Hydrogen storage in solids Research phase •Physical storage (adsorption - low T): • Carbon Based materials Zeolites • Self-assembled nano composites/aerogels (foams) • Zeolites (crystalline nano porous materials) • Metal Organic Framework (MOF) • Glass micro spheres • Boron nitride nano tubes • Hydrided amorphous carbon MOF-5 IRMOF-6 IRMOF-8 Source: SCIENCE 300 (16 MAY 2003), pp. 1127, • Hydrogen in hydrates & clathrates The Fuel Cell Review 1:1 (2004), pp. 17-23 47 Hydrogen storage in solids Research phase •Chemical storage: • Bulk crystalline /amorphous materials (multicomponent alloys) • Chemical storage media (methanol, ammonia, etc) • Reversible hydrogenation of organic liquids (CxHyOz): Isopropanol + heat ↔ acetone + Hydrogen <<100% selective catalytic reactions 48 4 8 Why metal hydrides for storage? • Safe (limited amount of free H2) • High vol. capacity • Relative low hydrogen pressure and ambient temperature • Large quantities available • Promising for mobile applications 49 Metal hydrides for hydrogen storage Chemical metal hydrides • • A(H)x + H2O → AOH + H2 (A, B, metals) 2 – 8 wt.% hydrogen Conventional inter-metallic metal hydrides • AxBy + H2 → AxByHz • 1 – 4 wt.% hydrogen • (4d metals) MRS BULLETIN/SEPTEMBER 2002 699-703 50 Metal hydrides for hydrogen storage Magnesium based metal hydrides • • • • Mg + H2 → MgH2 Up to 7.6 wt.% hydrogen Doping, catalysts, preparation methods Tdec = 300°C MgH2 Complex light weight metal hydrides LiBH4 • M(AlH4) alanates, 7- 10 wt.%, Tdec = 100-200°C • M(BH4) borohydrides, 10- 18.5 wt.%, Tdec = 125-350°C 51 Conventional intermetallic metal hydrides Low hydrogen absorption/desorption temperature/pressure More cycles possible High volumetric storage capacity Good hydrogenation kinetics Low gravimetric storage capacity, 1 – 4 wt.% hydrogen Not suited for mobile applications! 52 Magnesium based metal hydrides Up to 7.6 wt.% hydrogen (MgH2) More cycles possible Slow absorption/desorption kinetics Unfavourable thermodynamics for mobile applications: (Tdesorption ~ 300˚C) A lot of research performed: No reversible Mg - based hydrides with low ∆H and high wt.%! 53 Alanates Effective up to 5.6 wt.% hydrogen release Desorption temperature (< 150oC) Desorption is a 2 step process, more cycles possible? (more reactions possible – cyclability?) 3NaAlH4 (7.4 wt. %) ↔ Na3AlH6 + 2Al + 3H2 3.7 wt. % H2 release Na3AlH6 (5.9 wt. %) ↔ 3NaH + Al + 3/2H2 1.9 wt. % H2 release Absorption involves a low T solid state reaction Kinetics problems - catalyst (TiO2) is required 54 Borohydrides High gravimetric storage capacity up to 18.5 wt.% Desorption is a 2 step process Absorption involves a low T solid state reaction High desorption temperature (>250oC) Cyclability is a problem (SiO2 catalyst required) Expensive hydrides (preparation/energy consumption) Source: J-Ph. Soulié, G. Renaudin, R. Cerny, K. Yvon, J. Alloys and Comp. 346 (2002), pp. 200-205 A. Züttel et al., Journal of Alloys and Compounds 356–357 (2003), pp. 515–520 55 Ceramics: Nitride Amides (LiNH2) From Lithium amide (LiNH2) to Lithium imide (Li2NH) reaction Li3N + 2H2 ↔ LiNH2 (8.8 wt.%) + 2LiH LiNH2 + 2LiH ↔ Li2NH + LiH + H2 10.3 wt.% H2, -44.5 kJ/mol Source: Chen P; Xiong Z R; Luo J; Lin J; Tan K L, Nature 420 (21 November 2002), pp. 302-304 56 Amides (LiNiH2) High gravimetric capacity (10.3 wt.%) Multiple reaction processes High desorption temperature Cyclability? Early experimental phase LiNH2 + 2 LiH Li3N Source: Nature 420 (21 November 2002), pp. 302-304 57 Comparison hydrogen storage methods Ref: A. Züttel, “Materials for hydrogen storage”, materials today, September (2003), pp. 18-27 58 Comparison hydrogen storage methods 25 125 C Be(BH 4)2 Gravimetric capacity (wt. %) 20 LiBH 4 Target Mg(BH 4)2 15 Ca(BH4)2 LiAlH 4 10 Mg(AlH 4) 6 wt.% NaAlH4 5 NaBH4 LiNH2+2LIH Ca(AlH4) KBH 4 LiH MgH2 5 bar Mg2FeH6 1 bar LaNi5H6 2 bar Mg2NiH4 4 bar 0 0 50 100 150 200 250 Desorption temperature (C) 59 300 350 400 Interesting metal hydride options www.hydpark.ca.sandia.gov contains data on 2000 hydrides, none of those meeting the targets for automotive application! Reactive metal hydrides: • Combinations of MgH2 + different hydride - (lowering the ∆H by endothermic formation) 2NaH + MgB2 + 4H2 ↔ 2NaBH4 + MgH2 CaH2 + MgB2 + 4H2 ↔ Ca(BH4)2 + MgH2 2LiH + MgB2 + 4H2 ↔ 2LiBH4 + MgH2 ∆H = -64 kJ/mol H2 7.8 wt.% ∆H = -30 kJ/mol H2 8.3 wt.% ∆H = -46 kJ/mol H2 11.5 wt.% G. Barkhordarian et al.: GKSS patent application 2004, G. Barkhordarian et al., J. Alloys Compd. (2006), doi:10.1016/j.jallcom.2006.09.048 J.J. Vajo et al.: patent application 2004, J. Phys. Chem. B 109 (2005) 3719-3722 60 Reactive metal hydrides G. Barkhordarian et al.: GKSS patent application 2004, G. Barkhordarian et al., J. Alloys Compd. (2006), doi:10.1016/j.jallcom.2006.09.048 J.J. Vajo et al.: patent application 2004, J. Phys. Chem. B 109 (2005) 3719-3722 61 Reactive metal hydrides High gravimetric storage capacity ca. ~10 wt.% Low desorption temperature (<125oC) Desorption is a multistep process Absorption involves a low T solid state reaction Cyclability? Still a lot of R&D necessary 62 Solution: High throughput screening of metal hydrides using….. Hydrogenography Source: Adv. Mater. 2007, 19, 2813-2817 Scripta Materialia 56 (2007) 853-858 63 Stability of hydrides: Van’t Hoff plot Source: www.nat.vu.nl/CondMat/griessen 64 Wrapping up: • CO2 free hydrogen can be made from fossil fuels if centralised • Pressurised gas @ 700 bar is a viable/already available option for storage • Light metal hydrides are not yet suitable for mobile applications and a lot of R&D is still necessary (not all options investigated) • Stationary applications are very well possible (heavy) • The existing storage options still do not comply to all long term goals: • Realistic goals as to temperature, driving range, size?? • Car concept?? 65 The advantage of metal hydride storage ?? A. Zuttel 66 Gasoline Mg2FeH6 LaNi5H6 H2 (liquid) H2 (350 bar) 32 MJ/ltr 18 MJ/ltr 10 MJ/ltr 8 MJ/ltr 2.4 MJ/ltr Synthetic fuels?? • Reverse Water Gas Shift CO2 + H2 ↔ H2O + CO • From waste CO2 and durable H2 we obtain durable syngas, ready for Fischer-Tropsch based synthetic fuels. 67 Thinking about the future of energy….. Sponsors: Co-workers: The group Hydrogen Production and Carbon Capture at ECN The group Membrane Separations at ECN The group Materials for Energy Conversion and Storage at TU Delft The group 3ME at TU Delft 68
© Copyright 2026 Paperzz