 KY7312 KY712 KY713 0.000 KY714 0.000 0.000 KY715 0.004 0.004 0.004 KY716 0.000 0.000 0.000 0.004 KY717 0.000 0.000 0.000 0.004 0.000 KY718 0.004 0.004 0.004 0.007 0.004 0.004 KY719 0.000 0.000 0.000 0.004 0.000 0.000 0.004 KY7110 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 KY7111 0.004 0.004 0.004 0.000 0.004 0.004 0.007 0.004 0.004 KY7112 0.004 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.007 KY721 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 KY722 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 KY723 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 KY724 0.004 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.007 0.004 0.004 0.004 KY725 0.007 0.007 0.007 0.011 0.007 0.007 0.011 0.007 0.007 0.011 0.004 0.007 0.007 0.007 0.011 KY726 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 KY727 0.011 0.011 0.011 0.014 0.011 0.011 0.014 0.011 0.011 0.014 0.007 0.011 0.011 0.011 0.014 0.004 0.011 KY728 0.025 0.025 0.025 0.025 0.025 0.025 0.029 0.025 0.025 0.025 0.022 0.025 0.025 0.025 0.022 0.018 0.025 0.014 KY7210 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 KY7211 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 KY7212 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 KY732 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 0.000 KY733 0.007 0.007 0.007 0.004 0.007 0.007 0.011 0.007 0.007 0.004 0.004 0.007 0.007 0.007 0.011 0.007 0.007 0.011 0.022 0.007 0.007 0.007 0.007 KY734 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 0.000 0.000 0.007 KY735 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 0.000 0.000 0.007 0.000 KY737 0.004 0.004 0.004 0.007 0.004 0.004 0.000 0.004 0.004 0.007 0.007 0.004 0.004 0.004 0.007 0.011 0.004 0.014 0.029 0.004 0.004 0.004 0.004 0.011 0.004 0.004 KY738 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.004 KY739 0.004 0.004 0.004 0.007 0.004 0.004 0.007 0.004 0.004 0.007 0.000 0.004 0.004 0.004 0.007 0.004 0.004 0.007 0.022 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.007 0.004 KY7310 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.004 0.007 0.000 0.011 0.025 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.004 0.000 0.004 KY7311 0.018 0.018 0.018 0.022 0.018 0.018 0.022 0.018 0.018 0.022 0.014 0.018 0.018 0.018 0.022 0.011 0.018 0.007 0.014 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.022 0.018 0.014 0.018 KY7312 0.004 0.004 0.004 0.000 0.004 0.004 0.007 0.004 0.004 0.000 0.007 0.004 0.004 0.004 0.007 0.011 0.004 0.014 0.025 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.007 0.004 0.007 0.004 0.022 Table C6: Genetic distance of PA Pop ID PA1011 PA1012 PA1013 PA1014 PA1015 PA1017 PA1018 PA1019 PA10110 PA10111 PA1021 PA1022 PA1023 PA1024 PA1025 PA1026 PA1027 PA1028 PA1029 PA10210 PA10211 PA10212 PA1031 PA1032 PA1033 PA1034 PA1035 PA1036 PA1037 PA1038 PA1039 PA10310 PA10311 PA10312 PA1011 PA1012 0.000 PA1013 0.000 0.000 PA1014 0.000 0.000 0.000 PA1015 0.003 0.003 0.003 0.003 PA1017 0.018 0.018 0.018 0.018 0.014 PA1018 0.014 0.014 0.014 0.014 0.010 0.007 PA1019 0.003 0.003 0.003 0.003 0.007 0.018 0.010 PA10110 0.014 0.014 0.014 0.014 0.011 0.014 0.018 0.014 PA10111 0.010 0.010 0.010 0.010 0.007 0.007 0.003 0.014 0.018 PA1021 0.010 0.010 0.010 0.010 0.007 0.011 0.003 0.007 0.014 0.007 PA1022 0.010 0.010 0.010 0.010 0.007 0.018 0.010 0.007 0.014 0.014 0.007 PA1023 0.007 0.007 0.007 0.007 0.010 0.014 0.007 0.003 0.018 0.010 0.010 0.010 PA1024 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 PA1025 0.003 0.003 0.003 0.003 0.007 0.014 0.010 0.007 0.018 0.007 0.007 0.014 0.010 0.007 PA1026 0.003 0.003 0.003 0.003 0.007 0.014 0.014 0.003 0.014 0.014 0.011 0.011 0.007 0.007 0.007 PA1027 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 PA1028 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 PA1029 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 PA10210 0.003 0.003 0.003 0.003 0.007 0.014 0.010 0.007 0.018 0.007 0.007 0.014 0.010 0.007 0.000 0.007 0.007 0.007 0.007 PA10211 0.010 0.010 0.010 0.010 0.007 0.007 0.010 0.014 0.011 0.007 0.007 0.014 0.018 0.007 0.007 0.014 0.007 0.007 0.007 0.007 PA10212 0.000 0.000 0.000 0.000 0.003 0.018 0.014 0.003 0.014 0.010 0.010 0.010 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.010 PA1031 0.010 0.010 0.010 0.010 0.014 0.018 0.011 0.007 0.021 0.014 0.007 0.014 0.011 0.014 0.007 0.011 0.014 0.014 0.014 0.007 0.014 0.010 PA1032 0.014 0.014 0.014 0.014 0.011 0.018 0.014 0.018 0.014 0.011 0.011 0.018 0.021 0.011 0.011 0.018 0.011 0.011 0.011 0.011 0.011 0.014 0.018 PA1033 0.003 0.003 0.003 0.003 0.007 0.014 0.014 0.003 0.014 0.014 0.011 0.011 0.007 0.007 0.007 0.000 0.007 0.007 0.007 0.007 0.014 0.003 0.011 0.018 PA1034 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.003 0.014 0.011 0.007 PA1035 0.007 0.007 0.007 0.007 0.003 0.010 0.011 0.007 0.011 0.011 0.007 0.007 0.011 0.003 0.011 0.003 0.003 0.003 0.003 0.011 0.011 0.007 0.014 0.014 0.003 0.003 PA1036 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.003 0.014 0.011 0.007 0.000 0.003 PA1037 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.003 0.014 0.011 0.007 0.000 0.003 0.000 PA1038 0.000 0.000 0.000 0.000 0.003 0.018 0.014 0.003 0.014 0.010 0.010 0.010 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.010 0.000 0.010 0.014 0.003 0.003 0.007 0.003 0.003 PA1039 0.000 0.000 0.000 0.000 0.003 0.018 0.014 0.003 0.014 0.010 0.010 0.010 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.010 0.000 0.010 0.014 0.003 0.003 0.007 0.003 0.003 0.000 PA10310 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.003 0.014 0.011 0.007 0.000 0.003 0.000 0.000 0.003 0.003 PA10311 0.007 0.007 0.007 0.007 0.003 0.010 0.011 0.007 0.011 0.011 0.007 0.007 0.011 0.003 0.011 0.003 0.003 0.003 0.003 0.011 0.011 0.007 0.014 0.014 0.003 0.003 0.000 0.003 0.003 0.007 0.007 0.003 PA10312 0.003 0.003 0.003 0.003 0.000 0.014 0.010 0.007 0.011 0.007 0.007 0.007 0.010 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.007 0.003 0.014 0.011 0.007 0.000 0.003 0.000 0.000 0.003 0.003 0.000 0.003 Table C7: Genetic distance of VA Pop ID VA1211 VA1212 VA1213 VA1214 VA1215 VA1216 VA1217 VA1218 VA1219 VA12110 VA12111 VA12112 VA1221 VA1222 VA1225 VA1227 VA1228 VA1229 VA12211 VA12212 VA1231 VA1232 VA1234 VA1235 VA1236 VA1239 VA12311 VA12312 VA1211 VA1212 0.006 VA1213 0.003 0.010 VA1214 0.000 0.006 0.003 VA1215 0.006 0.006 0.003 0.006 VA1216 0.006 0.006 0.003 0.006 0.000 VA1217 0.000 0.006 0.003 0.000 0.006 0.006 VA1218 0.010 0.003 0.006 0.010 0.003 0.003 0.010 VA1219 0.006 0.006 0.003 0.006 0.000 0.000 0.006 0.003 VA12110 0.006 0.006 0.003 0.006 0.000 0.000 0.006 0.003 0.000 VA12111 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 VA12112 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 0.000 VA1221 0.006 0.006 0.003 0.006 0.000 0.000 0.006 0.003 0.000 0.000 0.006 0.006 VA1222 0.003 0.010 0.000 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 VA1225 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.006 VA1227 0.003 0.010 0.000 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.000 0.006 VA1228 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 0.000 0.000 0.006 0.003 0.003 0.003 VA1229 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 0.000 0.000 0.006 0.003 0.003 0.003 0.000 VA12211 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.006 0.000 0.006 0.003 0.003 VA12212 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.006 0.000 0.006 0.003 0.003 0.000 VA1231 0.003 0.010 0.006 0.003 0.010 0.010 0.003 0.013 0.010 0.010 0.003 0.003 0.010 0.006 0.006 0.006 0.003 0.003 0.006 0.006 VA1232 0.003 0.010 0.000 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.000 0.006 0.000 0.003 0.003 0.006 0.006 0.006 VA1234 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 0.000 0.000 0.006 0.003 0.003 0.003 0.000 0.000 0.003 0.003 0.003 0.003 VA1235 0.006 0.006 0.003 0.006 0.000 0.000 0.006 0.003 0.000 0.000 0.006 0.006 0.000 0.003 0.003 0.003 0.006 0.006 0.003 0.003 0.010 0.003 0.006 VA1236 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.006 0.000 0.006 0.003 0.003 0.000 0.000 0.006 0.006 0.003 0.003 VA1239 0.000 0.006 0.003 0.000 0.006 0.006 0.000 0.010 0.006 0.006 0.000 0.000 0.006 0.003 0.003 0.003 0.000 0.000 0.003 0.003 0.003 0.003 0.000 0.006 0.003 VA12311 0.003 0.010 0.000 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.000 0.006 0.000 0.003 0.003 0.006 0.006 0.006 0.000 0.003 0.003 0.006 0.003 VA12312 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.006 0.000 0.006 0.003 0.003 0.000 0.000 0.006 0.006 0.003 0.003 0.000 0.003 0.006 73 APPENDIX D Table D1: The DNA sequences of 228 genotypes Sample ID Sequence OH 1-2-1 AGAGGGTTGACTTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAA TTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACC TTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGAT CAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAA ATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACC GGATAACAATAATCATCCTGTAGGGAT OH 1-2-2 CTTGTCAAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT OH 1-2-3 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGAT OH 1-2-4 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATT OH 1-2-5 GAGGGTTGACCTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAAT TTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCT TAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATC AAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAA CGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCG GATAACAATAATCATCCTGTAGGG OH 1-2-6 CCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGC ATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAA TCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACC AGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCA CACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGG GATTGATTC OH 1-2-7 CCTTGTCGAACCTGGTCAGAGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAGTCTCTCTCTCAATTCGGAAGCCACTTTGGGAACTCGATCAAGAATCCAGG ACATCGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGAT OH 1-2-8 TCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTCGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATC OH 1-2-9 TTGACTTTCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTA GAAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGC GACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCG TCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATT 74 OH 1-2-11 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC OH 1-2-12 CCTTGTCGAACCTGGTCAGAGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGAT OH 1-3-1 CCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAACGG TCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTCGATCAAGAATCCAGGA CATCGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGA OH 1-3-2 CCTTGTCAAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATTC OH 1-3-3 CTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAAT AGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGT CCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACA TGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCG GATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCA TCCTGTAGGGATTGAT OH 1-3-4 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT OH 1-3-5 GGTTGACTTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTT AGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAG CGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAG AATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGC GTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGAT AACAATAATCATCCTGTAGGGATTG OH 1-3-6 CTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAAT AGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGT CCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACA TGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCG GATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCA TCCTGTAGGGATTGATC OH 1-3-7 CTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGAT OH 1-3-8 CTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAAT AGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGT CCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACA TGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCG GATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCA TCCTGTAGGGATTGAT OH 1-3-9 TCCTTGTCGAACCTGGTCAGACGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT 75 OH 1-3-10 ACTTTCTGCGCAAACGTAATACCGAGTATAGACAATAGACTCTTTAGACCAAACGGTACA GGACCTAAGAACTAGTCAAGGGTTTCACCGAAGGTTAACTCTCTCTCTGAATGGACCTGG CAAACAGCGATTCCAATCAACGTAGTAACGTACTACTTACCTTATTTACGAACGGGATAA AAGAAAGATTTTAAGGTTTCGATTCTTCAAGTAACAAAGAGACTGGTCCAAGCTGTTCCT TTCAGTTGGGAGAGTCGAACGAGGCTAACTGAAGAAACAGTCATGCCT OH 1-3-11 GGTTGACTTTCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTT TAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTA GCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAA GAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATG CGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGA TAACAATAATCATCCTGTAGGGAT OH 1-3-12 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGA OH 1-4-1 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC OH 1-4-2 GGTTGACCTTCCTTGTCAAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTT TAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTA GCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAA GAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACG CGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGA TAACAATAATCATCCTGTAGGGATTGATTC OH 1-4-3 GACTTTCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAA AGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGAC AAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATC CAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCT TTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACA ATAATCATCCTGTAGGGATTGATC OH 1-4-4 CCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAG CATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAA GTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAAC CAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATC ACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAG GGATTGATC OH 1-4-6 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCGATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC OH 1-4-7 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATC OH 1-4-8 GGTTGACTTTCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTT AGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAG CGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAG AATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGC GTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGAT AACAATAATCATCCTGTAGGGATTGATC OH 1-4-9 CCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT 76 OH 1-4-10 TTCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT OH 1-4-11 AGAGGGTTGACTTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAA TTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACC TTAGTGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGAT CAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAA ACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACC GGATAACAATAATCATCCTGTAGGGATTGA OH 1-4-12 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGAT 77 Sample ID Sequence NC 1.5 2-1-1 ACTTTTCCTTGTCAAACCTAGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTG ACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTCGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCG TCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATTGATC NC 1.5 2-1-2 CCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCG CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATT NC 1.5 2-1-4 GGTTGACTTTCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATT TTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTT AGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCA AGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAAC GCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGG ATAACAATAATCATCCTGTAGGGATTGATTC NC 1.5 2-1-5 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC NC 1.5 2-1-6 AGAGGGTTGACCTTCCTTGTCGAACCTGGTCAGAGAACAATGAACTTCTTAGCTTTGGAA TTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACC TTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGAT CAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAA ACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACC GGATAACAATAATCATCCTGTAGGGATT NC 1.5 2-1-7 CTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTG NC 1.5 2-1-8 CCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGC ATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAA TCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACC AGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCA CACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGG GATTGATC NC 1.5 2-1-9 CTTGTCAAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCGC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT NC 1.5 2-1-10 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT NC 1.5 2-1-11 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCG CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC 78 NC 1.5 2-1-12 GACTTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAA AGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGAC AAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATC CAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCT TTCGCCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACA ATAATCATCCTGTAGGGATTGATC NC 1.5 2-2-1 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCG CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC NC 1.5 2-2-2 CCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCGC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT NC 1.5 2-2-3 CTTGTCAAACCTGGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATTC NC 1.5 2-2-4 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATC NC 1.5 2-2-5 CCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTG NC 1.5 2-2-6 CCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATT NC 1.5 2-2-7 CCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAG CATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAA GTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAAC CAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATC ACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAG GGATT NC 1.5 2-2-8 TCCTTGTCAAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCATCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGA NC 1.5 2-2-9 TCCTTGTCAAACCTAGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGAT NC 1.5 2-2-10 TCCTTGTCAAACCTCGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTG 79 NC 1.5 2-2-11 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC GCCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATC NC 1.5 2-3-1 TCCTTGTCAAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT NC 1.5 2-3-2 TCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATC NC 1.5 2-3-4 ACTTTTCCTTGGTCAAACCTAGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTA GAAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGC GACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCG TCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATTGATC NC 1.5 2-3-5 CCTTGTCAAACCTGGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC NC 1.5 2-3-6 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGTATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCGCC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTG NC 1.5 2-3-9 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT NC 1.5 2-3-10 CTTGTCAAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATC NC 1.5 2-3-11 CTTGTCAAACCTGGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCGC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATTC NC 1.5 2-3-12 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC GCCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGG 80 Sample ID Sequence NC 3-1-1 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATC NC 3-1-2 GACTTTCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAA AGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGAC AAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATC CAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCT TTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACA ATAATCATCCTGTAGGGATTG NC 3-1-4 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC NC 3-1-5 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATTC NC 3-1-6 CTTTCCTTTGTCAAACCTAGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAGTCTCTCTCTCAATCGGAAGCCACTTTGGGAACTGATCAAGAAT CCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTC TTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAAC AATAATCATCCTGTAGGG NC 3-1-7 TCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC NC 3-1-8 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCGCCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT NC 3-1-9 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATC NC 3-1-10 GACCTTCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAA AGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGAC AAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATC CAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCT TTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACA ATAATCATCCTGTAGGG NC 3-1-11 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATC 81 NC 3-2-4 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATTC NC 3-2-5 GACTTTGCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTA GAAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGC GACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCG TCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATT NC 3-2-6 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT NC 3-2-7 TCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATTC NC 3-2-8 CCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTG NC 3-2-9 GGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCAT TTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATC TCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAG ATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTCGCCGGATGCATCACA CGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGA TTGATTC NC 3-2-10 TCCTTGTCAAACCTAGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTAATCATGCAATGATGCGACTAACCTTAGTGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTC GCCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACGATA ATCATCCTGTAGGGATTGATTC NC 3-2-11 TCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTT ATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTC TCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGAT TTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTCACCGGATGCATCACACG GTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT GATTC NC 3-2-12 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAATGCATCTTTCGCCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT NC 3-3-1 CCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGA NC 3-3-2 TCCTTGTCAAACCTAGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAA CGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATTGATC 82 NC 3-3-3 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT NC 3-3-4 GACCTTCCTTGTCAAACCTGGTCAGAAAACAATGAACTTCTTAGCTTTGGAATTTTAGAA AGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGAC AAACGGTCCAGGTAAGTCTCTCTCTCAATCGGAAGCCACTTTGGGAACTGATCAAGAATC CAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCT TTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACA ATAATCATCCTGTAGGG NC 3-3-5 ACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATT CATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAA TTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGA TAACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGA AGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC NC 3-3-7 ACTTCTTAGCTTTGAAGTTTTAAAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATG CGATGATGCAACTAAACTTAGAGACAAACGGTCCAAGTAAATCTCTCTCTCAATTGGAAG CCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGA TATGAGCCATAATGCAAACGCGTCTTTCGCCGGATGCATCACACGGTAGTGGAAGAAGAA ACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC 83 Sample ID Sequence DC 4-1-1 CTTGTCAAACCTGGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGAT DC 4-1-2 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATT DC 4-1-3 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC DC 4-1-4 TCCTTGTCAAACCTGGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAA CGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGATT DC 4-1-5 CTTGTCAAACCTGGGTCAGAACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTCGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATCGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTC ACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATA ATCATCCTGTAGGGAT DC 4-1-6 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATTC DC 4-1-7 TTGACTTTCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATTC DC 4-1-8 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTG DC 4-1-9 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTG DC 4-1-10 ACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATT CATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAA TTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGA TAACAGATATGAGCCATAATGCAAATGCATCTTTCACCGGATGCATCACACGGTAGTGGA AGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT 84 DC 4-1-11 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATC DC 4-1-12 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGG DC 4-2-1 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT CGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT DC 4-2-2 TGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATC ATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGG AAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAAC AGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAA GAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGA DC 4-2-3 TCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTT ATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTC TCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGAT TTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACG GTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT GATTC DC 4-2-4 TGACTTTCCTTGTCGAACCTGGTCAGAGAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAAGGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAATCTCTCTCTCAATTCGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATGAT DC 4-2-5 AGAGGGTTGACTTTCCTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGG AATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTAATCATGCAATGATGCAACTAA CCTTAGCGACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTG ATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGC AAATGCATCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAA CCGGATAACAATAATCATCCTGTAGGGATTGATTC DC 4-2-6 GTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATT TATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCT CTCTCTCAATTCGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATCGGCAAACCA GATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCAC ACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGG DC 4-2-7 CTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAAT AGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGT CCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACA TGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACTG GATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCA TCCTGTAGGGATTG DC 4-2-8 GAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCATCA TGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGA AGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACA GATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAG AAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTG DC 4-2-9 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATC 85 DC 4-2-10 ACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGAAAGCATTTATTCCATTCATCATG CAATGATGCAACTAACCTTAGTGACAAACGGTCCAAGTAAATCTCTCTCTCAATTGGAAG CCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGA TATGAGCCATAATGCAAATGCGTCTTTCGCCGGATGCATCACACGGTAGTGGAAGAAGAA ACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTG DC 4-2-11 CTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT DC 4-2-12 TCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATT DC 4-3-1 ACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATT CATCATGCAATAGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCA ATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAG ATAACAGATATGAGCCATAATGCAAACGCATCTTTCACCGGATGCATCACACGGTAGTGG AAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATC DC 4-3-2 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATC DC 4-3-3 ACACTACGTAGGCCACTTTCTACGTAAACGTAATACCGAGTATAGACAATAGACACTTTA GACCAAACGGTACAGGACCTAAGAACTAGTCAAGGGTTTCACCGAAGGTTAACTCTCTCT CTGAATGGACCTGGCAAACAGTGATTCCAATCAGCGTAGTAACGTACTAATTACCTTATT TACGAACGGGATAAAAGAAAGATTTTAAGGTTTCGATTCTTCAAGTAACAAAGAGACTGG TCCAAACTGTTCCTTTCAGTTGGGAGAGTCGAACGAGGCTAACTGAAGAAACAGTCATGC CA DC 4-3-4 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT CGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGAT DC 4-3-5 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC DC 4-3-6 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGA DC 4-3-7 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT DC 4-3-8 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATC DC 4-3-9 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT 86 DC 4-3-10 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC DC 4-3-11 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT DC 4-3-12 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATC 87 Sample ID Sequence KY 7-1-2 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-1-3 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT KY 7-1-4 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT KY 7-1-5 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT KY 7-1-6 ACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAAT CCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTC TTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAAC AATAATCATCCTGTAGGGAT KY 7-1-7 CCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGC ATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAA TCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACC AGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCA CACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGG GATT KY 7-1-8 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT KY 7-1-9 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT KY 7-1-10 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-1-11 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-1-12 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC 88 ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-2-1 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATC KY 7-2-2 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT KY 7-2-3 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATC KY 7-2-4 GAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCA TGCGATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGA AGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATAACA GATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAG AAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATC KY 7-2-5 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC KY 7-2-6 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATT KY 7-2-7 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAATGCATCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATC KY 7-2-8 CAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAAAAAGAAAATAGGGAAAGCATTTA TTCCATTCATCATGCGATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTCT CTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATT TCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTCGCCGGATGCATCACACGG TAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTG ATTC KY 7-2-9 GGAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCA AACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGC ATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTG TAGGGAT KY 7-2-10 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC KY 7-2-11 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT 89 KY 7-2-12 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-3-2 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATC KY 7-3-3 TCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTT ATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTC TCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGAT TTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACG GTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT GATTC KY 7-3-4 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGAT KY 7-3-5 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC KY 7-3-7 CCTGGTCAGACAAGCAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAG CATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAA ATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAAC CAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACTGGATGCATC ACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAG GGATT KY 7-3-8 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATTC KY 7-3-9 GTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATT TATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCT CTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGA TTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACAC GGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT KY 7-3-10 CCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAG CATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAA ATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAAC CAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATC ACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT KY 7-3-11 TCCTTGTCAAACCTGCGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGA AAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAA CGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAG GACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTC GCCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACGATA ATCATCCTGTAGGGATTGATTC KY 7-3-12 CCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAG CATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAA ATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAAC CAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATC ACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAG GGATTGATTC 90 Sample ID Sequence PA10-1-1 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATC PA10-1-2 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT PA10-1-3 CTTGTCAAACCTGGGTCAGACATACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGAT PA10-1-4 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC PA10-1-5 CTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAAT AGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGT CCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACA TGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCG GATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCA TCCTGTAGGGATTGATTC PA10-1-6 GGTATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCA AACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCGCCGGATGC ATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTG TAGGGATTGATTC PA10-1-7 GGTTGACCTTCCTTGTCGACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTA GAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGT GACAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCG TCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATT PA10-1-8 TCCTTGTCAAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT PA10-1-9 TCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGA PA10-1-10 AATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCA TCATGCAATGATGCAACTAACCTTAGTGACAAACGGTCCAGGTAAATCTCTCTCTCAATT GGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGATA ACAGATATGAGCCATAATGCAAACGCATCTTTCACCGGATGCATCACACGGTAGTGGAAG AAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC 91 PA10-1-11 CTTGTCAAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATC PA10-2-1 TCCTTGTCAAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC PA10-2-2 TCCTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGA PA10-2-3 TGACCTTCCTTGTCGAACCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAGTCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAAT CCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTC TTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAAC AATAATCATCCTGTAGGGATTGATC PA10-2-4 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC PA10-2-5 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT PA10-2-6 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGAT PA 10-2-7 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC PA 10-2-8 CTTGTCGAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATTGATTC PA 10-2-9 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTG PA 10-2-10 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC 92 PA 10-2-11 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGTGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT PA 10-2-12 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATC PA 10-3-1 TCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTT ATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTC TCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGAT TTCACAGATAACAGATATGAGCCATAATGCAAATGCGTCTTTCACCGGATGCATCACACG GTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACGATAATCATCCTGTAGGGATT PA 10-3-2 CCTGGTCAGACAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGC ATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAA TCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACC AGATTTCACAGATAACAGATATGAGCCATAATGCAAATGCATCTTTCGCCGGATGCATCA CACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGG GATTGATTCGCTTTGATGG PA 10-3-3 GTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATT TATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCT CTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGA TTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACAC GGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGAT TGATC PA 10-3-4 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT PA 10-3-5 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT PA 10-3-6 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT PA 10-3-7 CTTGTCAAACCTGGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAA ATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACG GTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGA CATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCAC CGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAAT CATCCTGTAGGGATT PA 10-3-8 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGTAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC PA 10-3-9 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGTAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATT 93 PA 10-3-10 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC PA 10-3-11 GGTTGACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATT TTAGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTT AGCGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCA AGAATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAAC GCGTCTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGG ATAACAATAATCATCCTGTAGGGATT PA 10-3-12 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACCGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT 94 Sample ID Sequence VA 12-1-1 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-1-2 CTTGTCGAACCTGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-1-3 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTG VA 12-1-4 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-1-5 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-1-6 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-1-7 TCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC VA 12-1-8 CCTTGTCGAACCTGGGTCAGACGAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAA AATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAAC GGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGG ACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCA CTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAA TCATCCTGTAGGGATTGATTC VA 12-1-9 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATTC VA 12-1-10 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT 95 VA 12-1-11 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGAT VA 12-1-12 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT VA 12-2-1 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTG VA 12-2-2 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-2-3 TCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTT ATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTC TCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGAT TTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACTGGATGCATCACACG GTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATT GATTC VA 12-2-4 ACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAA GCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTA AATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAA CCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACTGGATGCAT CACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTA GGGATTGA VA 12-2-5 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-2-7 TTGACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTT AGAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAG CGACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAG AATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGC GTCTTTCACTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGAT AACAATAATCATCCTGTAGGGATTGATTC VA 12-2-8 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-2-9 ACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAAT CCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTC TTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAAC AATAATCATCCTGTAGGGATTGATTC VA 12-2-11 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT 96 CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATTC VA 12-2-12 GACCTTGCCTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATT VA 12-3-1 CTTGTCGAACCTGGTCAGAGAAGCAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-3-2 GACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAG AAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCG ACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAA TCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGT CTTTCACTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAA CAATAATCATCCTGTAGGGATTGATC VA 12-3-3 CAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAATAGGGCAAGCATTTATTCCATTC ATCATGCAATGATGCAACTAACCTTAGCGACAAACGGTCCAGGTAAATCTCTCTCTCAAT TGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGACATGGCAAACCAGATTTCACAGAT AACAGATATGAGCCATAATGCAAACGCGTCTTTCACTGGATGCATCACACGGTAGTGGAA GAAGAAACCCAAAACCACCAACCGGATAACAATAATCATCCTGTAGGGATTGATTC VA 12-3-4 ACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGA AAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGA CAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAAT CCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTC TTTCACCGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAAC AATAATCATCCTGTAGGGATTGATTC VA 12-3-5 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACT GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-3-6 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATT VA 12-3-9 CTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGATTC VA 12-3-11 TGACCTTGCCTTGTCGAACCTGGTCAGAGAAACAATGAACTTCTTAGCTTTGGAATTTTA GAAAGAAAATAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGC GACAAACGGTCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGA ATCCAGGACATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCG TCTTTCACTGGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATA ACAATAATCATCCTGTAGGGATTGATTC VA 12-3-12 CTTGTCGAACCTGGTCAGACAAACAATGAACTTCTTAGCTTTGGAATTTTAGAAAGAAAA TAGGGCAAGCATTTATTCCATTCATCATGCAATGATGCAACTAACCTTAGCGACAAACGG TCCAGGTAAATCTCTCTCTCAATTGGAAGCCACTTTGGGAACTGATCAAGAATCCAGGAC ATGGCAAACCAGATTTCACAGATAACAGATATGAGCCATAATGCAAACGCGTCTTTCACC GGATGCATCACACGGTAGTGGAAGAAGAAACCCAAAACCACCAACCGGATAACAATAATC ATCCTGTAGGGATTGAT
© Copyright 2026 Paperzz