1 Chem 1000A Midterm 2 – Spring 2004 - Solutions A March 12th, 2004: 8:00 to 8.50 am Your name _______________ Instructor: Dr. M. Gerken Student ID _______________ Time: 50 min No. of pages: 5 +1 Report all your answers using significant figures. Use SI units and show all units and their conversions throughout your calculations. Q1 Q2 Q3 Q4 Q5 Total Percent 6.5 13.5 8 10.5 1.5 40 100 % Question 1 (6.5 Marks) Balance the following redox reaction in a basic aqueous solution and show that the final equation has the correct electron, material, and charge balance. Show as many steps as possible. (note: N2H4 is hydrazine: H2N-NH2) MnO4- + N2H4 → MnO2 + N2 Mn+VIIO-II - + N-II2H+I4 → Mn+IVO-II2 + N02 oxidation half-reaction (unbalanced): N2H4 → N2 reduction half-reaction (unbalanced): MnO4- → MnO2 principle element balance: oxidation half-reaction (unbalanced): N2H4 → N2 reduction half-reaction (unbalanced): MnO4- → MnO2 oxygen balance: oxidation half-reaction (unbalanced): N2H4 → N2 reduction half-reaction (unbalanced): MnO4- → MnO2 + 2H2O hydrogen balance (basic solution): oxidation half-reaction (unbalanced): 4OH- + N2H4 → N2+ 4H2O reduction half-reaction (unbalanced): 4 H2O + MnO4- → MnO2 + 2H2O + 4OHInserting electrons: oxidation half-reaction (balanced): 4OH- + N-II2H4 → N02+ 4H2O + 4e- |×3 reduction half-reaction (balanced):3e- +4 H2O + Mn+VIIO4- → Mn+IVO2 + 2H2O + 4OH-|×4 electron balanced oxidation half-reaction (balanced): 12OH- + 3N2H4 → 3N2+ 12H2O + 12ereduction half-reaction (balanced): 12e- +16 H2O + 4MnO4- → 4MnO2 + 8H2O + 16OH combination: 12OH- + 3N2H4 +16 H2O + 4MnO4- +12e- → 4MnO2 + 8H2O + 16OH – +3N2+ 12H2O + 12esimplification: 3N2H4 + 4MnO4- → 4MnO2 + 4H2O + 4OH- +3N2 material balance: 12H, 16O, 6N, 4Mn |4Mn, 6N, 16O, 12H charge balance: (4-) |4correct electron, material, and charge balance! 2 Question 2 (13.5 Marks) In a complete combustion of 1.569 g of a diole (CxHyOz), 2.225 g of CO2 and 1.366 g of H2O is produced. (a) Write the balanced reaction equation. CxHyOz + (2x + y/2 – z)/2 O2 → xCO2 + y/2 H2O Or 2C2H6O2 + 5O2 → 4CO2 + 6H2O (b) Determine the empirical formula for this diole. M(CO2) = 44.0098 g/ mol; M(H2O) = 18.01534 g/mol n(H2O) = 1.366 g/(18.01534 g/mol) =0.07582 mol n(CO2) = 2.225 g/(44.0098 g/ mol) = 0.05056 mol n(H) = 0.07582 mol H2O × 2 mol H/1 mol H2O = 0.1516 mol H n(C) = 0.05056 mol CO2× 1 mol C/1 mol CO2 =0.05056 mol C m(H) = 0.1516 mol ×1.0079 g/mol =0.1528 g m(C) = 0.05056 mol × 12.011 g/mol =0.6073 g m(O) = m (acid = CxHyOz) – m(H) – m(C) = 1.569 g -0.1528 g – 0.6073 g = 0.809 g n(O) = 0.809 g/(15.999 g/mol) = 0.0506 mol n(C) : n(H) : n(O) = 0.05056 mol: 0.1516 mol : 0.0506 mol = 1 : 2.998 : 1.000 ≈1:3:1 empirical formula: CH3O (c) The molar mass of the diole has been determined to be 62.1 g/mol. What is the molecular formula of this diole. molar mass of CH3O: M(CH3O) = 31.034 g mol-1 experimental molar mass: M(diole) = 62.1 g mol-1 molecular formula of the diole: C2H6O2 (d) You burn (assume complete combustion) 2.152 g of this diole. What is the volume (in m3 and L) of CO2(g) that is produced at 683 Torr and 25.23 °C? M(C2H6O2) = 62.067 g/mol; n(C2H6O2) = 2.152 g/(62.067 g mol-1) = 0.03467 mol n(CO2) = 0.03467 mol diole × 4mol of CO2/2mol of diole = 0.06934 mol CO2 CO2 is a gas, therefore, you can use pV = nRT; p = 683 Torr × (101325 Pa/760Torr) =91100 Pa; T = (25.23 +273.15)K = 298.38 K V = nRT/p = 0.06934 mol × 8.3145 J mol-1 K-1 ×298.38 K/( 91100 Pa) = 1.89 ×10-3 J/Pa = 1.89 ×10-3 (kg m2 s-2 )(kg-1m s2) = 1.89 ×10-3 m3= 1.89 L 3 Name _________________________ Student ID _________________ Question 3 (8 Marks) Determine the oxidation states in the following compounds. Indicate the oxidation states of all elements in the Lewis structure. (a) S2F2 .. :S .. :F .. S.. : .. F..: F-I-S+I-S+I-F-I (b) I3.. .. .. : I ..I I : .. _.. .. I0-I-I-I0 (c) CH3NO2 H .. O: H C N .. _ + O: .. H H .. _ O .. : H C N + O: .. H (H+I)3C-II-N+III(O-II)2 Question 4 (10.5 Marks) NO reacts with oxygen to NO2. NO(g) + O2(g) → NO2(g) You fill 792 Torr of NO in a 1.523 L vessel at 25.35 °C. You add 0.0456 mol of O2 to the vessel. (a) Balance the reaction equation. 2NO(g) + O2(g) → 2NO2(g) (b) What type of reaction is this reaction. This reaction is a redox reaction. 4 (c) Calculate the partial pressures (in Pa and Torr) of NO and O2 at the beginning of the reaction. The partial pressure of NO is 792 Torr since p(NO) does not change upon addition of a second gas. p(NO) = 792 Torr × 101325 Pa/760 Torr = 106000 Pa For oxygen: pV=nRT; T = (25.35 + 273.15)K= 298.50 K; V = 1.523 L × 1 m3/(1000 L) = 1.523 ×10-3m3 p(O2) = nRT/V = 0.0456 mol ×8.3145 J mol-1 K-1 ×298.50 K/(1.523 ×10-3m3) = 74300 J m-3 = 74300 kg m2 s-2 m-3= 74300 kg m-1 s-2= 74300 Pa × 760 Torr/101325Pa = 557 Torr (d) Which reactant is the limiting reagent? T and V are constant (25.35 °C and 1.523 L), therefore, p and n are proportional to each other. p(NO)/(O2) = 792 Torr/557Torr = 1.42 The reaction stoichiometry specifies that two molecules of NO are required for each O2 molecule; in this experiment only 1.42 molecules are present for every O2 molecule. Therefore, NO is the limiting reagent. (e) Calculate the pressure of NO2 (in Torr) after the complete reaction. You generated the same number of moles of NO2 as the number of moles of NO consumed. The pressure of NO2 after the complete reaction is the same as the partial pressure of NO. 106000 Pa and 792 Torr or pV=nRT; p(NO) = 106000 Pa; T = 298.50 K; V = 1.523 ×10-3m3 n(NO)=pV/RT = 106000 Pa×1.523 ×10-3m3/(8.3145 J mol-1 K-1 ×298.50 K) = 0.0650 Pa m3 J-1 mol = 0.0650 kg m s-2 m3 kg-1 m-2 s2 mol= 0.0650 mol n(NO2) = 0.0650 mol NO × 1 mol NO2/1mol NO = 0.0650 mol NO2 p(NO2) = nRT/V = 0.0650 mol ×8.3145 J mol-1 K-1 ×298.50 K/(1.523 ×10-3m3) = 106000 J m-3 = 106000 kg m2 s-2 m-3= 106000 kg m-1 s-2= 106000 Pa × 760 Torr/101325Pa = 792 Torr 5 Name _________________________ Student ID _________________ Question 5 (1.5 Marks) Define the temperature of a gas with respect to the energy of the gas particles. In a gas at equilibrium, the gas particles have a distribution of energies, i.e., Boltzmann distribution. The maximum of a Boltzmann distribution curve/the average kinetic energy of the gas particles is a measure of the temperature of a gas. 6 Name _________________________ Student ID _________________ Prefixes Pico, p 10-12; nano, n 10-9; micro, µ 10-6 ;milli, m 10-3; centi, c 10-2; deci, d Fundamental Constants Avogadro's number 6.022 × 1023 mol-1 Proton mass -19 Neutron mass Elementary charge, e 1.6022 × 10 C Electron mass 9.1095 × 10-28 g molar volume of gases at STP -1 -1 Gas constant, R 8.314 J K mol m m 3RT n= ; ρ = ; pV = nRT ; Ptot = ∑ p i ; pi = X i ⋅ Ptot ; u 2 = u rms = V M M i Physical quantity Unit Symbol Definition Frequency, f or ν Energy , W or E Force, F Pressure, p hertz joule newton pascal 10-1; kilo, k 103 1.67252 × 10-24 g 1.6749 × 10-24 g 22.414 L/mol s-1 kg m2 s-2 J m-1 = kg m s-2 N m-2 = kg m-1 s-2 Hz J N Pa Temperature: 0 K = -273.15 °C; 0 °C = 273.15 K Pressure: 1 atm = 760 Torr = 760 mmHg = 1.01325 bar = 101325 Pa; 1 bar = 105 Pa Volume: 1 mL = 1 cm3; 1 L = 1000 cm3 = 1 dm3 = 0.001 m3 Chem 1000 Standard Periodic Table Electronegativities in [ ] 1 1.0079 1H 18 4.0026 2He hydrogen [2.1] 6.941 2 13 14 15 16 17 helium 9.0122 10.811 12.011 14.0067 15.9994 18.9984 20.1797 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg magnesium lithium berrylium [1.0] [1.5] 22.9898 24.3050 sodium [1.0] 39.0983 19K [1.2] 40.078 3 4 5 6 7 8 9 10 11 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.693 63.546 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu potassium calcium scandium titanium vanadium chromium manganese iron [1.6] [0.9] [1.0] [1.3] [1.4] [1.5] [1.6] [1.7] 87.62 88.9059 91.224 92.9064 95.94 (98) 85.4678 101.07 37Rb 38Sr rubidium strontium [0.9] [1.0] 132.905 137.327 55Cs cesium [0.8] (223) 87Fr francium [0.8] 39Y 40Zr 41Nb yttrium zirconium niobium [1.3] [1.4] [1.5] 178.49 180.948 56Ba La-Lu 88Ra Ac-Lr barium [1.0] (226.025) 72Hf 42Mo [1.6] 183.85 73Ta 74W hafnnium tantalum tungsten [1.3] [1.4] [1.5] (266) (262) (261) 104Rf rutherfordium radium [1.0] 43Tc molybdenum technetium 34Se 35Br 36Kr 51Sb 52Te 83Bi silicon [1.8] 72.61 30Zn 31Ga 32Ge germanium 49In 75Re rhenium [1.7] (264) 76Os 78Pt 79Au 77Ir osmium [1.9] (269) iridium [1.9] (268) 150.36 151.965 lanthanum cerium (227.028) (232.038) (231.036) (238.029) (237.048) protactinium 33As 65.39 aluminum [1.5] 69.723 48Cd (145) 92U chlorine [3.0] 79.904 18Ar [2.1] 74.9216 sulfur [2.5] 78.96 17Cl 47Ag platinum [1.8] (271) 93Np 80Hg [1.9] 118.710 50Sn tin [1.8] 207.19 arsenic selenium bromine [2.1] [2.4] [2.8] 121.757 127.60 126.905 antimony tellurium [1.9] [2.1] 208.980 (210) 53I 82Pb 158.925 162.50 164.930 167.26 168.934 173.04 174.967 66Dy 67Ho dysprosium holmium 68Er 69Tm 70Yb 71Lu (244) (243) (247) 94Pu 95Am 96Cm 97Bk uranium neptunium plutonium americium curium (251) (252) erbium (257) 54Xe 86Rn 81Tl terbium (247) krypton [2.9] 131.29 85At thallium [1.6] 65Tb 83.80 84Po mercury [1.7] bismuth polonium astatine [1.8] [1.9] [2.1] 110Ds 157.25 argon xenon [2.3] (222) gold [1.9] lead [1.7] neon iodine [2.5] (210) darmstadtium 60Nd 61Pm 62Sm 63Eu 64Gd praesodymium neodymium promethium samarium europium gadolinium 91Pa 16S 46Pd 144.24 90Th 15P phosphorus 45Rh 109Mt 89Ac 14Si ruthenium rhodium palladium silver cadmium indium [1.6] [1.7] [1.7] [1.8] [1.8] [1.6] [1.6] 186.207 190.2 192.22 195.08 196.967 200.59 204.383 108Hs 59Pr 39.948 13Al gallium [1.7] 114.82 hassium meitnerium 140.908 fluorine [4.0] 35.4527 zinc [1.6] 112.411 107Bh 58Ce oxygen [3.5] 32.066 copper [1.8] 107.868 106Sg 140.115 nitrogen [3.0] 30.9738 nickel [1.8] 106.42 105Db 57La carbon [2.5] 28.0855 cobalt [1.7] 102.906 dubnium seaborgium bohrium 138.906 actinium9 thorium 44Ru 12 boron [2.0] 26.9815 thulium ytterbium lutetium (258) (262) (259) 98Cf 99Es 100Fm 101Md 102No 103Lr berkelium californium einsteinium fermium mendelevium nobelium lawrencium radon
© Copyright 2026 Paperzz