ON THE MECHANICS OF FAILURE IN CERAMIC/METAL BONDED SYSTEMS A. Evans, M. Rühle, M. Turwitt To cite this version: A. Evans, M. Rühle, M. Turwitt. ON THE MECHANICS OF FAILURE IN CERAMIC/METAL BONDED SYSTEMS. Journal de Physique Colloques, 1985, 46 (C4), pp.C4613-C4-626. <10.1051/jphyscol:1985466>. <jpa-00224719> HAL Id: jpa-00224719 https://hal.archives-ouvertes.fr/jpa-00224719 Submitted on 1 Jan 1985 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, suppl6ment a u n04, Tome 46, avril 1985 A.G. page C4-613 Evans, M. ~ i i h l e ' and M. ~ u r w i t t ' Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, U.S.A. ' ~ m - ~ Z a n c k - l n s t i t ufiir t Metallforschung, I n s t i t u t fiir Werkstoffwissenschaften, 0-7000 S t u t t g a r t I , F.R. G. - Abstract S t r e s s c o n c e n t r a t i o n s t h a t d e v e l o p i n m e t a l / c e r a m i c bonded systems h a v e been e v a l u a t e d and shown t o encourage c r a c k p r o p a g a t i o n a t , o r n e a r , t h e edge o f bonded i n t e r f a c e s . Experiments 1 i n d e n t a t i o n o b s e r v a t i o n s on Nb/A1203 c o n f i r m t h e e x i s t e n c e o f t h e p r e d i c t e d s t r e s s c o n c e n t r a t i o n s . I n t h i s system, f a i l u r e was i n v a r i a b l y o b s e r v e d t o i n i t i a t e i n t h e ceramic, such t h a t q u a s i - s t a t i c c r a c k s l o c a t e d a t t h e i n t e r f a c e e x h i b i t e d c r a c k b l u n t i n g . However, s u b s t a n t i a l d y n a m i c r e d u c t i o n s i n t h e c r a c k g r o w t h r e s i s t a n c e o f t h e i n t e r f a c e a r e i n f e r r e d from f r a c t u r e s u r f a c e observations. I m p l i c a t i o n s f o r t h e optimal s t r e n g t h s o f ceramic/metal bonded systems a r e presented. 1. INTRODUCTION The mechanical r e s p o n s e o f a system is governed by t h e s t r e s s d i s t r i b u t i o n and by t h e f r a c t u r e c h a r a c t e r i s t i c s o f each m a t e r i a l c o n s t i t u e n t . Both a s p e c t s must be s e p a r a t e l y i n v e s t i g a t e d b e f o r e d e v i s i n g an a p p r o a c h f o r o p t i m i z i n g m e c h a n i c a l s t r e n g t h . Consequently, i n v e s t i g a t i o n o f t h e mechanical b e h a v i o r o f c e r a m i c / m e t a l bonded s y s t e m s r e q u i r e s c o n s i d e r a t i o n o f t h e stress s t a t e , a s d i c t a t e d by t h e a p p l i e d l o a d s a n d t h e e l a s t i c a n d t h e r m a l e x p a n s i o n mismatch, a s w e l l as t h e i n d i v i d u a 1 f r a c t u r e c h a r a c t e r i s t i c s o f t h e c e r a m i c , meta 1 a n d i n t e r f a c e . The l i m i t e d a v a i l a b l e r e s e a r c h on c e r a m i c / m e t a l bonded systems i n d i c a t e s t h a t f r a c t u r e i n t h e c e r a m i c , a d j a c e n t t o t h e i n t e r f a c e , is a f r e q u e n t f a i l u r e mode (1,2). I n t e r f a c e s with a g r e a t e r f r a c t u r e r e s i s t a n c e than t h e ceramic thus appear t o be attainable. Consequently, an i s s u e o f g r e a t e r p r e s e n t c o n c e r n is t h e s t a t e of s t r e s s a s s o c i a t e d w i t h bonded s y s t e m s . The i n t e n t o f t h i s a r t i c l e i s t o e x a m i n e v a r i o u s problems a s s o c i a t e d with t h e growth o f c r a c k s a t , o r n e a r , t h e i n t e r f a c e in c e r a m i c / m e t a l bonded systems, a s a b a s i s f o r u n d e r s t a n d i n g mechanical s t r e n g t h . The s t r e n g t h i s s u e s a r e i l l u s t r a t e d by experiments conducted i n t h e A1203/Nb system. T h i s system h a s t h e a t t r a c t i v e f e a t u r e s t h a t t h e r m a l expansion mismatch is minimized a n d t h a t d i s c r e t e i n t e r f a c e s c a n b e a c h i e v e d (3). However, m i s m a t c h i n e l a s t i c modulus p r o v i d e s unique f a i l u r e modes, t y p i c a l o f c e r a m i c / m e t a l bonded systems. I n p a r t i c u l a r , f a i l u r e f r e q u e n t l y i n i t i a t e s a t e d g e s , d u e t o s u b s t a n t i a 1 stress c o n c e n t r a t i o n s (4). Edge e f f e c t s a r e t h u s a f f o r d e d s p e c i a l emphasis. The mechanical r e s p o n s e o f t h e system is probed u s i n g i n d e n t a t i o n s p l a c e d a t v a r i o u s s i t e s a d j a c e n t t o , and remote from, t h e i n t e r f a c e . The i n d e n t a t i o n method h a s been s e l e c t e d because it s i m u l a t e s t h e f r a c t u r e b e h a v i o r induced by machining damage (5) and by i n c l u s i o n s (6) two o f t h e most d e l e t e r i o u s d e f e c t t y p e s i n h i g h s t r e n g t h m a t e r i a l systems (6). - Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985466 JOURNAL DE PHYSIQUE 2. EDGE EFFECTS 2.1 S t r e s s Concentrations When a mismatch e x i s t s i n e i t h e r t h e r m a l e x p a n s i o n o r e l a s t i c m o d u l u s , e d g e s a n d The b a s i c n a t u r e o f t h e e d g e p r o b l e m i s c o r n e r s a r e major s o u r c e s o f f a i l u r e . i l l u s t r a t e d f o r t h e c o n f i g u r a t i o n d e p i c t e d i n f i g . 1. When t h e m e t a l s t r i p h a s e i t h e r a l a r g e r t h e r m a l expansion c o e f f i c i e n t o r a lower modulus than t h e m a t r i x ; t h e unconstrained m e t a l d e v e l o p s a s m a l l e r l a t e r a l dimension than t h e ceramic ( f i g . l b ) . Hence, t o s i m u l a t e t h e s t r e s s s t a t e i n t h e bonded s y s t e m , t h e u n c o n s t r a i n e d m e t a l must b e u n i f o r m l y e x t e n d e d by t h e a p p l i c a t i o n o f e d g e t r a c t i o n s ( f i g . 1c). Then, s u r f a c e f o r c e s ( e q u a l i n m a g n i t u d e b u t o p p o s i t e i n s i g n ) must b e a p p l i e d t o t h e m e t a l , i n t h e bonded s t a t e , t o a c h i e v e s t r e s s f r e e c o n d i t i o n s a t t h e s u r f a c e ( f i g . Id). This l a t t e r s t e p induces l a r g e normal and s h e a r s t r e s s e s n e a r t h e edge, which t y p i c a l l y a c t o v e r a d i s t a n c e similar t o t h e t h i c k n e s s , h, o f t h e m e t a l . Furthermore, t h e s t r e s s e s a r e f r e q u e n t l y s i n g u l a r (4). I n t h e p r e s e n c e o f e l a s t i c mismatch, t h e s t r e s s e s n e a r t h e e d g e , i n d u c e d by a n a p p l i e d s t r e s s a,, e x h i b i t a s i n g u l a r f o r m (4). F o r p l a n e s t r a i n c o n d i t i o n s , t h e edge s t r e s s e s can b e expressed a s where CERAMIC ERAMlC t o) INITIAL STATE - b) STRESSED: UNCONSTRAINED + c) UNCONSTRAINED: DISPLACEMENT CONTINUITY AT INTERFACE SURFACE FORCES APPLIED. FOR STRESS FREE SLRFACE REQUIREMENTS Fig. 1 A schematic i l l u s t r a t i n g t h e development o f i n t e r f a c i a l s t r e s s c o n c e n t r a t i o n s due t o e l a s t i c ( o r t h e r m a l expansion) mismatch. p is t h e s h e a r modulus, v is Poisson's r a t i o , f is a f u n c t i o n , Y is a c o e f f i c i e n t ( < I ) and r is t h e d i s t a n c e from t h e edge, a l o n g t h e i n t e r f a c e . Some t y p i c a l r e s u l t s ( 4 ) a r e p l o t t e d i n f i g . 2. Very l a r g e t e n s i l e a n d s h e a r s t r e s s e s t h u s e x i s t o v e r sma 11 r e g i o n s ad jaoent t o t h e edge. CERAMIC I~~ERFACE METAL Qzz/=m 0.8 - Fig. 2 S t r e s s e s n e a r a f r e e s u r f a c e a t t h e i n t e r f a c e between a bonded system f o r t h e c o n d i t i o n p l / u 2 = 0.11, vl 1 / 2 ( a = -0.8, B = 0 ) (4). The maximum s h e a r stress o c c u r s j u s t beneath t h e s=u v?= r ace. T h e r m a l e x p a n s i o n mismatch h a s a s i m i l a r e f f e c t , by v i r t u e o f l a r g e r e s i d u a l s t r e s s e s c r e a t e d n e a r t h e edge. S p e c i f i c a l l y , i f t h e e l a s t i c p r o p e r t i e s a r e t h e same f o r t h e m e t a l a n d c e r a m i c , t h e i n t e r f a c e s t r e s s e s a r e g i v e n f o r a bonded c y l i n d e r by (7); where d is t h e diameter o f t h e c y l i n d e r and t h e a n c t i o n 51 is p l o t t e d i n fig. 3. A mismatch i n m o d u l u s g e n e r a t e s i n t e r f a c i a l t e n s i l e s t r e s s e s o , a t t h e edge, i r r e s p e c t i v e o f t h e s i g n o f t h e mismatch and t h u s , i n v a r i a b l y , e n h a n c e s t h e p r o p e n s i t y t o f r a c t u r e . T h e r m a l e x p a n s i o n mismatch i n d u c e s ,a, t e n s i l e s t r e s s e s j u s t o u t s i d e t h e i n t e r f a c e , w i t h i n e i t h e r t h e m e t a l o r t h e ceramic, depending upon t h e s i g n o f t h e t h e r m a l expansion and t h e e l a s t i c mismatch. Generally, the metal h a s the l a r g e r thermal expansion c o e f f i c i e n t and t h e expansion mismatch t h e n induces ,a, t e n s i l e s t r e s s e s i n t h e c e r a m i c , a d j a c e n t t o t h e i n t e r f a c e , and e n c o u r a g e s f a i l u r e i n t h e ceramic. Large s h e a r s t r e s s e s always e x i s t a l o n g t h e i n t e r f a c e , near t h e e d g e , i n t h e p r e s e n c e o f e l a s t i c o r t h e r m a l mismatch. A s u b s t a n t i a l mode I1 c o n t r i b u t i o n t o edge f a i l u r e s h o u l d t h u s be a n t i c i p a t e d in a l l s i t u a t i o n s . JOURNAL DE PHYSIQUE - Fig. 3 S t r e s s e s induced by a t h e r m a l expansion mismatch i n a bonded c y l i n d e r . The s h e a r s t r e s s e s a r e a t t h e i n t e r f a c e , whereas t h e t e n s i l e s t r e s s e s are i n t h e ceramic c l o s e t o t h e i n t e r f a c e (z/d = 0.05). The normal s t r e s s e s immediately a t t h e i n t e r f a c e a r e zero. The maximum s h e a r s t r e s s o c c u r s j u s t beneath t h e surface. 2.2 Crack Propagation The p r o p a g a t i o n o f c r a c k s from a n e d g e a l o n g , o r a d j a c e n t t o , t h e i n t e r f a c e i s g o v e r n e d by t h e a p p r o p r i a t e s t r a i n e n e r g y r e l e a s e r a t e (8,g). For example, t h e t o t a l s t r a i n energy r e l e a s e 9 f o r an i n t e r f a c e crack i n t h e absence o f thermal mismatch has t h e g e n e r a l form (10,11,12) where Ec is t h e composite modulus (121, r such t h a t , f o r p l a n e s t r a i n , X = 3-4v, and $, -4 the variable g is t h e f u n c t i o n p l o t t e d in f i g . 4. deduced from f i g . 4, is (101, r; is g i v e n by, An approximate a n a l y t i c e x p r e s s i o n f o r BONDED HOMOGENEOUS MATERIAL Fig. 4 crack. - - The v a r i a t i o n i n t h e n o r m a l i z e d s t r a i n e n e r g y r e l e a s e f o r an i n t e r f a c e Trends in t h e i n t e r f a c e crack growth s t r e s s w i t h i n crack l e n g t h f o r v a l u e s Fig. 5 o f t h e s i n g u l a r i t y y e i t h e r s m a l l e r o r l a r g e r than u n i t y . JOURNAL DE PHYSIQUE C4-6 18 where X1,2 a r e c o e f f i c i e n t s and 4 is an exponent. When (e d i c t a t e s crack growth a t some c r i t i c a l l e v e l , (ec ( d i c t a t e d by the lower v a l u e f o r e i t h e r the i n t e r f a c e or t h e ceramic), t h e equilibrium crack growth s t r e s s h a s t h e dimensionless form where A is t h e function p l o t t e d iri fig. 5. It is o f i n t e r e s t t o note t h a t when4.1, t h e c r a c k grows s t a b l y under i n c r e a s i n g l o a d and r e a c h e s an i n s t a b i l i t y a t a c r i t i c a l s t r e s s , o- , given by - - The observed f a i l u r e s t r e s s associated with edge flaws is d i c t a t e d i n t h i s instance by t h e metal l a y e r thickness, r a t h e r than t h e i n i t i a l crack s i z e (analagous to t h e behavior observed a t indentations (5)). The metal l a y e r thickness t h u s emerges a s a preeminent f r a c t u r e c o n t r o l l i n g parameter, c o n s i s t e n t with p r a c t i c a l experience (2). - Fig. 6 O p t i c a l m i c r o g r a p h s o f i n d e n t a t i o n c r a c k s b e f o r e and a f t e r l o a d i n g t o a nominal s t r e s s o f 80 MPa. ( a ) an i n d e n t a t i o n remote from t h e i n t e r f a c e , (b) an indentation remote from t h e i n t e r f a c e but c l o s e to t h e edge, (c) an indentation near t h e center, c l o s e t o the interface An important l i m i t a t i o n o f t h e preceding a n a l y s i s is t h e i m p l i c i t assumption t h a t a l l of t h e s t r a i n energy is a v a i l a b l e f o r c r a c k propagation. Experience with d e l a m i n a t i o n i n polymer m a t r i x composites (9) r e v e a l s t h a t , f r e q u e n t l y , t h e opening mode component, gL,is more important than t h e t o t a l 9 . Such b e h a v i o r is i n d i c a t i v e o f minimal c o u p l i n g o f t h e s h e a r component o f t h e s t r a i n energy r e l e a s e r a t e (e t o t h e f r a c t u r e mechanism. Consequently, s i n c e a s u b s t a n t i a l c o n t r i b u t i o n t o 9 , y o r i n t e r f a c i a l edge c r a c k s , d e r i v e s from t h e s h e a r s t r e s s ( s e c t i o n 2.11, it is deemed improper t o presume t h a t t h e t o t a l 9 is t h e p e r t i n e n t c r a c k d r i v i n g force. Careful experimental s t u d i e s o f the r e s p e c t i v e influence o f a n d 911 on t h e g r o w t h o f i n t e r f a c e cracks a r e required before f u l l y specifying an acceptable f r a c t u r e criterion. Thermal expansion mismatch imposes a d d i t i o n a l edge s t r e s s e s t h a t a l s o c o n t r i b u t e t o B (13). C o m p u t a t i o n s o f 9 c r a c k s h a v e n o t y e t b e e n c o n d u c t e d . The r e l a t i v e i n f l u e n c e o f t h e e l a s t i c m o d u l u s and t h e r m a l e x p a n s i o n mismatch on t h e n e t c r a c k d r i v i n g f o r c e t h u s a w a i t s f u r t h e r i n v e s t i g a t i o n . I n t h i s c o n t e x t it s h o u l d a l s o be r e c a l l e d t h a t s t r a i n energy r e l e a s e r a t e s a r e n o t a d d i t i v e . I n t e r a c t i o n terms must a l s o be i n c l u d e d , based on computations o f 9 and (e f o r each problem. I 3. I1 EXPERIMENTAL OBSERVATIONS 3.1 Test Procedures F o u r p o i n t f l e x u r e s p e c i m e n s c o n s i s t i n g o f t h i n (2.1 mm) s t r i p s o f Nb, d i f f u s i o n bonded t o p o l y c r y s t a l l i n e a l u m i n a , were p r e p a r e d and c a r e f u l l y p o l i s h e d on t h e t e n s i l e surface. V i c k e r s i n d e n t a t i o n s were then p l a c e d a t v a r i o u s l o c a t i o n s with r e s p e c t t o t h e i n t e r f a c e , b u t w i t h i n t h e uniformly s t r e s s e d r e g i o n s o f t h e f l e x u r e s p e c i m e n ( v i z . , between t h e i n n e r l o a d i n g r o d s ) and t h e i n d e n t a t i o n c r a c k s c h a r a c t e r i z e d by o p t i c a l microscopy ( f i g . 6). T h e r e a f t e r , t h e specimens w e r e loaded Changes i n t h e i n d e n t a t i o n crack l e n g t h s induced by t h e t o % 80 MPa and unloaded. l o a d were determined and r e l a t e d to l o c a l stress c o n c e n t r a t i o n s . Subsequently, t h e specimens were loaded t o f a i l u r e . F r a c t u r e o r i g i n s were t h e n i d e n t i f i e d and used t o assess crack configurations a t the f a i l u r e i n s t a b i l i t y . 3.2 Observations I n d e n t a t i o n c r a c k s remote from t h e i n t e r f a c e ( f i g . 6a) e x h i b i t e d l i t t l e extension, e x c e p t a t i n d e n t a t i o n s c l o s e t o a n e d g e ( f i g . 6b). However, on t h e same s p e c i m e n , i n d e n t a t i o n c r a c k s p l a c e d a d j a c e n t t o t h e i n t e r f a c e experienced s u b s t a n t i a 1 growth ( f i g . 6c). The c o m p a r a t i v e e x t e n s i o n p r o v i d e s a d i r e c t m e a s u r e o f t h e s t r e s s c o n c e n t r a t i o n f a c t o r s , a s d e s c r i b e d i n t h e subsequent s e c t i o n . Maxima 1 c r a c k growth occurred a t i n d e n t a t i o n s p l a c e d near t h e i n t e r f a c e , a t t h e specimen edge. Observations o f c r a c k s t h a t t e r m i n a t e a t t h e i n t e r f a c e r e v e a l s l i p band formation i n t h e Nb and c r a c k b l u n t i n g ( f i g . 7a,b), i n d i c a t i v e o f a p p r e c i a b l e d u c t i l i t y i n t h e Nb a d j a c e n t t o t h e i n t e r f a c e . The l a r g e p l a s t i c s t r e t c h observed a t o t h e r c r a c k t i p s ( f i g . 7 c ) s u b s t a n t i a t e s t h a t t h e Nb c a n s u s t a i n e x t e n s i v e p l a s t i c s t r a i n . Y e t , o b s e r v a t i o n s o f t h e f r a c t u r e s u r f a c e , away from t h e i n i t i a t i o n s i t e , i n d i c a t e t h a t r a p i d c r a c k propagation t o f a i l u r e has occurred a t t h e i n t e r f a c e , with no e v i d e n c e o f p l a s t i c deformation i n t h e Nb ( f i g . 7c). T h i s paradox a p p e a r s t o b e e x p l i c a b l e b a s e d on more d e t a i l e d o b s e r v a t i o n s o f f r a c t u r e i n i t i a t i o n s i t e s . I n d e n t a t i o n c r a c k s t h a t e i t h e r t e r m i n a t e a t t h e i n t e r f a c e , o r grow s t a b l y t o t h e i n t e r f a c e d u r i n g l o a d i n g , i n v a r i a b l y e x h i b i t c r a c k t i p b l u n t i n g and n e v e r i n i t i a t e t h e f i n a l f a i l u r e ( f i g . 8). F a i l u r e always i n i t i a t e s from c r a c k s i n t h e A1203 which becomes u n s t a b l e w h i l e s t i l l c o n t a i n e d w i t h i n t h e c e r a m i c ( f i g . 8). F u r t h e r , u n s t a b l e , growth o f t h e crack t h e n e n t a i l s a t t r a c t i o n o f t h e c r a c k t o t h e i n t e r f a c e , whereupon i n t e r f a c e p r o p a g a t i o n o c c u r s i n a n o m i n a l l y b r i t t l e mode. These f r a c t u r e c h a r a c t e r i s t i c s a r e deemed t o b e c o n s i s t e n t w i t h a v e l o c i t y s e n s i t i v e 9, f o r t h e i n t e r f a c e crack, a s d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n . JOURNAL DE PHYSIQUE C4-620 metal interface -- - Fig. 7 Crack t i p s a t t h e i n t e r f a c e showing s h e a r bands and c r a c k t i p b l u n t i n g (a) c r a c k n o r m 1 t o t h e i n t e r f a c e (b) a crack i n c l i n e d t o t h e i n t e r f a c e (c) t h e p l a s t i c s t r e t c h z o n e a f t e r r e m o v a l o f t h e c e r a m i c by r a p i d f r a c t u r e . The r a p i d f r a c t u r e s u r f a c e on fig. 7c i n d i c a t e s l i n e s where t h e A1203 g r a i n boundaries i n t e r s e c t t h e i n t e r f a c e , b u t t h e r e i s no e v i d e n c e o f p l a s t i c d e f o r m a t i o n a t t h e i n t e r f a c e away from t h e s t r e t c h zone. One f i n a l f e a t u r e o f t h e f a i l u r e t h a t m e r i t s c o n s i d e r a t i o n is t h e o b s e r v a t i o n t h a t i n d e n t a t i o n s e m p l a c e d v e r y c l o s e t o t h e i n t e r f a c e ( f i g . 9) r e s u l t i n l o w f a i l u r e loads. An accompanying o b s e r v a t i o n is t h e s u b s t a n t i a l r e s i d u a l openings e x h i b i t e d by t h e i n d e n t a t i o n c r a c k , and t h e e x t e n s i v e d e f o r m a t i o n o f t h e Nb a d j a c e n t t o t h e i n t e r f a c e ( f i g . 9). T h e s e o b s e r v a t i o n s are shown t o b e c o n s i s t e n t w i t h t h e development o f r e s i d u a l s t r e s s , due t o t h e l o c a l i z e d p l a s t i c deformation o f t h e Nb, and t h e e f f e c t s o f t h e r e s i d u a l s t r e s s e s on c r a c k propagation i n t h e Al2O3. 3.3 Analysis The r e l a t i v e e x t e n s i o n s o f i n d e n t a t i o n c r a c k s a t v a r i o u s l o c a t i o n s throughout t h e test specimens may be used t o e s t i m a t e s t r e s s d i s t r i b u t i o n s (Appendix I ) u s i n g ; T h i s formula is o n l y minimal u t i l i t y f o r estimates of stress t h e i n t e r f a c e exceed Bogy (4). s t r i c t l y v a l i d f o r c r a c k s i n i s o t r o p i c m a t e r i a l and t h u s , h a s c r a c k s v e r y c l o s e t o t h e i n t e r f a c e . With t h i s r e s t r i c t i o n , r a t i o s from f i g . 6 r e v e a l t h a t e d g e s t r e s s e s w i t h i n ~ 1 0 0 p r no f t h e a p p l i e d stress byQ1.6, c o n s i s t e n t u i t h t h e c a l c u l a t i o n s by - Fig. 8 Two i n d e n t a t i o n s on t h e same s p e c i m e n b u t on o p p o s i t e s i d e s o f t h e Nb l a y e r . The i n d e n t which becomes u n s t a b l e i n t h e A1203 i s t h e f a i l u r e o r i g i n : ( a ) a n d (b). The i n d e n t w i t h an i n i t i a l c r a c k t i p a t t h e i n t e r f a c e d o e s n o t c a u s e f a i l u r e : ( c ) a n d (d). - Fig. 9 An i n d e n t a t i o n c l o s e t o t h e i n t e r f a c e c a u s e s premature f a i l u r e . Note t h e s u b s t a n t i a l r e s i d u a l opening o f t h e c r a c k in t h e A1203 and t h e deformation o f t h e Nb . JOURNAL DE PHYSIQUE 4. DISCUSSION Various experiments 1 (14) and t h e o r e t i c a 1 s t u d i e s ( 15) o f r a p i d c r a c k propagation i n b.c.c. m e t a l s h a v e i n d i c a t e d t h a t g c d e c r e a s e s r a p i d l y w i t h i n c r e a s e i n c r a c k v e l o c i t y , due t o t h e s t r o n g s t r e s s dependence o f t h e d i s l o c a t i o n v e l o c i t y . Such b e h a v i o r e x p l a i n s , f o r example, t h e e x i s t e n c e o f u n s t a b l e b r i t t l e f a i l u r e i n s t e e l s , a f t e r i n i t i a l c r a c k t i p p l a s t i c b l u n t i n g ( v i z . i n t h e upper t r a n s i t i o n range). A c o m p a r a b l e r a t e d e p e n d e n c e Ee, s h o u l d b e e x p e c t e d i n t h e Nb, e s p e c i a l l y i f a p p r e c i a b l e amounts o f oxygen a r e i n s o l u t i o n n e a r t h e i n t e r f a c e . F u r t h e r m o r e s i m i l a r r a t e d e p e n d e n t p l a s t i c i t y e f f e c t s s h o u l d b e e x p e r i e n c e d by a c r a c k t i p l o c a t e d a t t h e Nb/A1203 i n t e r f a c e ( a l b e i t t o a r e d u c e d e x t e n t , b e c a u s e o f t h e c o n s t r a i n t e x e r t e d by t h e non-deformable Al2O3). It is t h u s proposed t h a t (e, f o r t h e i n t e r f a c e e x h i b i t s t h e c r a c k v e l o c i t y dependence d e p i c t e d in fig. 10. A t high c r a c k v e l o c i t i e s , . p l a s t i c deformation o f t h e Nb is e s s e n t i a l l y i n h i b i t e d and gc f o r t h e i n t e r f a c e , (91) , is s m a l l e r than t h a t f o r t h e p o l y c r y s t a l l i n e A ~ ~ o ~ ( @ )I n t h i s s i t u a t i o n , 'g; is l a r g e l y d i c t a t e d by t h e i n t e r f a c i a l energy a s s o c i a f e d w i t h the interface structure, viz; . where t h e y a r e s u r f a c e e n e r g i e s and y i n t i s t h e i n t e r f a c e e n e r g y . A t lower v e l o c i t i e s , p l a s t i c z o n e s c a n b e a c t i v a t e d by t h e c r a c k t i p stress f i e l d and t h e A l a r g e increase i n g t h u s ensues, a s s o c i a t e d p l a s t i c work c o n t r i b u t e s t o 9:. s u c h t h a t g l s u b s t a n t i a 1l y e x c e e d s g E ( w h i c h is known t o b e i n s e n s i t i v e t o c r a c k v e l o c i t y (56)). SUBSTANTIAL PLASTICITY IN Nb I I I A1203, I J-INTERFACE, 5; I Fig. 10 - P o s t u l a t e d t r e n d s i n gc with crack v e l o c i t y . The p r e c e d i n g t r e n d s i n @ = f o r t h e c o m p o s i t e s y s t e m a r e f u l l y c o n s i s t e n t w i t h t h e experimental observations. S p e c i f i c a 1l y , s t a t i o n a r y . c r a c k s a t t h e i n t e r f a c e i n v a r i a b l y b l u n t ( f i g . 7) d u e t o t h e l a r g e a s s o c i a t e d 9; and h a v e , c o n s e q u e n t l y , n e v e r been o b s e r v e d a s f a i l u r e i n i t i a t i o n s i t e s ( f i g . 8). F a i l u r e a l w a y s o c c u r s from c r a c k s which become u n s t a b l e i n t h e Al203. The r a p i d l y moving c r a c k , t h u s formed i n t h e A1203, s u b s e q u e n t l y extends p r e f e r e n t i a l l y a l o n g t h e i n t e r f a c e , where 9, now e x h i b i t s i t s minimal v a l u e , due t o t h e absence o f p l a s t i c i t y i n t h e Nb (fig. 8 ) . V a l i d a t i o n o f t h i s h y p o t h e s i s , o f c o u r s e , r e q u i r e s c r a c k g r o w t h s t u d i e s as a f u n c t i o n o f v e l o c i t y . However, t h e a s s o c i a t e d i m p l i c a t i o n f o r t h e m e c h a n i c a l s t r e n g t h o f t h e bonded system is t h a t , f o r most s i t u a t i o n s , t h e i n t e r f a c e f r a c t u r e r e s i s t a n c e 9 f is e n t i r e l y adequate, viz., f r a c t u r e is not l i m i t e d by t h e i n t e r f a c e . ( P r o b l e m s may a r i s e a t h i g h l o a d i n g r a t e s , b u t s u c h c o n d i t i o n s a r e i n f r e q u e n t l y encountered). Another important i n f l u e n c e o f p l a s i t i c i t y i n t h e m e t a l concerns t h e d e v e l o ment o f r e s i d u a l s t r e s s . The presence e i t h e r o f machining damage o r o f i n c l u s i o n s P in t h e ceramic immediately a d j a c e n t t o t h e i n t e r f a c e is l i k e l y to induce p l a s t i c i t y i n t h e m e t a l , c o m p a r a b l e t o t h a t o b s e r v e d a r o u n d t h e i n d e n t a t i o n d e p i c t e d i n f i g . 9. R e s i d u a l s t r e s s e s o f o r d e r , 4Y/3, a r e t h u s t o b e a n t i c i p a t e d (Appendix 1 1 ) i n t h e c e r a m i c , where Y i s t h e y i e l d s t r e n g t h . The r e s i d u a l s t r e s s e s s u p e r p o s e on t h e Such h i g h l y c o n c e n t r a t e d a p p l i e d l o a d s a t t h e edges and cause premature f a i l u r e . d e l e t e r i o u s f a i l u r e c h a r a c t e r i s t i c s c a n be a v e r t e d by a v o i d i n g n e a r - i n t e r f a c e d e f e c t s o f t h i s t y p e and/or by s e l e c t i n g a m e t a l w i t h a low y i e l d s t r e n g t h . 5. CONCLUDING REMARKS The i n d e n t a t i o n experiments r e v e a l t h e s e n s i t i v i t y o f t h e i n t e r f a c i a l zone t o t h e presence o f d e f e c t s i n t h e a d j a c e n t ceramic by v i r t u e o f t h e l a r g e a s s o c i a t e d s t r e s s c o n c e n t r a t i o n s . The p r o c e s s i n g o f h i g h q u a l i t y bonded s y t e m s t h u s r e q u i r e s t h a t g r e a t c a r e be e x c e r c i s e d in t h e avoidance o f d e f e c t s i n t h e i n t e r f a c i a l zone, n e a r t h e surface. S p e c i f i c a l l y , e x c e s s i v e i n c l u s i o n s o r v o i d s i n t h i s zone would be most damaging. F u r t h e r m o r e and p e r h a p s , most i m p o r t a n t l y , m a c h i n i n g damage i n t h e ceramic n e a r t h e i n t e r f a c e ( a phenomenon c l o s e l y s i m u l a t e d by t h e i n d e n t a t i o n c r a c k s (5)) would b e e x t r e m e l y d e l e t e r i o u s . M a c h i n i n g c o n d i t i o n s t h u s demand c a r e f u l control. Severa 1 remarks concerning t h e i n f l u e n c e o f p l a s i t i c i t y on t h e mechanica 1 p r o p e r t i e s a r e a l s o deemed w o r t h y o f c o n s i d e r a t i o n . P l a s t i c i t y i n t h e m e t a l a t low l o a d i n g r a t e s i m p l i e s t h a t i n t e r f a c i a l c r a c k s a r e l i k e l y t o be s u s c e p t i b l e t o f a t i g u e . Fatigue c r a c k growth r a t e s (da/dN v s . 9 ) should t h u s be measured, a s w e l l a s f a t i g u e c r a c k i n i t i a t i o n e f f e c t s . P l a s t i c d e f o r m a t i o n i n t h e m e t a l is a l s o e x p e c t e d t o i n d u c e c o m p l e x b e h a v i o r i n n o t c h e d s p e c i m e n s . I n t h i s c o n t e x t , it s h o u l d b e r e c a l l e d t h a t n o t c h e d beam t e s t s (e.g. Charpy t e s t s ) and JIG t e s t s i n s t e e l s c a n y i e l d o p p o s i t e t r e n d s in f a i l u r e l o a d with m i c r o s t r u c t u r e , due t o t h e d i f f e r e n c e i n t h e s c a l e o f t h e p l a s t i c z o n e r e l a t i v e t o t h e m i c r o s t r u c t u r a l s c a l e a t which t h e f r a c t u r e mechanisms o p e r a t e (17). APPENDIX I Growth C h a r a c t e r i s t i c s of I n d e n t a t i o n Cracks An i n d e n t a t i o n c r a c k o f r a d i u s , a, contained i n an i s o t r o p i c body e x h i b i t s a s t r e s s i n t e n s i t y f a c t o r , K, given by (18) ; her ma 1 e x p a n s i o n mismatch between t h e i n c l u s i o n and t h e m a t r i x i n d u c e m a t r i x d e f o r m a t i o n t h a t may e x c e e d t h e y i e l d s t r e n g t h o f t h e metal; t h e r e b y c a u s i n g residual stress. JOURNAL DE PHYSIQUE C4-624 where C1 a n d C2 a r e c o n s t a n t s f o r a g i v e n i n d e n t a t i o n l o a d a n d stress. Hence, t h e s t r e s s and c r a c k l e n g t h a r e r e l a t e d by; 0 is t h e a p p l i e d However, Kc is a l s o r e l a t e d t o t h e i n i t i a l c r a c k r a d i u s , ao, a t z e r o a p p l i e d s t r e s s Consequently, from eqn (A2), t h e s t r e s s is g i v e n by; by, Kc = c2aO-3/2. Furthermore, i f s i m i l a r i n d e n t a t i o n s are p l a c e d a t two d i f f e r e n t l o c a t i o n s w i t h i n an i s o t r o p i c b r i t t l e s o l i d t h e r a t i o o f s t r e s s e s d e v e l o p e d a t t h o s e s i t e s is where R i s t h e c r a c k l e n g t h r a t i o , ao/a. S t r e s s v a r i a t i o n s w i t h i n a bcdy may t h u s be e s t i m a t e d from i n d e n t a t i o n c r a c k l e n g t h r a t i o s , w i t h o u t r e q u i r i n g knowledge o f e i t h e r m a t e r i a l p a r a m e t e r s o r geometric c o n s t a n t s . APPENDIX Residual S t r e s s E f f e c t s R e s i d u a l s t r e s s e f f e c t s and t h e i r i n f l u e n c e on crack e x t e n s i o n can be i l l u s t r a t e d u s i n g t h e p r e s s u r i z e d s p h e r i c a l c a v i t y a s a n e x a m p l e (19). When two c o n n e c t e d m a t e r i a l s w i t h d i f f e r e n t e l a s t i c and p l a s t i c p r o p e r t i e s a r e s u b j e c t t o i n t e r n a l p r e s s u r e , s u c h t h a t t h e i n n e r m a t e r i a l i s immune t o p l a s t i c y i e l d i n g , t h e o u t e r m a t e r i a l f i r s t e x p e r i e n c e s p l a s t i c deformation when t h e normal compression a t t h e i n t e r f a c e e x c e e d s , p = 2Y/3, where Y i s t h e y i e l d s t r e n g t h . F u r t h e r p l a s t i c d e f o r m a t i o n r e s u l t s i n t h e r a d i a l s t r e s s d i s t r i b u t i o n d e p i c t e d i n f i g . 11, w i t h a minimum o c c u r r i n g a t t h e i n t e r f a c e and a maximum a t t h e e l a s t i c / p l a s t i c boundary i n t h e o u t e r m a t e r i a l . Unloading r e q u i r e s t h a t t h e e l a s t i c s t r e s s d i s t r i b u t i o n be s u b t r a c t e d from t h e s t r e s s a t p e a k p r e s s u r e ( f i g . 11 ), r e s u l t i n g i n t h e r e s i d u a l f i e l d d e p i c t e d i n f i g . 11. The r e s i d u a l r a d i a l s t r e s s e x h i b i t s a peak t e n s i o n a t the i n t e r face. However, f o r r e l a t i v e l y low y i e l d s c r e n g t h m a t e r i a l , r e v e r s e y i e l d i n g o c c u r s and t h e peak r e s i d u a l t e n s i o n is t h e n (191, 0~ = 4Y/3. REFERENCES 1. C. C. Berndt and R. McPherson, S u r f a c e s and I n t e r f a c e s in Ceramic and C e r a m i c / M e t a l S y s t e m s (Ed. J. A . P a s k and A. G. E v a n s ) Plenum, N.Y. (1981) p. 619. 2. M. E. Twentyman and P. Hancock, S u r f a c e s and I n t e r f a c e s i n Ceramic and Ceramic/Metal Systems, ibid., p. 535. 3. M. F l o r j a n i c , W. Fader, M. & h l e and M. T u r w i t t , t h i s volume. 4. D. G. Bogy, J. Appl. Mech. 5. D. B. M a r s h a l l , A. G. E v a n s , B. T. Khuri-Yakub, Proc. Roy. Soc. (1983) 461. 6. A. G. Evans, J. Am. Ceram. S o c . 42 (1975) 93. A385 65 (1982) 127. J. W. T i e n a n d G. S. Kino, 7. S. Timoshenko and J . N. Goodier, Theory of E l a s t i c i t y , McGraw H i l l (1951). 8. F. Erdogan a n d G. D. Gupta, I n t . J. S o l i d s and S t r u c t u r e s , 9. T. K. O'Brien ASTM STP 10. S. Schmauder, M. ~ i h l eand A. G. Evans, t o be published. T. Suga, Ph.D. (1984). 775 (1982) p. 1, (1971) 36. 140. Thesis, Max Planck I n s t i t u t f u r Metallforschung, S t u t t g a r t 13 (1980) A . Piva and E. Viola, Engng. Frac. Mech. F. Erdogan, J. Appl. Mech. 2 (1965) 403. H. Vehoff and P. Neumann, Acta Met. L. B. Freund and J. W. 143. 8 (1980) 265. Hutchinson, t o be published. R . L. B e r t o l o t t i , J. Am. Ceram. Soc. (1974) 300. R. 0. R i t c h i e , B. F r a n c i s and W. L. Server, Met. Trans. D. B. P a r s h a l l and B. R. Lawn, J. Am. Ceram. Soc. 63 (1980) (1976) 831. 532. R. H i l l , Theory o f P l a s t i c i t y , Oxford Univ. P r e s s (1950). - Fig. 11 Residual s t r e s s e s c r e a t e d by expansion o f an e l a s t i c s p h e r i c a l s h e l l i n t o an e l a s t i c / p l a s t i c uatrix.
© Copyright 2026 Paperzz