i I i ! t 3 :. I Honday Rosshy-gravity :cial references IP I l t I i i , .50' 7 ,/@ Shelf station I L --' i .. ..' . ' ----- . . ,//A-. . f I l \ 8'30' 35' 17'30' . 25' \ 20 I '-Elo 15' Fig. la The Cap-Vert Penisnula; isobaths and locakion of the coastal and shelf stations. ( BAMURS , Fig. lb Directions of southern, northern coasts and typical distribution of surface isotherms, i n winter, w i t h respect t o wind. 144 global mg/m3 and Qf monthly total chlorophyll m/month vourab A. 73- 79 corre1 equal I smalle. compri: puted c doublec L I ' .a d pectivr means ( Wlf I DIRECTI[ Fig. 2 T o t a l chlorophyll "a" c o n t e n t and upwellings : c o a s t a l and oceanic. ( C PLANT-BIOMASS AND UPWELLING AROUND THE PENINSULA : LOCAL AND LARGE SCALE EFFECTS The t o t a l chlorophyll "a" c o n c e n t r a t i o n s of t h e northern c o a s t a l s t a t i o n a r e less abundant, about 3 mg/m 3 P e r year (Fig. 3 ) ; however t h e s e v a l u e s are r e l a t i v e l y high .c ;1 H and r e s u l t s u r e l y o f e i t h e r l o c a l v e r t i c a l motions o r advected c o l d c o a s t a l waters from t h e North because of t h e southern b a r r i e r and of t h e dominant southward s u r f a c e current. An i d e n t i c a l wind d r i v e s t h e waters washing both s i d e s of the Peninsula b u t i t s d i r e c t i o n i s o f t e n favourable t o a higher Ekman o f f s h o r e t r a n s p o r t from t h e southern c o a s t (see t h e upper graphics o f Fig. 3 ) . f o r t h e period of A p r i l t o September, i.e. -- --- ----"- T h i s remark i s v a l i d p r i n c i p a l l y s p r i n g and summer. c e n t r a t i o n s a r e w e l l s u s t a i n e d a t t h e "Dakar-South" Also chlorophyll con- s t a t i o n b u t n o t a t t h e "Dakar- North" s t a t i o n where t h i s p e r i o d corresponds t o a minimum. Consequently, t h i s period 6 must be, with r e s p e c t t o t h e wind d i r e c t i o n , t h e most p r o p i t i o u s t o t h e hydrodynamic Separation between the two ecosystems. Moreover the comparison o f t h e w i n t e r s and s p r i n g s of 1979 and 1980 (Fig. 3) indi- 4- c a t e s a p o s i t i v e c o r r e l a t i o n between t h e wind v e l o c i t y and t h e southern chlorophyll biomass : while v e l o c i t i e s changed, from about 4.7 m/s (1979) t o 6.0 m/s (198Q), winter and s p r i n g chlorophyll c o n c e n t r a t i o n s approximately doubled from 10.5 t o 19 mg/ m3 a s t h e wind str.esses : t h e squares o f wind speeds 4.7 and 6.0 are r e s p e c t i v e l y 21 and 36. F i n a l l y , when a l o c a l upwelling i s n o t p o s s i b l e , t h a t i s t o say, d u r i n g December 1979 a t t h e Thiaroye-station and during t h e "15 May-15 Septemb'er" p e r i o d a t t h e Yoff- 2 .- i o 1 s t a t i o n , w e remark a good c o r r e l a t i o n t o o with an annual minimum of chlorophyll. On the.whole, t h e s e r e s u l t s confirm t h e real e f f e c t s o f t h e l o c a l upwelling on the Fig. 3 Cirespect t o f i v e days 146 r global v a r i a t i o n s o f c h l o r o p h y l l : concordance between the'maximums o f wind v e l o c i t i e s and of chlorophxll on the one hand, minimums of plant-biomass i n t h e case o f non f a vourable wind d i r e c t i o n s on the o t h e F hand. However, as mentiqned above, there i s no c o r r e l a t i o n "chlorophyll-coastal upwelling" during th@ summer, when the wind v e l o c i t i e s equal only 3-4 m / s and g i v e , consequently, v e r t i c a l v e l o c i t i e s two or three time smaller while chlorophyll c o n c e n t r a t i o n s s t i l l remain r e l a t i v e l y high and f r e q u e n t l y comprised between 8 and 9 mg/m 3 . As a matter of fact, the standard d e v i a t i o n s com- puted on s e r i e s of d i f f e r e n t averaged months f o r the y e a r s 1973-1979 i n d i c a t e a doubled v a r i a b i l i t y during t h e s p r i n g months with r e s p e c t t o t h e summer months, resp e c t i v e l y about 4 and 2 mg/m3, t h a t is t o say 30 % and 20 0 of t h e s p r i n g and sim e r means (see t a b l e I). î less high Z r s rface La CHLOAOPHYLL CON TENT the >ally conir- ieriod iamic indiI 1yll 15- 2-1 19 ms/ I I CHLOROPHYLL CONTENT Ly 21 ' 5 O O Yoff- loi1 ' I . nber an thc I 1979 1980 I Chlorophyllian comparison of northern and southern s i d e s of t h e peninsula t o the wind v e l o c i t y and d i r e c t i o n i f i v e days averages. Fig. 3 W i t h 146 The series 73-79 i n d i c a t e t o o a low v a r i a b i l i t y for January and November whereas October and December are more v a r i a b l e i l o g i c a l l y , g r e a t v a r i a b i l i t y arises from up- welling b u *t a glance a t t h e monthly l o c a l winds o f t h e series 73-79 shows t h e imposs i b i l i t y of an Ekman c o a s t a l upwelling i n c r e a s i n g t h e chlorophyll i n October 1976 and December 1977 ( s e e t a b l e I). As a m a t t e r of f a c t , the v i r i a b l e r e l a t i o n s h i p between 1 2 'i i f t h e chlorophyll c Q n c e n t r a t i o n s and l o c a l c o a s t a l upwelling is corroborated by t h e On tì- further Jan coas ther BUT either w 1974 a r e i n coincidence. forcemen in the A accelera TABLE I ring small c o r r e l a t i o n between tables I and I1 : only January 1977, February 1977 and b y Phyto Jun and Nove Mean monthly concentrations o f t o t a l chlorophyll "a" (mg/m3 1973-79 i p o s i t i v e anomalies are underlined. a t t h e Thiaroye T-Statiorl Month I II III IV v VI VI1 VI11 Final cumber 1 x IX XI XII 3.4 3.4 5.1 7.3 1.7 4.2 4.5 7.1 - t h souk Year 1972 1973 74 75 76 77 78 79 5.9 7.4 3.3 4.7 6.2 8.0 5.0 7.2 9.9 29.6 7.5 11.5 10.8 7.3 - 4.1 11.6 12.0 17.5 6.7 8.9 10.3 18.8 7.7 20.4 7.5 7.3 18.0 8:l 15.3 14.0 8.3 11.6 9.1 10.5 10.2 10.7 6.9 14.2 13.2 9.2 12.6 9.4 - - 7.8 10.6 14.3 9.0 8.0 11.1 7.8 8.8 11.7 3.5 8.0 7.4 3.2 7.0 17.5 8.5 9.0 12.3 13.1 12.4 10.1 8.0 8.4 * 2.5 4.1 7.6 9.4 12.3 15.0 8.7 'l'ABLE LI Monthly Month 3.0 3.6 Yoar 1973 mean 6.9 10.8 11.0 11.4 11.3 11.1 10.7 9.9 9.5 7.5 5.5 6.1 Standard deviation 2.7 8.5 4.3 4.0 4.6 4.2 . 2.2 2.3 1.8 4.6 2.3 5.0 74 75 7G 77 70 79 TABLE II TABLE IV Mean monthly s u r f a c e t h e m a l anomalies a t the Thiarove T- t a t i o n 1973-79 i negative anomalies a r e underlined ( t e n t h o f degrees a n d ' a f t e r series 60-62, 65-79). MU11thly : Month I II III IV v VI VI1 VIZI +16 +23 + 1 - 1 +4 + 2 - 9 x Month XI XX' -1- - 7 -15 - 2 -1s' +5 -3 -.lb - 4 - 1 +12 *& +20 iIr, 15 IX year 1973 74 75 76 77 78 79 devia t i o n -14 - 6 +15 +1 - 4 - 2 -2 -16 -18 -14 + 4 + 5 12 - 2 + 1 10 - 4 -11 -12 -12 + 7 - 6 - 6 + 1 -12 - 7 + 2 - 3 + 3 -23 -11 -12 + 5 + 6 - 5 - 5 +I7 +21 - 2 - 6 1 + 1 + 3 + 5 + 2 13 11 16 19 8 -19 -23 -22 - - Ohkbhur, -16 - 5 + 4 +E -T -16 o - 7 -16 +y $ 3 -3 - 1 o +6 +20 +9 7 7 10 16 S&&&*h"& L r * - - 8 4-3 d%*k*3-5- Year -il - 5 ~ 1973 74 75 76 . 77 78 ,I whereas i - le i m p o s - jan c o a s t a l s t a t i o n , which i s r e p r e s e n t a t i v e of t h e e q u a t o r i a l upwelling, g i v e s ra- . 1976 and ) ther surprising results i a g r e a t p a r t of positive chlorophyll anomalies c o i n c i d e s e i t h e r w i t h , t o our mind, l a r g e p u l s a t i o n s of the Mauritanian upwelling or w i t h r e i n - between I 'y t h e ' On t h e contrary. an examination of long temperature series (see t a b l e s III, IV) f u r t h e r North a s a t t h e Saint-Louis c o a s t a l s t a t i o n , o r f u r t h e r South a s a t the Abid- from up- forcements of t h e e q u a t o r i a l upwelling. Such events occur namely i n 1976-77 n o t o n l y i n t h e A t l a n t i c b u t a l s o i n t h e e q u a t o r i a l P a c i f i c (Wyrtki, 1979) and arise from an and May a c c e l e r a t i o n of t h e t r a d e s along t h e e q u a t o r i a l band. I Phytoplanktonic blooms may r e s u l t from the mauritanian upwelling p r i n c i p a l l y du?? r i n g June 1975, February and October 1977 ; from e q u a t o r i a l upwelling d u r i n g October' and November 1976, J $e and December 1977. F i n a l l y , it i s l i k e l y t h a t d u r i n g more than two years, s i n c e June 1975 u n t i l De- T-St a t i o n Ø cember 1977, l a r g e - s c a l e e f f e c t s are dominant on the c h l o r o p h y l l c o n c e n t r a t i o n s o f the southern coast. c XII 7.3 1.7 4.2 4.5 7.1 7.5 3 .O 3.6 6.1 l 5 .o i 1973 74 75 76 77 78 79 153 169 160 156 172 176 162 166 162 156 158 - 169 165 164 161 160 162 169 177 176 175 176 182 - 196 193 240 241 269 267 269 2 . 268 208 264 273 203 260 232 191 233 278 272 746 3nQ 272 497 278 243 2 202 - 285 281 284 - ___ 280 283 274 ___ I 170 178 --- -i 77 - TABLE IV jative I Monthly sea-surface temperatures a t the Abidjan (Ivory c o a s t ) s t a t i o n . Month .5 3 16 16 1 12 20 ' ¿'> -I, < ' I \ c # I I II 275 264 273 259 256 274 273 273 271 257 269 III IV 285 279 273 282 270 v VI VI1 VI11 IX x XI XII qcm Year 1973 74 75 76 77 78 - - - 769 766 347 77s m c xc. ?cm 273 288 273 289 278 279 275 280 251 253 229 238 210 222 ?in 777 76.6 780 797 351 714 268 267 769 76.7 - In order to obtain a schematic representation of the very different upwelling effects around the peninsula, it is useful to reproduce (Fig. 4 and 5) first a conceptual ,node1 of the hydrological structure (isothens and currents) on both coasta according to Rebert (unpublished manuscript, 1979). To our mind, two essential fea- tures result from the difference of the shelfs. x O' Fig. 4 Weak upwelling of the north coast starting from 50 m depth only. Fig. 5 Upwelling of the south coast ; destabilization of the thermocline and vertical flow starting from 100 m depth. \ , The first one is the opposite cross-shelf flow, offshore qt the n o r a 14.0' and onshore at the southern coast. The second one is the destabilization of the thermocline in the case Of the gen6lY inclined southern slope. As a reslllt, strong tridimensional turbdewae may @GelOP above the shelf-edge, in the same time as a,divergence of surface currents (Pig, 6). The resulting doming of isotherms is often observed along the axis of the shelf in winter in the vicinity of the 30-50 m isobaths. 30' SOUwern (Recall too the figure 1b giving the same isothermal configuration than figure 6). The doming structure of the southern upwelling enables it to trap at the Coast# on the left side of the divergence, high nutrients which upwelled along its right: side. On the contrary, the pure Ekman offshore transport off the soqthern C W S t re* moves quickly the upwelled nutrients away from the Yoff coastal station. -13'0' ChloroPhYll concentrations are consequently higher at the Thiaroye coastal station (or Dakar-Soutb statioq). In the next chapter we shall try to "model" variations of chlorophyll On both sides of the peninsula with the aid of current and temperature gradients mea- i surements above the shelf (50 m bottom) and at the coast. -30' i 5 4 149 felling 1 AlTEMPT TQMODEL CHLOROPHYLL VARIATIONS ON BOTH SIDES O F CAP-VERT 'st a conk h coasts I n a d d i t i o n t o t h e d a i l y c o a s t a l measurement, hydrological and c u r r e n t observat i o n s were made on the s h e l f as mentioned above (Fig. l a ) . i n t i a l fea- The p e r i o d s of measure- ments were always s e l e c t e d t o c o i n c i d e with Neap t i d e s . Thus, f o u r t e e 9 sequences I including g e n e r a l l y t h r e e northern and t h r e e southern hydrological s t a t i o n s were made i n A p r i l , July, August, September, November and December of t h e year 1979 and t h e first t h r e e months 1 Of t h e year 1980. These sequences were s h o r t and c u r r e n t , depth, temperature and conductivity r e c o r d i n g s with Aanderaa instruments permit o n l y elementary s t a t i s t i c s on t h e r e s u l t s . I n a d d i t i o n t o t h a t , high c o n c e n t r a t i o n s o f n i t r a $ e s and often:'too o f chlorophyll were observed e i t h e r on t h e northern or t h e southern s h e l f from t h e s u r f a c e t o 30' .. .. ! and l a r g e n coast ? 14'0' t h e gently y develop (Fig. 6 ) . southern O' Eigure l b 2 coast, ;r i g h t c o a s t re- 3'0' :hlorophyll Dakar-South > p h y l l on its meaI' ? Fig. 6 The doming s t r u c t u r e of isotherms above t h e southern s h e l f of Senegal and the remarkable divergence of s u r f a c e c u r r e n t s ; March 1974. ( A f t e r J.P. Rebert). I 160 r t h e bottom. The same remark however cannot b e made f o r t h e summer when n i t r a t e data onshor are absent. However, because of t h e e x i s t e n c e of domings and r i d g i n g s of t h e thermo- wellin 1 c l i n e o n l y o f f t h e southern s h e l f , we may presume t h a t ++e n i t r a t e maximum disappears from t h e northern c o a s t i n summer. Thu the se F i r s t , it i s u s e f u l t o r e c a l l (Fig. 2 and 7) t h e i n t e r e s t i n g concordance between t h i s ml t h e annual evolution of t h e southern c o a s t chlorophyll and an oceanic mesoscale up- s i n g o. welling driven by t h e curl o f t h e s t a t i s t i c a l wind stress i n t h e v i c i n i t y of the t i e s ec The monthly averages computed by the author a f t e r meteorological d a t a s h e l f edge. lings < supplied by the U.S. National Oceanic and Atmospheric Administration are grouped i n modelle two degrees-side subsquare Marsden and, consequently, g i v e o n l y a poor image o f t h e wind ar i n t e n s i t y of mesoscale e d d i e s which may develop t o g e t h e r i n both Atmosphere and Ocean. condi ti The improvement i n f i g u r e 7 i s o b t a i n e d by averaging t h e s d e x " b p w e 1 l i n g o f f river generat Casamance, a t the southern e x t r e m i t y o f Senegal, w i t h t h a t of t h e south-Dakar s h e l f , 1979). t h a t i s t o say, subsquares c e n t r e d r e s p e c t i v e l y a t t h e l a t i t u d e s 11.5 N and 13.5 N along 17.7 W. This averaging i s n o t a r b i t r a r y s i n c e t h e summer r e v e r s a l of t h e shelf If w of a ce c i r c u l a t i o n from south to n o r t h may advect t h e n u t r i e n t s upwelled off Casamance as include f a r as t h e s o u t h e m s i d e o f t h e Peninsula. w e obtn 12- I OFF CASAMANCE 111.5 N ) a-1 4- o' Y J F M AMaJrJCArS I I I O N O 1 e J Fig. 7 Modelling o f t h e annual chlorophyll w i t h mesoscale upwellings d r i v e n by the c u r l s of s t a t i s t i c a l wind stress. We emphasize a l s o t h a t excess of chlorophyll with r e s p e c t t o mesoscale upwelling dur i n g t h e summer months (June, J u l y , August and September) may arise from continental f e r t i l i z a t i o n as summer i s t h e r a i n y season. A t last, i n o r d e r t o p o i n t out the slow * 151 :en n i t x a t e d a t a onshore advection o f n u t r i e n t s along t h e slope, t h r e e months running means o f up- 9s of t h e thenno- welling were used and centred on t h e t h i r d month. ximwn disappears Thus w e have obtained a simple s t a t i s t i c a l model which g i v e s t h e broad f e a t u r e s of t h e seasonal evoLution of chlorophyll. rdance between mesoscale up- However, t h e v e r t i c a l v e l o c i t i e s computed with t h i s model a r e smaller than 12 m/month o r khan 5.10-4 c m / s , whereas t h e observed rising of c o a s t a l isotherms and r a p i d growing of chlorophyll r e q u i r e v e r t i c a l velocit i e s e q u a l o f t e n t o 10-2 cm/s o r 10 m/day. ulogkcal d n t a l i n g s o f west Africa (Hagen, 1974) and it i s obvious t h a t upwelling e f f e c t s should be These values are f r e q u e n t i n t h e upwel- ,ire grouped i n modelled a t t h e scales (day-10 km), because o f l i k e l y resonance phenomena between t h e r image of t h e wind and the c u r v a t u r e s of i s o b a t h s around t h e peninsula : mesoscale hydrographic qphere and Ocean. c o n d i t i o n s may be caused by t h e modal s t r u c t u r e o f b a r o t r o p i c c o n t i n e n t a l s h e l f waves ling off r i v e r generated by wave f l u c t u a t i o n s i n t h e meridional component of NE-trade winds (Hagen, th-Dakar s h e l f , 1979). N an8 13.5 N Casamance a s If we follow Arthur (19651, w e are a b l e t o e s t i m a t e v e r t i c a l motions a t t h e south o f a cape, s t a r t i n g from t h e v o r t i c i t y equation and n e g l e c t i n g a l l t h e terms ( f r i c t i o n included) which do n o t comprise t h e r e l a t i v e v o r t i c i t y . With t h e s e approximations, we obtain !, % = (5 .t Dt t\; f) -\ .6 -2 ". 37 --, ?y - 1 i: 7> -s 1 c i t y , p o s i t i v e i n cage o f upwelling. v e r t i c a l g r a d i e n t o f the v e r t i c a l v e l o c i t y by t h r e e d i f f e r e n t ! methods : use t h e d a t a of f i g u r e 6, x a d i i of curvature o f isotherms and v e l o c i t i e s o f (i) c u r r e n t s ( w i t h Arthur, we n e g l e c t the v e l o c i t y g r a d i e n t normal to t h e stxeamline) ; (ii) c a l c u l a t e , using the c u r r e n t measurements a t t h e s h e l f - s t a t i o n s , t h e term avhx - au/ay on t h e same f i g u r e : (iii) estimate - W/ay f o r the s t a t i o n s i n 1979-1980 l o c a t e d o f f Yoff and o f f Thiaroye. I n o u r a r e a of i n t e r e s t , ne& t h e peninsula, w e g e t t h e following values : . , .*~ 1) 2.4 IO-' 2) 5 31 23 values, a l l p o s i t i v e , of which 22 a r e comprised between t h e values 4.2 10-5 s-' (from Fig. 6 ) with a r a d i u s o f c u r v a t u r e equal t o 24 km; lom5 s - l , of which 3.10-5 for t h e term av/ax (from Fig. 6 ) ; and 0.3 10-5 s-1. upwelling du- m continental It out the slow ? ) n i t y of t h e ; a l of t h e s h e l f A The most f r e q u e n t value is equal t o 4.10-' and t h e mean i s 1.6 : t h a t gives a v o r t i c i t y by e x t r a p o l a t i o n from 2. Wit3 t h i s v a l u e of t h e v o r t i c i t y , t h e c h a r a c t e r i s t i c time o f change-around t h e peninsula i s 3.10'' and by i n t e g r a t i o n between t h e depths O and 100 m, we o b t a i n an i) 7 152 P upwelling o f 4.10-2 * cm/s-l or 33 m p e r day. i T h i s v e r t i c a l v e l o c i t y appears too high, doubt1ess"because o f t h e numerous approximations ; b u t "10 m p e r day" i s a very plaus i b l e value. i An i n t e r e s t i n g r e s u l t a r i s e s from t h e t h i ~ d m e t h o dand concerns t h e va- r i a b i l i t y of t h e upwel1ing:the h i g h e s t v e l o c i t i e s may be' t w o t o f o u r t i m e s t h e average or t h e most f r e q u e n t value. Thus, f o r a y e a r l y averaged chlorophyll c o n c e n t r a t i o n o f 3 about 10 mg/n , it w i l l be n o t s u r p r i s i n g t o observe some maxima a t 30 o r even 3 50 mg/m Moreover t h e r a t i o of t h e extremes v a l u e s of chlorophyll, equal t o a b o u t R 1 h . 1/30 i s of t h e same o r d e r as t h e r a t i o o f extreme v o r t i c i t i e s , 1/14. 1 Comparison o f t h e local winds and t h e i n d i v i d u a l v o r t i c i t i e s estimated by t h e t h i r d t method shows an absence of c o r r e l a t i o n which may be r e l a t e d t o the mesoscale and lar- 1 30- ge s c a l e e f f e c t s suggested above : t h e local v o r t i c i t y depends o11 the mauritanian and maybe too on t h e e q u a t o r i a l winds ; it must vary moeeover (Rebert, p e r s o n a l communi- i a3 c a t i o n ) with t h e c o a s t a l thermohaline c i r c u l a t i o n . The l a s t attempt i n modelling (Fig. 8) i s t o use the north-south g r a d i e n t of s u r f a c e bimonthly averaged temperatures between the two c o a s t a l s t a t i o n s , namely a n i n dex o f c i r c u l a t i o n , i n o r d e r t o e s t i m a t e t h e annual v a r i a t i o n of t h e r e l a t i v e abundance o f chlorophyll between both s i d e s o f t h e peninsula. Y The c y c l e o f t h e r a t i o i southern/northern chlorophyll, which may d i f f e r l a r g e l y from one year t o another seems t o be p a r t i a l l y c o n t r o l l e d by t h e south-north g r a d i e n t of s u r f a c e temperature m - and p e c u l i a r l y by t h e r e v e r s a l of s u r f a c e c u r r e n t s . On t h e whole, t h e r a t i o follows an e v o l u t i o n along a schematic c y c l e c o n s i s t i n g o f f o u r branchs which coincide w e l l with t h e f o u r seasons ; i n w i n t e r the r a t i o i n c r e a ses slowly whereas t h e s u r f a c e southern waters are r a p i d l y c o l d e r ; i n s p r i n g the temperature g r a d i e n t reaches i t s maximum and, i n the same time, t h e ratio i n c r e a s e s $5 f f .I much, e s p e c i a l l y i f t h e winds a r e s t r o n g and enduring, l i k e i n 1980 u n t i l the end o f June. This process of n u t r i e n t and c h l o r o p h y l l accumulation on t h e southern s h e l f must be l o g i c a l l y dependent on t h e i n t e n s i t y of t h e mesoscale wind v o r t i c i t y which advects waters both warmer and r i c h e r . I n summer a high r a t i o i s s u s t a i n e d b u t t h e a b s o l u t e values of chlorophyll c o n c e n t r a t i o n decrease on both s i d e s because of t h e growing grazing by numerous young f i s h . Since October, with t h e r o t a t i o n of winds 5 1, 20 - 4 Change scale 10 Eo 4 3 2 1 - and t h e north-south r e v e r s a l of c u r r e n t s , t h e r e is a n e t decrease of t h e south-north O chlorophyll r a t i o , from t e n o r more, t o one. -1 SUMMARY Since a long t i m e f i s h e r y b i o l o g i s t s s u s p e c t d i f f e r e n c e s i n t h e abundance and d i s t r i b u t i o n ( l o c a t i o n , s i z e ) of f i s h on both s i d e s o f t h e peninsula. This d i f f e r e n c e +f i s f i r s t m a t e r i a l i z e d by an oceanic f r o n t l o c a t e d a t t h e "Pointe d e s Almadies", with i s t r o n g l y s t r a t i f i e d waters on i t s n o r t h e r n f l a n k . Northern waters are o f t e n two o r t h r e e degrees warmer than southern waters. Chlorophyll observations p o i n t o u t a g r e a t e r d i f f e r e n c e between both s i d e s than s u r f a c e p h y s i c a l c o n d i t i o n s : i n f a c t , 6 ia Ph f t Fig. 6 I south-no ppears too high, ' is a very plauconcerns the va- times the average concentration o f 3 RATIO SOUTHERN CHLOROPHYLL NORTHERN o r even ?qual t o about t (eo) Ju 1 i t e d by t h e t h i r d ioscale and l a r mauritanian and l 30 sona1 comuni'\ a d i e n t of s u r namely an i n e l a t i v e abun- I: t h e r a t i o another .1 "1 Change of scale \ -\ A1 (80) 3c \ , Maximums OF \ I \ temperature i' c o n s i s t i n g of ri ratio i n c r e a spring t h e io i n c r e a s e s ' il t h e end o f lthern s h e l f ì c i t y which lined b u t t h e :I i * l M 2 (80) I REVERSALOF ause o f t h e m of winds i ' south-north - 9 OIFFERENCÊ NORTHERN SOUTHERN COASTAL SURFACE TEMP. lance and d i s i difference nadies", with "ten two o r n t out a : i n fact, v e r t i c a l v e l o c i t i e s , threedimensional turbulence and mesoscale eddies p l a y an impor- t a n t r o l e i n t h e space-time v a r i a b i l i t y o f t h e n u t r i e n t s and t h u s of chlorophyll. A d e s c r i p t i v e review, axed on the d i f f e r e n t s c a l e s of motions d r i v i n g t h e upwellings o f f Senegal, shows : 1) DIFFER the r e a l e f f e c t s of t h e local upwelling by Ekman offshore t r a n s p o r t e s p e c i a l l y during w i n t e r w i t h a well s u s t a i n e d divergence on t h e southern s h e l f (Fig. 6 ) ; 2) the g r e a t negative anomalies o f temperature i n s p r i n g which suggest a double ac- 3) the p o s s i b l e e f f e c t s during s p e c i a l y e a r s o f t h e l a r g e - s c a l e c i r c u l a t i o n w i t h an t i o n of b o t h mesoscale and l o c a l upwelling; i I t T e n t a t i v e models show t h e i n f l u e n c e of t h e slope and width o f t h e s h e l f (Fig. 4 2 Cyclonic v o r t i c i t y i s t h e most f r e q u e n t and i t s v a r i a b i l i t y may e x p l a i n t h a t il of t h e chlorophyll by upwelling. The most a p p l i c a b l e r e s u l t seems t o be, on t h e whole, t h e c l o s e d c o r r e l a t i o n exis- i t i n g between t h e s t a t i s t i c a l annual e v o l u t i o n s of t h e chlorophyll and o f the c u r l s of .t 1 A convincing demonstration should experiment the real synoptic winds from moored s h i p s o r buoys : balance t h e g e n e r a l oceanic c i r c u l a t i o n . Arthur, R.S., 1965. On t h e c a l c u l a t i o n of v e r t i c a l motion i n e a s t e r n boundary curr e n t s from determinations of h o r i z o n t a l motion. J. Geophys. Res., 70, 12:323-327. ' Hagen, E., 1974. Migrations d e s poissons démersaux l e long des de l a t i t u d e nord. Cah. Q.R.S.T.O.M., S é r . A simple scheme o f t h e development o f c o l d water upwelling c i r c u B i t r . Meereskunde, 33:115-125. l a t i o n cells along t h e northwest a f r i c a n c o a s t . Hagen, E. and Weiss, R., 1979. Mesoscale c o a s t a l upwelling dynamics o f f t h e N-W a f r i c a n coast and hypothetic r e l a t i o n s t o the chub mackerel concentrations. I.C.E.S. C.M. 1979/C:21:1-8. Margalef, R., 1978. Life-forms of phytoplankton a s s u r v i v a l a l t e r n a t i v e s i n an uns t a b l e environment. Ocean. A c t a , 1, 4:493-509. Wyrtki, K., 1979. E l Nino. La Recherche, 10, 106:1212-1220. Muc 1 7 i I REFERENCES Champagnat, C. and Domain, F., 1978. c ô t e s o u e s t a f r i c a i n e s de 10 ZI 24' Qcéanogr., 16, 3-4:239-261. INTROD a p o s i t i v e conclusion could suggest t h a t t h e p r i n c i p a l r o l e of mesoscale e d d i e s i s t o damp t h e g r e a t f l u c t u a t i o n s and t o ' and fj of Per ammoni linear fixed plankt nutrie I temperature and the r e l a t i v e chlorophyll on both s i d e s , suggesting a f o u r seasons the mesoscale wind stress (Fig. 7 ) . D if c and 5 ) , a p l a u s i b l e c o r r e l a t i o n (Fig. 8 ) between t h e north-south g r a d i e n t o f s u r f a c e cycle. ABSTRA t i n s i g h t i n t o t h e e q u a t o r i a l upwelling. i , the ei action t o cou place computq large I t Succes i devote# It 1 i i I solve I prohib cost, 1 chemic. only 1 contrii Tux1 measurt and Okt i I ) t h e dir portinr slight1 Elsevier Oceanography Series, 32 *cr -/- - -.... ECOHYDRODYNAMI \ri, PROCEEDINGS OF THE 12th INTERNATIONAL ON OCEAN HYDRODYNAMICS 6 Edited by LIÈGE COLLOQUIUM ' JACQUES C.J. NIHOUL Professor of Ocean Hydrodynamics, University of Li2ge Liège, Belgium .. ELSEVIER SCIENTIFIC PUBLISHING COMPANY Amsterdam - Oxford - New York 1981
© Copyright 2026 Paperzz