on the mechanics of failure in ceramic/metal bonded systems

ON THE MECHANICS OF FAILURE IN
CERAMIC/METAL BONDED SYSTEMS
A. Evans, M. Rühle, M. Turwitt
To cite this version:
A. Evans, M. Rühle, M. Turwitt.
ON THE MECHANICS OF FAILURE IN CERAMIC/METAL BONDED SYSTEMS. Journal de Physique Colloques, 1985, 46 (C4), pp.C4613-C4-626. <10.1051/jphyscol:1985466>. <jpa-00224719>
HAL Id: jpa-00224719
https://hal.archives-ouvertes.fr/jpa-00224719
Submitted on 1 Jan 1985
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
Colloque C4, suppl6ment a u n04, Tome 46, avril 1985
A.G.
page C4-613
Evans, M. ~ i i h l e ' and M. ~ u r w i t t '
Department of Materials Science and Mineral Engineering, University of
California, Berkeley, CA 94720, U.S.A.
' ~ m - ~ Z a n c k - l n s t i t ufiir
t
Metallforschung, I n s t i t u t fiir
Werkstoffwissenschaften, 0-7000 S t u t t g a r t I , F.R. G.
-
Abstract
S t r e s s c o n c e n t r a t i o n s t h a t d e v e l o p i n m e t a l / c e r a m i c bonded
systems h a v e been e v a l u a t e d and shown t o encourage c r a c k p r o p a g a t i o n a t , o r
n e a r , t h e edge o f bonded i n t e r f a c e s . Experiments 1 i n d e n t a t i o n o b s e r v a t i o n s
on Nb/A1203 c o n f i r m t h e e x i s t e n c e o f t h e p r e d i c t e d s t r e s s c o n c e n t r a t i o n s .
I n t h i s system, f a i l u r e was i n v a r i a b l y o b s e r v e d t o i n i t i a t e i n t h e ceramic,
such t h a t q u a s i - s t a t i c c r a c k s l o c a t e d a t t h e i n t e r f a c e e x h i b i t e d c r a c k
b l u n t i n g . However, s u b s t a n t i a l d y n a m i c r e d u c t i o n s i n t h e c r a c k g r o w t h
r e s i s t a n c e o f t h e i n t e r f a c e a r e i n f e r r e d from f r a c t u r e s u r f a c e
observations. I m p l i c a t i o n s f o r t h e optimal s t r e n g t h s o f ceramic/metal
bonded systems a r e presented.
1.
INTRODUCTION
The mechanical r e s p o n s e o f a system is governed by t h e s t r e s s d i s t r i b u t i o n and by
t h e f r a c t u r e c h a r a c t e r i s t i c s o f each m a t e r i a l c o n s t i t u e n t . Both a s p e c t s must be
s e p a r a t e l y i n v e s t i g a t e d b e f o r e d e v i s i n g an a p p r o a c h f o r o p t i m i z i n g m e c h a n i c a l
s t r e n g t h . Consequently, i n v e s t i g a t i o n o f t h e mechanical b e h a v i o r o f c e r a m i c / m e t a l
bonded s y s t e m s r e q u i r e s c o n s i d e r a t i o n o f t h e stress s t a t e , a s d i c t a t e d by t h e
a p p l i e d l o a d s a n d t h e e l a s t i c a n d t h e r m a l e x p a n s i o n mismatch, a s w e l l as t h e
i n d i v i d u a 1 f r a c t u r e c h a r a c t e r i s t i c s o f t h e c e r a m i c , meta 1 a n d i n t e r f a c e . The
l i m i t e d a v a i l a b l e r e s e a r c h on c e r a m i c / m e t a l bonded systems i n d i c a t e s t h a t f r a c t u r e
i n t h e c e r a m i c , a d j a c e n t t o t h e i n t e r f a c e , is a f r e q u e n t f a i l u r e mode (1,2).
I n t e r f a c e s with a g r e a t e r f r a c t u r e r e s i s t a n c e than t h e ceramic thus appear t o be
attainable.
Consequently, an i s s u e o f g r e a t e r p r e s e n t c o n c e r n is t h e s t a t e of
s t r e s s a s s o c i a t e d w i t h bonded s y s t e m s . The i n t e n t o f t h i s a r t i c l e i s t o e x a m i n e
v a r i o u s problems a s s o c i a t e d with t h e growth o f c r a c k s a t , o r n e a r , t h e i n t e r f a c e in
c e r a m i c / m e t a l bonded systems, a s a b a s i s f o r u n d e r s t a n d i n g mechanical s t r e n g t h .
The s t r e n g t h i s s u e s a r e i l l u s t r a t e d by experiments conducted i n t h e A1203/Nb system.
T h i s system h a s t h e a t t r a c t i v e f e a t u r e s t h a t t h e r m a l expansion mismatch is minimized
a n d t h a t d i s c r e t e i n t e r f a c e s c a n b e a c h i e v e d (3). However, m i s m a t c h i n e l a s t i c
modulus p r o v i d e s unique f a i l u r e modes, t y p i c a l o f c e r a m i c / m e t a l bonded systems. I n
p a r t i c u l a r , f a i l u r e f r e q u e n t l y i n i t i a t e s a t e d g e s , d u e t o s u b s t a n t i a 1 stress
c o n c e n t r a t i o n s (4).
Edge e f f e c t s a r e t h u s a f f o r d e d s p e c i a l emphasis.
The mechanical r e s p o n s e o f t h e system is probed u s i n g i n d e n t a t i o n s p l a c e d a t v a r i o u s
s i t e s a d j a c e n t t o , and remote from, t h e i n t e r f a c e . The i n d e n t a t i o n method h a s been
s e l e c t e d because it s i m u l a t e s t h e f r a c t u r e b e h a v i o r induced by machining damage (5)
and by i n c l u s i o n s (6) two o f t h e most d e l e t e r i o u s d e f e c t t y p e s i n h i g h s t r e n g t h
m a t e r i a l systems (6).
-
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985466
JOURNAL DE PHYSIQUE
2. EDGE EFFECTS
2.1
S t r e s s Concentrations
When a mismatch e x i s t s i n e i t h e r t h e r m a l e x p a n s i o n o r e l a s t i c m o d u l u s , e d g e s a n d
The b a s i c n a t u r e o f t h e e d g e p r o b l e m i s
c o r n e r s a r e major s o u r c e s o f f a i l u r e .
i l l u s t r a t e d f o r t h e c o n f i g u r a t i o n d e p i c t e d i n f i g . 1. When t h e m e t a l s t r i p h a s
e i t h e r a l a r g e r t h e r m a l expansion c o e f f i c i e n t o r a lower modulus than t h e m a t r i x ;
t h e unconstrained m e t a l d e v e l o p s a s m a l l e r l a t e r a l dimension than t h e ceramic ( f i g .
l b ) . Hence, t o s i m u l a t e t h e s t r e s s s t a t e i n t h e bonded s y s t e m , t h e u n c o n s t r a i n e d
m e t a l must b e u n i f o r m l y e x t e n d e d by t h e a p p l i c a t i o n o f e d g e t r a c t i o n s ( f i g . 1c).
Then, s u r f a c e f o r c e s ( e q u a l i n m a g n i t u d e b u t o p p o s i t e i n s i g n ) must b e a p p l i e d t o
t h e m e t a l , i n t h e bonded s t a t e , t o a c h i e v e s t r e s s f r e e c o n d i t i o n s a t t h e s u r f a c e
( f i g . Id). This l a t t e r s t e p induces l a r g e normal and s h e a r s t r e s s e s n e a r t h e edge,
which t y p i c a l l y a c t o v e r a d i s t a n c e similar t o t h e t h i c k n e s s , h, o f t h e m e t a l .
Furthermore, t h e s t r e s s e s a r e f r e q u e n t l y s i n g u l a r (4).
I n t h e p r e s e n c e o f e l a s t i c mismatch, t h e s t r e s s e s n e a r t h e e d g e , i n d u c e d by a n
a p p l i e d s t r e s s a,, e x h i b i t a s i n g u l a r f o r m (4). F o r p l a n e s t r a i n c o n d i t i o n s , t h e
edge s t r e s s e s can b e expressed a s
where
CERAMIC
ERAMlC
t
o) INITIAL STATE
-
b) STRESSED: UNCONSTRAINED
+
c) UNCONSTRAINED:
DISPLACEMENT
CONTINUITY AT
INTERFACE
SURFACE FORCES APPLIED.
FOR STRESS FREE SLRFACE
REQUIREMENTS
Fig. 1
A schematic i l l u s t r a t i n g t h e development o f i n t e r f a c i a l s t r e s s
c o n c e n t r a t i o n s due t o e l a s t i c ( o r t h e r m a l expansion) mismatch.
p is t h e s h e a r modulus, v is Poisson's r a t i o , f is a f u n c t i o n , Y is a c o e f f i c i e n t
( < I ) and r is t h e d i s t a n c e from t h e edge, a l o n g t h e i n t e r f a c e . Some t y p i c a l r e s u l t s
( 4 ) a r e p l o t t e d i n f i g . 2. Very l a r g e t e n s i l e a n d s h e a r s t r e s s e s t h u s e x i s t o v e r
sma 11 r e g i o n s ad jaoent t o t h e edge.
CERAMIC
I~~ERFACE
METAL
Qzz/=m
0.8
-
Fig. 2
S t r e s s e s n e a r a f r e e s u r f a c e a t t h e i n t e r f a c e between a bonded system f o r
t h e c o n d i t i o n p l / u 2 = 0.11, vl
1 / 2 ( a = -0.8, B = 0 ) (4).
The maximum s h e a r
stress o c c u r s j u s t beneath t h e s=u v?=
r ace.
T h e r m a l e x p a n s i o n mismatch h a s a s i m i l a r e f f e c t , by v i r t u e o f l a r g e r e s i d u a l
s t r e s s e s c r e a t e d n e a r t h e edge. S p e c i f i c a l l y , i f t h e e l a s t i c p r o p e r t i e s a r e t h e
same f o r t h e m e t a l a n d c e r a m i c , t h e i n t e r f a c e s t r e s s e s a r e g i v e n f o r a bonded
c y l i n d e r by (7);
where
d
is t h e diameter o f t h e c y l i n d e r and t h e a n c t i o n 51 is p l o t t e d i n fig. 3.
A mismatch i n m o d u l u s g e n e r a t e s i n t e r f a c i a l t e n s i l e s t r e s s e s o
,
a t t h e edge,
i r r e s p e c t i v e o f t h e s i g n o f t h e mismatch and t h u s , i n v a r i a b l y , e n h a n c e s t h e
p r o p e n s i t y t o f r a c t u r e . T h e r m a l e x p a n s i o n mismatch i n d u c e s ,a, t e n s i l e s t r e s s e s
j u s t o u t s i d e t h e i n t e r f a c e , w i t h i n e i t h e r t h e m e t a l o r t h e ceramic, depending upon
t h e s i g n o f t h e t h e r m a l expansion and t h e e l a s t i c mismatch.
Generally, the metal
h a s the l a r g e r thermal expansion c o e f f i c i e n t and t h e expansion mismatch t h e n induces
,a,
t e n s i l e s t r e s s e s i n t h e c e r a m i c , a d j a c e n t t o t h e i n t e r f a c e , and e n c o u r a g e s
f a i l u r e i n t h e ceramic. Large s h e a r s t r e s s e s always e x i s t a l o n g t h e i n t e r f a c e , near
t h e e d g e , i n t h e p r e s e n c e o f e l a s t i c o r t h e r m a l mismatch. A s u b s t a n t i a l mode I1
c o n t r i b u t i o n t o edge f a i l u r e s h o u l d t h u s be a n t i c i p a t e d in a l l s i t u a t i o n s .
JOURNAL DE PHYSIQUE
-
Fig. 3
S t r e s s e s induced by a t h e r m a l expansion mismatch i n a bonded c y l i n d e r .
The s h e a r s t r e s s e s a r e a t t h e i n t e r f a c e , whereas t h e t e n s i l e s t r e s s e s are i n t h e
ceramic c l o s e t o t h e i n t e r f a c e (z/d = 0.05).
The normal s t r e s s e s immediately a t t h e
i n t e r f a c e a r e zero. The maximum s h e a r s t r e s s o c c u r s j u s t beneath t h e surface.
2.2
Crack
Propagation
The p r o p a g a t i o n o f c r a c k s from a n e d g e a l o n g , o r a d j a c e n t t o , t h e i n t e r f a c e i s
g o v e r n e d by t h e a p p r o p r i a t e s t r a i n e n e r g y r e l e a s e r a t e (8,g).
For example, t h e
t o t a l s t r a i n energy r e l e a s e 9 f o r an i n t e r f a c e crack i n t h e absence o f thermal
mismatch has t h e g e n e r a l form (10,11,12)
where Ec is t h e composite modulus (121,
r
such t h a t , f o r p l a n e s t r a i n , X = 3-4v,
and
$,
-4
the variable
g is t h e f u n c t i o n p l o t t e d in f i g . 4.
deduced from f i g . 4, is (101,
r; is g i v e n by,
An approximate a n a l y t i c e x p r e s s i o n f o r
BONDED
HOMOGENEOUS
MATERIAL
Fig. 4
crack.
-
-
The v a r i a t i o n i n t h e n o r m a l i z e d s t r a i n e n e r g y r e l e a s e f o r an i n t e r f a c e
Trends in t h e i n t e r f a c e crack growth s t r e s s w i t h i n crack l e n g t h f o r v a l u e s
Fig. 5
o f t h e s i n g u l a r i t y y e i t h e r s m a l l e r o r l a r g e r than u n i t y .
JOURNAL DE PHYSIQUE
C4-6 18
where X1,2 a r e c o e f f i c i e n t s and 4 is an exponent. When (e d i c t a t e s crack growth a t
some c r i t i c a l l e v e l , (ec ( d i c t a t e d by the lower v a l u e f o r e i t h e r the i n t e r f a c e or t h e
ceramic), t h e equilibrium crack growth s t r e s s h a s t h e dimensionless form
where A is t h e function p l o t t e d iri fig. 5. It is o f i n t e r e s t t o note t h a t when4.1,
t h e c r a c k grows s t a b l y under i n c r e a s i n g l o a d and r e a c h e s an i n s t a b i l i t y a t a
c r i t i c a l s t r e s s , o- , given by
-
-
The observed f a i l u r e s t r e s s associated with edge flaws is d i c t a t e d i n t h i s instance
by t h e metal l a y e r thickness, r a t h e r than t h e i n i t i a l crack s i z e (analagous to t h e
behavior observed a t indentations (5)). The metal l a y e r thickness t h u s emerges a s a
preeminent f r a c t u r e c o n t r o l l i n g parameter, c o n s i s t e n t with p r a c t i c a l experience (2).
-
Fig. 6
O p t i c a l m i c r o g r a p h s o f i n d e n t a t i o n c r a c k s b e f o r e and a f t e r l o a d i n g t o a
nominal s t r e s s o f 80 MPa. ( a ) an i n d e n t a t i o n remote from t h e i n t e r f a c e , (b) an
indentation remote from t h e i n t e r f a c e but c l o s e to t h e edge, (c) an indentation near
t h e center, c l o s e t o the interface
An important l i m i t a t i o n o f t h e preceding a n a l y s i s is t h e i m p l i c i t assumption t h a t
a l l of t h e s t r a i n energy is a v a i l a b l e f o r c r a c k propagation. Experience with
d e l a m i n a t i o n i n polymer m a t r i x composites (9) r e v e a l s t h a t , f r e q u e n t l y , t h e opening
mode component, gL,is more important than t h e t o t a l 9 . Such b e h a v i o r is i n d i c a t i v e
o f minimal c o u p l i n g o f t h e s h e a r component o f t h e s t r a i n energy r e l e a s e r a t e (e t o
t h e f r a c t u r e mechanism. Consequently, s i n c e a s u b s t a n t i a l c o n t r i b u t i o n t o 9 , y o r
i n t e r f a c i a l edge c r a c k s , d e r i v e s from t h e s h e a r s t r e s s ( s e c t i o n 2.11,
it is deemed
improper t o presume t h a t t h e t o t a l 9 is t h e p e r t i n e n t c r a c k d r i v i n g force.
Careful
experimental s t u d i e s o f the r e s p e c t i v e influence o f
a n d 911 on t h e g r o w t h o f
i n t e r f a c e cracks a r e required before f u l l y specifying an acceptable f r a c t u r e
criterion.
Thermal expansion mismatch imposes a d d i t i o n a l edge s t r e s s e s t h a t a l s o c o n t r i b u t e t o
B (13). C o m p u t a t i o n s o f 9 c r a c k s h a v e n o t y e t b e e n c o n d u c t e d . The r e l a t i v e
i n f l u e n c e o f t h e e l a s t i c m o d u l u s and t h e r m a l e x p a n s i o n mismatch on t h e n e t c r a c k
d r i v i n g f o r c e t h u s a w a i t s f u r t h e r i n v e s t i g a t i o n . I n t h i s c o n t e x t it s h o u l d a l s o be
r e c a l l e d t h a t s t r a i n energy r e l e a s e r a t e s a r e n o t a d d i t i v e . I n t e r a c t i o n terms must
a l s o be i n c l u d e d , based on computations o f 9 and (e f o r each problem.
I
3.
I1
EXPERIMENTAL OBSERVATIONS
3.1
Test Procedures
F o u r p o i n t f l e x u r e s p e c i m e n s c o n s i s t i n g o f t h i n (2.1 mm) s t r i p s o f Nb, d i f f u s i o n
bonded t o p o l y c r y s t a l l i n e a l u m i n a , were p r e p a r e d and c a r e f u l l y p o l i s h e d on t h e
t e n s i l e surface.
V i c k e r s i n d e n t a t i o n s were then p l a c e d a t v a r i o u s l o c a t i o n s with
r e s p e c t t o t h e i n t e r f a c e , b u t w i t h i n t h e uniformly s t r e s s e d r e g i o n s o f t h e f l e x u r e
s p e c i m e n ( v i z . , between t h e i n n e r l o a d i n g r o d s ) and t h e i n d e n t a t i o n c r a c k s
c h a r a c t e r i z e d by o p t i c a l microscopy ( f i g . 6).
T h e r e a f t e r , t h e specimens w e r e loaded
Changes i n t h e i n d e n t a t i o n crack l e n g t h s induced by t h e
t o % 80 MPa and unloaded.
l o a d were determined and r e l a t e d to l o c a l stress c o n c e n t r a t i o n s . Subsequently, t h e
specimens were loaded t o f a i l u r e . F r a c t u r e o r i g i n s were t h e n i d e n t i f i e d and used t o
assess crack configurations a t the f a i l u r e i n s t a b i l i t y .
3.2
Observations
I n d e n t a t i o n c r a c k s remote from t h e i n t e r f a c e ( f i g . 6a) e x h i b i t e d l i t t l e extension,
e x c e p t a t i n d e n t a t i o n s c l o s e t o a n e d g e ( f i g . 6b). However, on t h e same s p e c i m e n ,
i n d e n t a t i o n c r a c k s p l a c e d a d j a c e n t t o t h e i n t e r f a c e experienced s u b s t a n t i a 1 growth
( f i g . 6c). The c o m p a r a t i v e e x t e n s i o n p r o v i d e s a d i r e c t m e a s u r e o f t h e s t r e s s
c o n c e n t r a t i o n f a c t o r s , a s d e s c r i b e d i n t h e subsequent s e c t i o n . Maxima 1 c r a c k growth
occurred a t i n d e n t a t i o n s p l a c e d near t h e i n t e r f a c e , a t t h e specimen edge.
Observations o f c r a c k s t h a t t e r m i n a t e a t t h e i n t e r f a c e r e v e a l s l i p band formation i n
t h e Nb and c r a c k b l u n t i n g ( f i g . 7a,b), i n d i c a t i v e o f a p p r e c i a b l e d u c t i l i t y i n t h e Nb
a d j a c e n t t o t h e i n t e r f a c e . The l a r g e p l a s t i c s t r e t c h observed a t o t h e r c r a c k t i p s
( f i g . 7 c ) s u b s t a n t i a t e s t h a t t h e Nb c a n s u s t a i n e x t e n s i v e p l a s t i c s t r a i n . Y e t ,
o b s e r v a t i o n s o f t h e f r a c t u r e s u r f a c e , away from t h e i n i t i a t i o n s i t e , i n d i c a t e t h a t
r a p i d c r a c k propagation t o f a i l u r e has occurred a t t h e i n t e r f a c e , with no e v i d e n c e
o f p l a s t i c deformation i n t h e Nb ( f i g . 7c). T h i s paradox a p p e a r s t o b e e x p l i c a b l e
b a s e d on more d e t a i l e d o b s e r v a t i o n s o f f r a c t u r e i n i t i a t i o n s i t e s . I n d e n t a t i o n
c r a c k s t h a t e i t h e r t e r m i n a t e a t t h e i n t e r f a c e , o r grow s t a b l y t o t h e i n t e r f a c e
d u r i n g l o a d i n g , i n v a r i a b l y e x h i b i t c r a c k t i p b l u n t i n g and n e v e r i n i t i a t e t h e f i n a l
f a i l u r e ( f i g . 8). F a i l u r e always i n i t i a t e s from c r a c k s i n t h e A1203 which becomes
u n s t a b l e w h i l e s t i l l c o n t a i n e d w i t h i n t h e c e r a m i c ( f i g . 8). F u r t h e r , u n s t a b l e ,
growth o f t h e crack t h e n e n t a i l s a t t r a c t i o n o f t h e c r a c k t o t h e i n t e r f a c e , whereupon
i n t e r f a c e p r o p a g a t i o n o c c u r s i n a n o m i n a l l y b r i t t l e mode.
These f r a c t u r e
c h a r a c t e r i s t i c s a r e deemed t o b e c o n s i s t e n t w i t h a v e l o c i t y s e n s i t i v e 9, f o r t h e
i n t e r f a c e crack, a s d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n .
JOURNAL DE PHYSIQUE
C4-620
metal
interface
--
-
Fig. 7
Crack t i p s a t t h e i n t e r f a c e showing s h e a r bands and c r a c k t i p b l u n t i n g (a)
c r a c k n o r m 1 t o t h e i n t e r f a c e (b) a crack i n c l i n e d t o t h e i n t e r f a c e (c) t h e p l a s t i c
s t r e t c h z o n e a f t e r r e m o v a l o f t h e c e r a m i c by r a p i d f r a c t u r e . The r a p i d f r a c t u r e
s u r f a c e on fig. 7c i n d i c a t e s l i n e s where t h e A1203 g r a i n boundaries i n t e r s e c t t h e
i n t e r f a c e , b u t t h e r e i s no e v i d e n c e o f p l a s t i c d e f o r m a t i o n a t t h e i n t e r f a c e away
from t h e s t r e t c h zone.
One f i n a l f e a t u r e o f t h e f a i l u r e t h a t m e r i t s c o n s i d e r a t i o n is t h e o b s e r v a t i o n t h a t
i n d e n t a t i o n s e m p l a c e d v e r y c l o s e t o t h e i n t e r f a c e ( f i g . 9) r e s u l t i n l o w f a i l u r e
loads.
An accompanying o b s e r v a t i o n is t h e s u b s t a n t i a l r e s i d u a l openings e x h i b i t e d
by t h e i n d e n t a t i o n c r a c k , and t h e e x t e n s i v e d e f o r m a t i o n o f t h e Nb a d j a c e n t t o t h e
i n t e r f a c e ( f i g . 9).
T h e s e o b s e r v a t i o n s are shown t o b e c o n s i s t e n t w i t h t h e
development o f r e s i d u a l s t r e s s , due t o t h e l o c a l i z e d p l a s t i c deformation o f t h e Nb,
and t h e e f f e c t s o f t h e r e s i d u a l s t r e s s e s on c r a c k propagation i n t h e Al2O3.
3.3
Analysis
The r e l a t i v e e x t e n s i o n s o f i n d e n t a t i o n c r a c k s a t v a r i o u s l o c a t i o n s throughout t h e
test specimens may be used t o e s t i m a t e s t r e s s d i s t r i b u t i o n s (Appendix I ) u s i n g ;
T h i s formula is o n l y
minimal u t i l i t y f o r
estimates of stress
t h e i n t e r f a c e exceed
Bogy (4).
s t r i c t l y v a l i d f o r c r a c k s i n i s o t r o p i c m a t e r i a l and t h u s , h a s
c r a c k s v e r y c l o s e t o t h e i n t e r f a c e . With t h i s r e s t r i c t i o n ,
r a t i o s from f i g . 6 r e v e a l t h a t e d g e s t r e s s e s w i t h i n ~ 1 0 0 p r no f
t h e a p p l i e d stress byQ1.6, c o n s i s t e n t u i t h t h e c a l c u l a t i o n s by
-
Fig. 8
Two i n d e n t a t i o n s on t h e same s p e c i m e n b u t on o p p o s i t e s i d e s o f t h e Nb
l a y e r . The i n d e n t which becomes u n s t a b l e i n t h e A1203 i s t h e f a i l u r e o r i g i n : ( a )
a n d (b). The i n d e n t w i t h an i n i t i a l c r a c k t i p a t t h e i n t e r f a c e d o e s n o t c a u s e
f a i l u r e : ( c ) a n d (d).
-
Fig. 9
An i n d e n t a t i o n c l o s e t o t h e i n t e r f a c e c a u s e s premature f a i l u r e . Note t h e
s u b s t a n t i a l r e s i d u a l opening o f t h e c r a c k in t h e A1203 and t h e deformation o f t h e
Nb
.
JOURNAL DE PHYSIQUE
4.
DISCUSSION
Various experiments 1 (14) and t h e o r e t i c a 1 s t u d i e s ( 15) o f r a p i d c r a c k propagation i n
b.c.c. m e t a l s h a v e i n d i c a t e d t h a t g c d e c r e a s e s r a p i d l y w i t h i n c r e a s e i n c r a c k
v e l o c i t y , due t o t h e s t r o n g s t r e s s dependence o f t h e d i s l o c a t i o n v e l o c i t y . Such
b e h a v i o r e x p l a i n s , f o r example, t h e e x i s t e n c e o f u n s t a b l e b r i t t l e f a i l u r e i n s t e e l s ,
a f t e r i n i t i a l c r a c k t i p p l a s t i c b l u n t i n g ( v i z . i n t h e upper t r a n s i t i o n range). A
c o m p a r a b l e r a t e d e p e n d e n c e Ee, s h o u l d b e e x p e c t e d i n t h e Nb, e s p e c i a l l y i f
a p p r e c i a b l e amounts o f oxygen a r e i n s o l u t i o n n e a r t h e i n t e r f a c e . F u r t h e r m o r e
s i m i l a r r a t e d e p e n d e n t p l a s t i c i t y e f f e c t s s h o u l d b e e x p e r i e n c e d by a c r a c k t i p
l o c a t e d a t t h e Nb/A1203 i n t e r f a c e ( a l b e i t t o a r e d u c e d e x t e n t , b e c a u s e o f t h e
c o n s t r a i n t e x e r t e d by t h e non-deformable Al2O3).
It is t h u s proposed t h a t (e, f o r
t h e i n t e r f a c e e x h i b i t s t h e c r a c k v e l o c i t y dependence d e p i c t e d in fig. 10. A t high
c r a c k v e l o c i t i e s , . p l a s t i c deformation o f t h e Nb is e s s e n t i a l l y i n h i b i t e d and gc f o r
t h e i n t e r f a c e , (91) , is s m a l l e r than t h a t f o r t h e p o l y c r y s t a l l i n e A ~ ~ o ~ ( @ )I n
t h i s s i t u a t i o n , 'g; is l a r g e l y d i c t a t e d by t h e i n t e r f a c i a l energy a s s o c i a f e d w i t h
the interface structure, viz;
.
where t h e y a r e s u r f a c e e n e r g i e s and y i n t i s t h e i n t e r f a c e e n e r g y .
A t lower
v e l o c i t i e s , p l a s t i c z o n e s c a n b e a c t i v a t e d by t h e c r a c k t i p stress f i e l d and t h e
A l a r g e increase i n g t h u s ensues,
a s s o c i a t e d p l a s t i c work c o n t r i b u t e s t o 9:.
s u c h t h a t g l s u b s t a n t i a 1l y e x c e e d s g E ( w h i c h is known t o b e i n s e n s i t i v e t o c r a c k
v e l o c i t y (56)).
SUBSTANTIAL
PLASTICITY IN Nb
I
I
I
A1203,
I
J-INTERFACE,
5;
I
Fig. 10
-
P o s t u l a t e d t r e n d s i n gc with crack v e l o c i t y .
The p r e c e d i n g t r e n d s i n @ = f o r t h e c o m p o s i t e s y s t e m a r e f u l l y c o n s i s t e n t w i t h t h e
experimental observations.
S p e c i f i c a 1l y , s t a t i o n a r y . c r a c k s a t t h e i n t e r f a c e
i n v a r i a b l y b l u n t ( f i g . 7) d u e t o t h e l a r g e a s s o c i a t e d 9; and h a v e , c o n s e q u e n t l y ,
n e v e r been o b s e r v e d a s f a i l u r e i n i t i a t i o n s i t e s ( f i g . 8). F a i l u r e a l w a y s o c c u r s
from c r a c k s which become u n s t a b l e i n t h e Al203. The r a p i d l y moving c r a c k , t h u s
formed i n t h e A1203, s u b s e q u e n t l y extends p r e f e r e n t i a l l y a l o n g t h e i n t e r f a c e , where
9, now e x h i b i t s i t s minimal v a l u e , due t o t h e absence o f p l a s t i c i t y i n t h e Nb (fig.
8 ) . V a l i d a t i o n o f t h i s h y p o t h e s i s , o f c o u r s e , r e q u i r e s c r a c k g r o w t h s t u d i e s as a
f u n c t i o n o f v e l o c i t y . However, t h e a s s o c i a t e d i m p l i c a t i o n f o r t h e m e c h a n i c a l
s t r e n g t h o f t h e bonded system is t h a t , f o r most s i t u a t i o n s , t h e i n t e r f a c e f r a c t u r e
r e s i s t a n c e 9 f is e n t i r e l y adequate, viz., f r a c t u r e is not l i m i t e d by t h e i n t e r f a c e .
( P r o b l e m s may a r i s e a t h i g h l o a d i n g r a t e s , b u t s u c h c o n d i t i o n s a r e i n f r e q u e n t l y
encountered).
Another important i n f l u e n c e o f p l a s i t i c i t y i n t h e m e t a l concerns t h e d e v e l o ment o f
r e s i d u a l s t r e s s . The presence e i t h e r o f machining damage o r o f i n c l u s i o n s P in t h e
ceramic immediately a d j a c e n t t o t h e i n t e r f a c e is l i k e l y to induce p l a s t i c i t y i n t h e
m e t a l , c o m p a r a b l e t o t h a t o b s e r v e d a r o u n d t h e i n d e n t a t i o n d e p i c t e d i n f i g . 9.
R e s i d u a l s t r e s s e s o f o r d e r , 4Y/3, a r e t h u s t o b e a n t i c i p a t e d (Appendix 1 1 ) i n t h e
c e r a m i c , where Y i s t h e y i e l d s t r e n g t h . The r e s i d u a l s t r e s s e s s u p e r p o s e on t h e
Such h i g h l y
c o n c e n t r a t e d a p p l i e d l o a d s a t t h e edges and cause premature f a i l u r e .
d e l e t e r i o u s f a i l u r e c h a r a c t e r i s t i c s c a n be a v e r t e d by a v o i d i n g n e a r - i n t e r f a c e
d e f e c t s o f t h i s t y p e and/or by s e l e c t i n g a m e t a l w i t h a low y i e l d s t r e n g t h .
5.
CONCLUDING REMARKS
The i n d e n t a t i o n experiments r e v e a l t h e s e n s i t i v i t y o f t h e i n t e r f a c i a l zone t o t h e
presence o f d e f e c t s i n t h e a d j a c e n t ceramic by v i r t u e o f t h e l a r g e a s s o c i a t e d s t r e s s
c o n c e n t r a t i o n s . The p r o c e s s i n g o f h i g h q u a l i t y bonded s y t e m s t h u s r e q u i r e s t h a t
g r e a t c a r e be e x c e r c i s e d in t h e avoidance o f d e f e c t s i n t h e i n t e r f a c i a l zone, n e a r
t h e surface. S p e c i f i c a l l y , e x c e s s i v e i n c l u s i o n s o r v o i d s i n t h i s zone would be most
damaging.
F u r t h e r m o r e and p e r h a p s , most i m p o r t a n t l y , m a c h i n i n g damage i n t h e
ceramic n e a r t h e i n t e r f a c e ( a phenomenon c l o s e l y s i m u l a t e d by t h e i n d e n t a t i o n c r a c k s
(5)) would b e e x t r e m e l y d e l e t e r i o u s . M a c h i n i n g c o n d i t i o n s t h u s demand c a r e f u l
control.
Severa 1 remarks concerning t h e i n f l u e n c e o f p l a s i t i c i t y on t h e mechanica 1 p r o p e r t i e s
a r e a l s o deemed w o r t h y o f c o n s i d e r a t i o n . P l a s t i c i t y i n t h e m e t a l a t low l o a d i n g
r a t e s i m p l i e s t h a t i n t e r f a c i a l c r a c k s a r e l i k e l y t o be s u s c e p t i b l e t o f a t i g u e .
Fatigue c r a c k growth r a t e s (da/dN v s . 9 ) should t h u s be measured, a s w e l l a s f a t i g u e
c r a c k i n i t i a t i o n e f f e c t s . P l a s t i c d e f o r m a t i o n i n t h e m e t a l is a l s o e x p e c t e d t o
i n d u c e c o m p l e x b e h a v i o r i n n o t c h e d s p e c i m e n s . I n t h i s c o n t e x t , it s h o u l d b e
r e c a l l e d t h a t n o t c h e d beam t e s t s (e.g. Charpy t e s t s ) and JIG t e s t s i n s t e e l s c a n
y i e l d o p p o s i t e t r e n d s in f a i l u r e l o a d with m i c r o s t r u c t u r e , due t o t h e d i f f e r e n c e i n
t h e s c a l e o f t h e p l a s t i c z o n e r e l a t i v e t o t h e m i c r o s t r u c t u r a l s c a l e a t which t h e
f r a c t u r e mechanisms o p e r a t e (17).
APPENDIX
I
Growth C h a r a c t e r i s t i c s
of
I n d e n t a t i o n Cracks
An i n d e n t a t i o n c r a c k o f r a d i u s , a, contained i n an i s o t r o p i c body e x h i b i t s a s t r e s s
i n t e n s i t y f a c t o r , K, given by (18) ;
her ma 1 e x p a n s i o n mismatch between t h e i n c l u s i o n and t h e m a t r i x i n d u c e m a t r i x
d e f o r m a t i o n t h a t may e x c e e d t h e y i e l d s t r e n g t h o f t h e metal; t h e r e b y c a u s i n g
residual stress.
JOURNAL DE PHYSIQUE
C4-624
where C1 a n d C2 a r e c o n s t a n t s f o r a g i v e n i n d e n t a t i o n l o a d a n d
stress. Hence, t h e s t r e s s and c r a c k l e n g t h a r e r e l a t e d by;
0
is t h e a p p l i e d
However, Kc is a l s o r e l a t e d t o t h e i n i t i a l c r a c k r a d i u s , ao, a t z e r o a p p l i e d s t r e s s
Consequently, from eqn (A2), t h e s t r e s s is g i v e n by;
by, Kc = c2aO-3/2.
Furthermore, i f s i m i l a r i n d e n t a t i o n s are p l a c e d a t two d i f f e r e n t l o c a t i o n s w i t h i n an
i s o t r o p i c b r i t t l e s o l i d t h e r a t i o o f s t r e s s e s d e v e l o p e d a t t h o s e s i t e s is
where R i s t h e c r a c k l e n g t h r a t i o , ao/a. S t r e s s v a r i a t i o n s w i t h i n a bcdy may t h u s
be e s t i m a t e d from i n d e n t a t i o n c r a c k l e n g t h r a t i o s , w i t h o u t r e q u i r i n g knowledge o f
e i t h e r m a t e r i a l p a r a m e t e r s o r geometric c o n s t a n t s .
APPENDIX
Residual S t r e s s E f f e c t s
R e s i d u a l s t r e s s e f f e c t s and t h e i r i n f l u e n c e on crack e x t e n s i o n can be i l l u s t r a t e d
u s i n g t h e p r e s s u r i z e d s p h e r i c a l c a v i t y a s a n e x a m p l e (19). When two c o n n e c t e d
m a t e r i a l s w i t h d i f f e r e n t e l a s t i c and p l a s t i c p r o p e r t i e s a r e s u b j e c t t o i n t e r n a l
p r e s s u r e , s u c h t h a t t h e i n n e r m a t e r i a l i s immune t o p l a s t i c y i e l d i n g , t h e o u t e r
m a t e r i a l f i r s t e x p e r i e n c e s p l a s t i c deformation when t h e normal compression a t t h e
i n t e r f a c e e x c e e d s , p = 2Y/3,
where Y i s t h e y i e l d s t r e n g t h . F u r t h e r p l a s t i c
d e f o r m a t i o n r e s u l t s i n t h e r a d i a l s t r e s s d i s t r i b u t i o n d e p i c t e d i n f i g . 11, w i t h a
minimum o c c u r r i n g a t t h e i n t e r f a c e and a maximum a t t h e e l a s t i c / p l a s t i c boundary i n
t h e o u t e r m a t e r i a l . Unloading r e q u i r e s t h a t t h e e l a s t i c s t r e s s d i s t r i b u t i o n be
s u b t r a c t e d from t h e s t r e s s a t p e a k p r e s s u r e ( f i g . 11 ), r e s u l t i n g i n t h e r e s i d u a l
f i e l d d e p i c t e d i n f i g . 11. The r e s i d u a l r a d i a l s t r e s s e x h i b i t s a peak t e n s i o n a t
the i n t e r face.
However, f o r r e l a t i v e l y low y i e l d s c r e n g t h m a t e r i a l , r e v e r s e y i e l d i n g o c c u r s and t h e
peak r e s i d u a l t e n s i o n is t h e n (191, 0~ = 4Y/3.
REFERENCES
1.
C. C. Berndt and R. McPherson, S u r f a c e s and I n t e r f a c e s in Ceramic and
C e r a m i c / M e t a l S y s t e m s (Ed. J. A . P a s k and A. G. E v a n s ) Plenum, N.Y. (1981) p. 619.
2.
M. E. Twentyman and P. Hancock, S u r f a c e s and I n t e r f a c e s i n Ceramic and
Ceramic/Metal Systems, ibid., p. 535.
3.
M. F l o r j a n i c , W. Fader, M. & h l e and M. T u r w i t t , t h i s volume.
4.
D. G. Bogy, J. Appl. Mech.
5.
D. B. M a r s h a l l , A. G. E v a n s , B. T. Khuri-Yakub,
Proc. Roy. Soc.
(1983) 461.
6.
A. G. Evans, J. Am. Ceram. S o c .
42
(1975) 93.
A385
65
(1982) 127.
J. W. T i e n a n d G. S. Kino,
7.
S. Timoshenko and J . N. Goodier, Theory of E l a s t i c i t y , McGraw H i l l (1951).
8.
F. Erdogan a n d G. D. Gupta, I n t . J. S o l i d s and S t r u c t u r e s ,
9.
T. K. O'Brien ASTM STP
10.
S. Schmauder, M. ~ i h l eand A. G. Evans, t o be published.
T. Suga, Ph.D.
(1984).
775
(1982) p.
1, (1971)
36.
140.
Thesis, Max Planck I n s t i t u t f u r Metallforschung, S t u t t g a r t
13 (1980)
A . Piva and E. Viola, Engng. Frac. Mech.
F. Erdogan, J. Appl. Mech.
2
(1965) 403.
H. Vehoff and P. Neumann, Acta Met.
L. B. Freund and J. W.
143.
8 (1980)
265.
Hutchinson, t o be published.
R . L. B e r t o l o t t i , J. Am.
Ceram. Soc.
(1974) 300.
R. 0. R i t c h i e , B. F r a n c i s and W. L. Server, Met. Trans.
D. B. P a r s h a l l and B. R. Lawn, J. Am.
Ceram. Soc.
63 (1980)
(1976) 831.
532.
R. H i l l , Theory o f P l a s t i c i t y , Oxford Univ. P r e s s (1950).
-
Fig. 11
Residual s t r e s s e s c r e a t e d by expansion o f an e l a s t i c s p h e r i c a l s h e l l i n t o
an e l a s t i c / p l a s t i c uatrix.