The Duhem model and hysteresis: a symbiotic relationship? Fayçal Ikhouane Universitat Politècnica de Catalunya Department of Mathematics [email protected] June 16, 2016 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? A brief history of the Duhem model “These curves exhibit, in a striking manner, a persistence of previous state, such as might be caused by molecular friction. The curves for the back and forth twists are irreversible, and include a wide area between them. The change of polarization lags behind the change of torsion. To this action . . . the author now gives the name Hysterēsis (. . . to be behind)” J. A. Ewing. On the production of transient electric currents in iron and steel conductors by twisting them when magnetised or by magnetising them when twisted. Proceedings of the Royal Society of London, volume 33, pages 21–23, 1881. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 2 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? A brief history of the Duhem model P. Duhem. Sur les déformations permanentes et l’hystérésis. Premier Mémoire, tome LIV, Mémoires couronnés et Mémoires des savants étrangers, l’Académie royale des sciences, des lettres et des beaux–arts de Belgique, 1896. Pierre-Maurice-Marie Duhem 9 June 1861 – 14 September 1916 S. L. Jaki. Uneasy genius: The Life and Work of Pierre Duhem. Martinus Nijhoff Publishers, The Netherland, 1987. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 3 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? A brief history of the Duhem model u = input x = state or output The Duhem model ( f1 x(t), u(t) u̇(t) ẋ(t) = f2 x(t), u(t) u̇(t) for u̇(t) ≤ 0, for u̇(t) ≥ 0, x(0) = x0 . x = H(u, x0 ) Rate independent: H u ◦ φ, x0 = H u, x0 ◦ φ F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 4 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? What is hysteresis? Visintin: “Definition. Hysteresis = Rate Independent Memory Effect.” However, “this definition excludes any viscous-type memory” because it leads to rate-dependent effects that increase with velocity. A definition based on rate independence assumes that “the presence of hysteresis loops is not . . . an essential feature of hysteresis.” A. Visintin. Differential Models of Hysteresis. Springer–Verlag, Berlin, Heidelberg, 1994. (Pages 13-14) Oh and Bernstein: Hysteresis is a “nontrivial quasi-dc input-output closed curve” J. Oh and D. S. Bernstein. Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Transactions on Automatic Control, volume 50, pages 631–645, 2005. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 5 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? What is hysteresis? ? hysteresis = memory effect Linear system: ẋ = Ax + R tBu and y = Cx y (t) = C exp(tA)x0 + 0 exp (t − τ )A Bu(τ )dτ The linear system does have memory. However, “hysteresis is a genuinely nonlinear phenomenon” M. Brokate and J. Sprekels. Hysteresis and Phase Transitions, Springer–Verlag, New York, USA, 1996. (Page vii) F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 6 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? What is hysteresis? A. Visintin. Differential Models of Hysteresis. Springer–Verlag, Berlin, Heidelberg, 1994. I. Mayergoyz. Mathematical Models of Hysteresis, Elsevier Series in Electromagnetism, New-York, 2003. J. Oh and D. S. Bernstein. Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Transactions on Automatic Control, volume 50, pages 631–645, 2005. K. A. Morris. What is Hysteresis? Applied Mechanics Reviews, volume 64, Article Number: 050801, 14 pages, 2011. F. Ikhouane. Characterization of hysteresis processes. Mathematics of Control, Signals, and Systems, volume 25, pages 294–310, 2013. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 7 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Table of contents 1 Summary of main results M. A. Krasnosel’skiı̌ and A. V. Pokrovskiı̌ J. Oh and D. S. Bernstein F. Ikhouane M. F. M. Naser and F. Ikhouane B. Jayawardhana, R. Ouyang, and V. Andrieu A. Visintin 2 Case study, the semilinear Duhem model Definition and global existence of solutions Consistency Hysteresis loop Dissipativity Numerical simulations 3 4 5 Relationships between concepts Open problems Minor loops F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 8 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? The generalized Duhem model ẋ(t) = f x(t), u(t) g u̇(t) , for almost all t ∈ R+ , (1) x(0) = x0 , (2) y (t) = h x(t), u(t) , ∀t ∈ R+ . (3) u ∈ W 1,∞ (R+ , R) 0 f : Rn × R → Rn×n continuous 0 g : R → Rn continuous and g (0) = 0 h : Rn × R → R continuous Assumption: ∀(u, x0 ) ∈ W 1,∞ (R+ , R) × Rn there exists a unique solution Hs (u, x0 ) = x ∈ W 1,∞ (R+ , Rn ) that satisfies (1)–(2). F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 9 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Set Λ of inputs u : R+ → [umin , umax ] such that (i) u is T –periodic and continuous, (ii) u is C 1 on ]0, α1 [ and ]α1 , T [, and ku̇k < ∞, (iii) u strictly increasing on ]0, α1 [, strictly decreasing on ]α1 , T [, (iv) u(0) = u(T ) = umin and u(α1 ) = umax . 1 Input u(t) 0.8 0.2 0 0 F. Ikhouane (UPC) 1 2 Time t 4 5 The Duhem model and hysteresis 6 MURPHYS-HSFS 10 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Existence of periodic solutions Assumption: ∀u ∈ Λ there exists a unique x0,u ∈ Rn such that Hs (u, x0,u ) is T –periodic. sγ (t) = t/γ. Cu,γ = u ◦ sγ (t), Ho (u ◦ sγ , x0,u◦sγ ) (t) , t ∈ [0, T γ] . ẋ = g1 u̇ A1 x + B1 u + E1 + g2 u̇ A2 x + B2 u + E2 0.7 Output 0.6 x(0) = x0 y = Cx + Du 0.2 0.1 0 0 0.2 0.8 Input F. Ikhouane (UPC) 1 Semilinear Duhem model The Duhem model and hysteresis MURPHYS-HSFS 11 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? A definition of hysteresis ( dk (S1 , S2 ) = max sup η1 ∈S1 ) inf |η1 − η2 | , sup inf |η1 − η2 | . η2 ∈S2 η2 ∈S2 η1 ∈S1 Definition: Ho is a hysteresis if ∀(u, x0 ) ∈ Λ × Rn (i) ∃ a closed curve Cu ⊂ R2 such that limγ→∞ d2 (Cu , Cu,γ ) = 0. (ii) ∃a, b1 , b2 ∈ R with b1 6= b2 such that (a, b1 ) ∈ Cu and (a, b2 ) ∈ Cu . 0.7 0.6 Output 0.5 0.2 γ=1 γ=1 γ = 10 γ = 100 ξ ou 1 0.1 0 0 ξ2 o u 0.2 0.8 1 Input F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 12 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Normalized input u ∈ W 1,∞ (R+ , Rp ) non constant Rt ρu (t) = 0 |u̇(τ )| dτ Iu = Range(ρu ) 1,∞ (I , Rp ) such that ψ ◦ ρ = u. Lemma: ∃!ψu ∈ Wn u u u o kψ̇u kIu = 1 and µ % ∈ Iu | ψ̇u (%) is not defined or |ψ̇u (%)| = 6 1 = 0. Construction of ψu : % ∈ Iu ⇒ ∃t% ∈ R+ such that ρu (t% ) = % u(t% ) independent of the particular choice of t% ψu (%) = u(t% ) F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 13 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Normalized input 2 1 1 u(t) ψ u () 2 −1 −2 0 0 −1 5 t 15 20 −2 0 10 20 30 sγ (t) = t/γ Property: ∀γ ∈ ]0, ∞[, Iu◦sγ = Iu and ψu◦sγ = ψu . F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 14 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Class of operators H : W 1,∞ (R+ , Rp ) × Ξ → L∞ (R+ , Rm ) causal ∀t ∈ [0, τ ], u1 (t) = u2 (t) ⇒ ∀t ∈ [0, τ ], [H (u1 , x0 )] (t) = [H (u2 , x0 )] (t) Assumption CICO: u constant on [θ, ∞[⇒ H (u, x0 ) constant on [θ, ∞[ All rate-independent systems satisfy the assumption: Preisach, Prandtl, backlash, Duhem model and its special cases: Dahl model, LuGre model, Bouc-Wen model, etc. Some rate-dependent models satisfy: the generalized Duhem model. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 15 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Normalized output Lemma: ∃!ϕu ∈ L∞ (Iu , Rm ) such that ϕu ◦ ρu = H (u, x0 ) kϕu kIu ≤ kH (u, x0 )k If H (u, x0 ) is continuous on R+ , then ϕu is continuous on Iu and kϕu kIu = kH (u, x0 )k Construction of ϕu : Let % ∈ Iu , then ∃t% ∈ R+ such that ρu (t% ) = %. [H (u, x0 )] (t% ) independent of t% , ϕu (%) = [H (u, x0 )] (t% ) F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 16 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Consistency u ◦ sγ (t), [H (u ◦ sγ , x0 )] (t) , t ∈ R+ = ψu (%), ϕu◦sγ (%) , % ∈ Iu Su,γ = Definition: H is consistent with respect to (u, x0 ) if ∃ϕ?u ∈ L∞ (Iu , Rm ) such that limγ→∞ kϕu◦sγ − ϕ?u kIu = 0 Consistency ⇒ limγ→∞ dp+m S̄u,γ , S̄u? = 0 Su? = ψu (%), ϕ?u (%) , % ∈ Iu F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 17 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Consistency H : W 1,∞ (R+ , Rp ) × Ξ → L∞ (R+ , Rm ) ∩ C 0 (R+ , Rm ) causal, satisfies Assumption CICO, is consistent w.r.t all (u, x0 ) ∈ W 1,∞ (R+ , Rp ) × Ξ Proposition (canonical decomposition): H = H? + H† H? (u, x0 ) = ϕ?u ◦ ρu satisfies H? (u ◦ sγ , x0 ) = H? (u, x0 ) ◦ sγ lim H† (u ◦ sγ , x0 ) = 0 γ→∞ H? = rate-independent component of H H† = nonhysteretic component of H F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 18 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Consistency 1 0.6 0.8 ϕu◦sγ (̺) Input u(t) 0.5 γ=1 γ = 10 γ = 100 γ=∞ 0.2 0.2 0.1 0 0 1 2 Time t F. Ikhouane (UPC) 4 5 6 0 0 1 2 4 5 6 ̺ The Duhem model and hysteresis MURPHYS-HSFS 19 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Strong consistency H is consistent w.r.t (u, x0 ) Define ϕ?u,k ∈ L∞ [0, ρu (T )] , Rm by ϕ?u,k (%) = ϕ?u ρu (T ) k + % , ∀% ∈ [0, ρu (T )] Definition: H is strongly consistent with respect to (u, x0 ) if ∃ϕ◦u ∈ L∞ [0, ρu (T )] , Rm such that limk→∞ kϕ?u,k − ϕ◦u k[0,ρu (T )] = 0 hysteresis loop of H w.r.t (u, x0 ) Gu = ψu (%) , ϕ◦u (%) , % ∈ [0, ρu (T )] F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 20 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Strong consistency 0.6 0.6 ϕ⋆u,k(̺) ϕ◦u (̺) 0.5 k=0 k=1 k=2 k=∞ 0.2 0 0 0.5 F. Ikhouane (UPC) ̺ 1.5 0.2 0.1 0 0 0.2 2 The Duhem model and hysteresis 0.8 1 ψu (̺) MURPHYS-HSFS 21 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Non-trivial hysteresis loop H has a nontrivial hysteresis loop w.r.t (u, x0 ) if (i) and (ii) hold. (i) H strongly consistent w.r.t (u, x0 ) (ii) µ %1 ∈ Iu | ∃%2 ∈ Iu such that ψu (%1 ) = ψu (%2 ) and ϕ◦u (%1 ) 6= ϕ◦u (%2 ) 6= 0. H has a trivial hysteresis loop w.r.t (u, x0 ) if (i) holds and (ii) does not 0 H = H? + H† lim H† (u ◦ sγ , x0 ) = 0 ϕ◦u (̺) −0.2 γ→∞ H† = nonhysteretic component of H −0.8 −1 0 0.2 0.8 1 ψu (̺) F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 22 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Experimental observations umax,2 Major loop umax,1 ϕ◦u (̺7 ) ϕ◦u (̺2 ) umin,2 Minor loop ϕ◦u (̺6 ) umin,1 0 ̺6 ̺1 ̺2 ̺5 ̺3 ̺7 ̺4 ψu (̺2 ) = umin,2 ψu (̺1 ) = umax,1 M. Hamimid, S. M. Mimoune, M. Feliachi, K. Atallah. Physica B, 451 (2014), pp. 16–19. F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 23 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Formal definition H : W 1,∞ (R+ , R) × Ξ → L∞ (R+ , Rm ) ∩ C 0 (R+ , Rm ) causal and satisfies Assumption CICO. H consistent w.r.t all (u, x0 ) ∈ W 1,∞ (R+ , R) × Ξ H strongly consistent w.r.t all periodic inputs u ∈ W 1,∞ (R+ , R) and all x0 ∈ Ξ. Assumption: ∀(u, x0 ) ∈ Mumin,1 ,umin,2 ,umax,1 ,umax,2 ,α1 ,α2 ,α3 ,T × Ξ we have ϕ◦u (%1 ) = ϕ◦u (%5 ) F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 24 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Semi-linear Duhem model 1 0.8 0.8 ϕ◦u (̺) ψu (̺) 0.7 0.5 0.2 0 0 2 4 6 ̺ F. Ikhouane (UPC) 8 10 0.4 0 0.2 0.8 1 ψu (̺) The Duhem model and hysteresis MURPHYS-HSFS 25 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? Modeling versus Control Conjecture: the Duhem model does not reproduce the behavior of experimental minor loops Control: a precise model is not important as long as the control law is robust F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 26 / 27 Introduction Outline Oh and Bernstein Ikhouane Minor loops Parasitic or symbiotic? THANK YOU! F. Ikhouane (UPC) The Duhem model and hysteresis MURPHYS-HSFS 27 / 27
© Copyright 2026 Paperzz