RacingWheelEngineering101 ByDavidSchardtandJimSchardt OnethingistrueofeverycarthatcompetesinSCCA;theyallrideonwheels. Whetherit’sanoriginalMorrisMinirollingon10-inchstampedsteelwheels,ora Porsche911GT3RSwithcenter-lockcarbonfiber21s,weallusewheelsandwe alltendtotakethemforgranted.Butjustasmuchengineeringgoesintoagood setofracingwheelsasintoanyotherpartofthecar. Racingwheelsmustmeetcertainbasicrequirements,andonlyafewoftheseare well-understoodbytheaverageracer.First,aracingwheelmusthavethecorrect rimwidth,offset,centerbore,lugboltpattern,andbrakeclearance.Thatmuch weallknow.Butaracingwheelmustalsobedesignedtoperformforatleast3 raceseasonsor10,000racemileswithoutastructuralfailure. Additionally,racingwheelsshouldalsomeetsomeextrarequirements,including lightweight,highstiffness,resistancetocorrosion,cleanability,repairability,and impactresistance.Ontopofallthat,we’dlikethemtobegood-lookingonthe car,too.That’salottoask,butmostlywejustexpectittohappen. TheLifeofaRacingWheel Manyfactorscanaffectaracingwheel’sfunctionallife.Theaverageracingwheel goesthroughfarmoresetsoftiresthanitsstreet-goingcousins,anditoperates undermuchharsherconditions.Wheellifefactorsincludethebasematerialthe wheelismadefrom,thetypeoftiresused,theweightofthecar,downforce exertedonthewheels,andanydamagethatthewheelmaysuffer.Youalsohave toallowfortheoccasionalmanufacturingormaterialsdefect.We’lllookateach ofthesefactorsinorder. BaseMaterial Materialscurrentlyusedinracingwheelsincludecastaluminum,forged aluminum,magnesium,andcarbonfiber.Ofcoursesteelisstillinuse,too,but exceptinclasseslikeFormulaVee,steelhaslargelybeenreplacedwithalloysin SCCAracing. Wheelmaterialsareselectedforseveralimportantfactors: • Strength–mustbestrongenoughtowithstandrequiredforces • Elongation–highelongationallowsbendinginsteadofbreaking • Fatigueresistance–mustwithstandmanycyclesathighstress • Specificgravity–lowerdensityprovideslowerweightpervolume • Rawmaterialcost–addstofinalprice • Easeofmanufacturing–difficultmanufacturingaddstoprice Figure1detailsthetradeoffsinherentindifferingwheelmaterials.Predictably, wheelswithhighratingsinsomeareashavelessattractiveratingsinothers– usuallyintheformofahighpriceformaterialslikecarbonfiber,forged aluminum,ormagnesium. Illustration1WheelMaterialComparison Tensile Yield Elongation Endurance Specific Cost Strength Strength limit* gravity psi psi % 6061ForgedAl 45,000 40,000 A356castAl/Flowform 29,000 24,000 AZ91T6castmag 40,000 22,000 Carbonfiber 200,000 200,000 Steel1015 60,000 40,000 psi 15 4 6 0 35 14,000 10,000 13,000 150,000 30,000 lbs/cuin $/lb 0.100 1.80 0.100 1.00 0.066 1.70 0.050 15.00 0.280 0.30 *Endurancelimit-materialwillnotfailupto100,000,000cyclesatthisstress Easeof manufacture Easy=1 Difficult=10 6 3 4 10 3 Wheel price range $ 800-1500 100-500 1000+ 2000-3000 25-75 Figure1WheelMaterialsComparison ThematerialslistedinFigure1are6061forgedaluminum,A356castaluminum, AZ91castmagnesium,carbonfiber,and1015steel.Tensileandyieldstrength respectivelyrepresentthestressesinpoundspersquareinch(psi)thatwould causebreakageorstarttodeformthematerial.Elongationdemonstratesthe percentageofstretchthematerialwouldendurebeforebreaking.Anyofthese materialswouldmakeasatisfactorywheel.However,certainmaterialswould allowastronger,lighterwheel,butatahigherpricepoint. Anadditionalwayoflookingatwheelmaterialsistodeterminewhenthematerial willbreakatvariousstresses.Figure2andGraph2showtheexpectedlifecycles ofvariousmaterialsatdifferentstresses. LIFE CYCLES 100,000,000 10,000,000 1,000,000 100,000 10,000 6061 Aluminum STRESS PSI 14000 17000 22000 29000 39000 356A Cast Aluminum STRESS PSI 10000 12000 15000 19000 24000 AZ91 Cast Magnesium STRESS PSI 13,000 14000 16000 18500 21,000 Figure2LifeCyclesvsStress 50000 40000 30000 STRESSPSI 20000 10000 0 LOGSCALE 6061 LIFECYCLES356 AZ91 Graph2LifeCyclesvsStress ThedataisobtainedbyusinganRRMoorerotatingbeamtestmachine,shownin Figure3.Amaterialspecimenismachinedtoastandardsizeandplacedinthe machinewherespecificstressesareapplied,andthenthepartisrotateduntilit breaks.Thenumberofcyclescanthenbeplottedagainstthespecificstress imposed. Figure3–RRMooreRotatingBeamTest TireStresses Wheellifeisdirectlyrelatedtothestressoccurringfromsideforcesgeneratedby tirefriction.Tirescanbeconsideredtofallintothreedifferentclassifications: streettires,DOTracetires,andracingslicks. Streettirescanhaveafrictioncoefficientfrom0.7to1.0dependingonthe treadwearrating.Inthe1970sthetirefrictioncoefficientwasgenerallyinthe rangeof0.7-0.8.However,today’shighperformancetirescanhaveamuchhigher coefficientoffriction.TireRackperformedastudybetween2002and2010to showthecurrentrelationshipbetweentreadwearandtirefrictioncoefficient.The resultsaresummarizedinGraph4. Graph4TireFrictionCoefficientandTreadwear DOTracetiresareanotherstepupfromhighperformancetiresandhavea coefficientoffrictioninthe1.2range.Raceslickscanhaveafrictioncoefficientof 1.5ormoredependingonconstruction,compound,carweight,andcarspeed. Also,notethateventhoughthecoefficientmaybespecifiedasonly1.5bythe manufacturer,carswithdownforcewillhaveanapparentcoefficientwellabove 1.5. CarWeightandDownforceStresses Loadsonthewheelcansignificantlyreducethelifeofawheel.Therearetwo majorloadstoconsider:Staticloadmeasuredwiththecaratrestanddownforce loadfromwingsorbodyshape. Thestaticloadonawheelisnormally1/2theaxleweightattheheaviestendof thecar.Ontheotherhand,downforceloadmustbemeasuredwithonboard sensorsorusingmanufacturer’sdatabecausedownforceiscreatedonlywhen thecarismoving. Staticanddownforceloadswillhavethegreatestinfluenceonwheellifebecause bothloadscombinewiththetirefrictiontoproducethetotalsideforce.Thething torememberisthatadding10%moreloadonthewheelwillcutthewheellifeby 50%. WheelDefectsandDamage Anydefectinthewheelmaterialcancreateapointofcrackpropagation.Porosity inthematerialassmallas0.010inchcancreateanearlyfatiguecrackifitis locatedinahighstressarea.Adentof.040inchinacriticalareacancutthe fatiguelifeinhalf.Awell-manufacturedwheelattemptstoreducetheseeffects byusinglowporositymaterials,removingsharpedges,andbyapplyingan additionalsafetyfactorindesign. Obviously,problemscanoccurifthewheelissubjectedtomanyhighforcecurb orspeedbumpimpacts.Eventhoughthewheelmanynotsustainvisibledamage, thehigherthannormalstressfromafewhundredimpactswillreducethewheel life. DeterminingtheLoadRatingofaWheel Thestandardprocedurefordeterminingtheloadratingofawheelistousethe SocietyofAutomotiveEngineers(SAE)formulafromspecificationJ2530. AlternateproceduresusedaretheJapaneseJWLandGermanTUV,butallof theseusethesameformula. First,thefollowingformulaisusedtocalculatethesideforcesthatwillbeseenon thewheel: S=L[(R*u)+d]/12 Inthisformula,Sisthenumberoffoot-poundsofforceontheaxle. Listhetotalloadonwheelincludingstaticanddownforceinpounds. Ristheradiusofthetireininches. uisthecoefficientoffriction. distheoffsetofthewheelininches. Ifawheelistobeexpectedtohavealifeof10millioncyclesunderhard cornering,thenthestressatanypointinthewheelcannotexceedthestress showninFigure3for10millioncycles.Inthecaseofforged6061,thiswouldbe 17,000psi. Finiteelementanalysiscanbeusedonthewheeldesigntodetermineifthestress wouldexceedthelimit.AtypicalfiniteelementanalysisisshowninFigure4. Figure4FiniteElementAnalysis Buttoverifytheresult,thewheelmustundergoanactualfatiguetesttoconfirm thatthewheelwillnotfail. ThisanalysisisperformedwiththeRotaryorCorneringfatiguetestanditismost importantsincethehigheststressesoccurduringcornering.Inthistest,thewheel isrotatedathighspeedwhileanappropriatestressloadisappliedtotheaxle.But sinceitisnotfeasibletorunatestfor10millioncycles,anacceleratedtestis used.Using356aluminumasanexample,inGraph2itcanbeseenthatifa materiallasts10millioncyclesat12,000psi,itonlylasts100,000cyclesat19,200 psi.So19200/12000=1.6andthefatiguetestisrunapplying1.6timesthestress (S).Ifthewheelpasses100,000cycles,thenitwouldlast10millioncyclesat stressduringuse. Twoadditionaltestsarecommonlyruntoverifyotherstructuralcapabilities. IntheRadialfatiguetestawheel,withatiremounted,issubjectedtotwicethe normalstraightrollingloadforoveramillioncycles.Thistestwillgenerallycreate cracksinthetirebeadseatareaifinadequatelydesigned. TheImpacttest,withtiremounted,isperformedbydroppingaweightonthe edgeoftherim.Thewheelshouldnotdeformorcracktothepointofairloss.In thecaseofawheelratedfor1300pounds,aweightof535poundswouldbe droppedfrom9inches. EffectofRacingTiresandDownforceonLoadRatings Sofar,ourdiscussionondeterminingloadratingshasusedtheformulaforwheels asusedonthestreet.Tireswithalowcoefficientoffrictionandnodownforce havebeenassumed. AllloadratingsplacedonOEMoraftermarketwheelsusetheSAEformulawitha coefficientof0.7andnodownforce.TheSAEformulaisdesignedforstreet wheelsandwasdevelopedover50yearsagowhentirefrictionwascloserto0.7. However,formodernandracingtirestheformulashouldbeadjustedforhigher frictionandaddedweightfromdownforce.Ifthesearenotconsidered,thestress actuallyplacedonawheelcangreatlyexceedthedesignstress. ItshouldbenotedthatGraph2showsthatinthecaseofaluminum,increasing theload(stress)by10-12%willdecreasewheellifeby50%.WhenstressonA356 aluminumisincreasedfrom15,000psito16,500psi,wheellifedropsfrom 1,000,000to500,000cycles.For6061Aluminumthestresschangefrom22,000 psito24,500psialsocutswheellifeinhalf. Foranexample,considerawheelthathasa1,300-poundloadrating,whichis verycommononaftermarketwheels.Theallowabledesignstressofthewheel canbecalculatedusingtheSAEformula,30-inchODtire,and2-inchoffset. S=1300[(15)*(0.7)+2]/12=1354foot-pounds Thisisthemaximumstressthiswheelcouldendureformanycyclesat0.7G. Toseehowtiresaffecttheloadrating,considerchangingthetirestoracetires. Thenewfrictioncoefficientof1.5substitutedintheequationyieldsanadjusted loadrating. 1354=W[(15)*(1.5)+2]/12W=663pounds Similarcalculationsareusedtodevelopthetablebelowshowingtheeffecton loadratingofawheelratedfor1300pounds,30-inchODtire,and2-inchoffset. Fora1300poundload-ratedwheel G Application force psi u Stress Adjustedloadrating withoutdownforce SAESTREETRATINGatWearrating550+ 0.7 1354 1300 AUTOCROSSatWearrating100-200 1 1842 956 DOTRACETIRES 1.2 2167 812 GTRACETIRES 1.5 2654 663 PROTOTYPESandhighdownforce 2.5 4279 411 Illustration5WheelLoadRatingAdjustmentsduetoApplication Adjustedloadrating with100pounds downforce 1200 856 712 563 NA Notethatatthehigherfriction,thestressonthewheelincreasesdramatically andtheloadcarryingcapacityisdiminished.Usingracingslickswoulddropthe loadratingonawheelby50%.Ifthewheelwasusedona3,000-poundcarwith 50/50weightdistributionandDOTracetires,the1,300-poundratingwouldbe sufficient.However,thesamewheelwithracingslickswouldnotbeacceptable becausetheloadratingwouldbereducedto663pounds. Additionally,shouldthesamewheelbeusedonacargenerating100poundsof downforceperwheel,another100poundswouldneedtobedeductedfromthe loadrating. Adjustingtheloadratingofwheelsshouldbeahighpriorityforanyoneusinghigh performancetiresforautocross,racing,ortrackevents. Toassistcustomersinselectingtheproperwheelandtirecombination,ForgeLine adoptedaprogramin2007tolabeleachwheelwithmultipleloadratingsthat dependonthetypetireused.Figure6showstypicalloadratinglabelsforfour differenttypesofwheelswithloadratingsdependentondesignanduse. Figure6LoadRatingTags Althoughthestreetratingonthelabelisshownineachcase,therealloadrating thatdependsontypeoftirebeingusedisalsolisted.ForgeLinewheelsaremade instreetratingsfrom1,300upto2,100poundsinordertoprovidearangeof wheelstoprovidethenecessarywheellifeforlightcarsuptoheavycars.Inthe caseofhighdownforce,evenhigherloadratedwheelsaremade. ApparentCoefficientofFrictionduetoDownforce Whendownforceisaddedtotheequation,theapparentcoefficientoffriction andsideforceonthewheelincreasesdramatically. Forvehiclesgeneratingveryhighdownforce,thetirefrictionisstillintherangeof 1.5.However,onboarddataacquisitionwillrecordmuchhigherreadings. ThereasonforthiscanbeseenbyrunningtheSAEformulawiththedownforce addedtothestaticweightonthewheel.Undertheseconditions,thestress(S)is: S=(W+D)*u Foranexampleusinga3,000-poundcar,50/50weightdistribution,2,000pounds ofdownforce,anduof1.5,thecalculationis: S=(750+500)*1.5=1875foot-pounds Toobtaintheapparentcoefficientoffriction,thestressisequaltothestatic weighttimesthefrictionso: 1875=750*U whereUistheapparentcoefficientoffriction.Theequationworksoutlikethis: U=1875/750=2.5 Inactualconditions,ifdataacquisitionisusedtofindlateralGforces,thatforce shouldbeusedalongwiththestaticweighttocalculatethesideforcestresson thewheel. WhatDoesThisAllMeantoYou? Thisarticlehasprobablydeliveredmoremaththanyoueverexpectedtothink aboutwithrespecttoyourracingwheels.Thebigtakeawayisthatwhenyouare consideringanewsetofwheels,theweightofthewheelisnottheonlyfactor youwanttoconsider.Ataminimum,youmusttakeintoaccounttheweightof yourvehicle,thetypeoftiresbeingusedtomakesuretheloadratinglistedon thewheelistrulyaccurateforyourneeds.Andifyouarerunningasubstantial amountofdownforceyoumaywanttotakethatintoconsiderationaswell.Ifyou alreadyhaveinvestedinwheels,youneedkeeptrackofhowoldyourwheelsare, andhavetheminspectedeverytirechangeforsignsofwearandfatigue.Thecost ofareplacementwheel,orevenawholesetofwheels,isfarlessthanthe potentialcostofawheelbreakingontrack. ##
© Copyright 2026 Paperzz