The Role of Inner Core Moisture in Tropical Cyclone

TheRoleofInnerCoreMoistureinTropicalCyclonePredictabilityandPracticalForecastSkill
KerryEmanuel1
LorenzCenter
MassachusettsInstituteofTechnology
Cambridge,Massachusetts
FuqingZhang
DepartmentofMeteorologyandAtmosphericScience,andCenterforAdvancedData
AssimilationandPredictabilityTechniques,ThePennsylvaniaStateUniversity,UniversityPark,
Pennsylvania
Revised
April,2017
1
Corresponding author address and email: Rm 54-1814, MIT; 77 Massachusetts Avenue, Cambridge,
MA 02139. Phone: 617-253-2462. Email: [email protected] .
1
Abstract
1
Errorsintropicalcycloneintensityforecastsaredominatedbyinitialconditionerrorsouttoat
2
leastafewdays.Initializationerrorsareusuallythoughtofintermsofpositionandintensity,
3
buthereweshowthatgrowthofintensityerrorisatleastassensitivetothespecificationof
4
innercoremoistureastothatofthewindfield.Wediscussimplicationsofthisfindingfor
5
tropicalcycloneobservationalstrategiesandforoverallpredictabilityofstormintensity.
2
6
1. Introduction
7
Predictionoftropicalcycloneintensityremainsasignificantchallenge,withlittle
8
improvementinforecastskilloverthepastfewdecades(DeMariaetal.,2014).Thislackof
9
improvementhasbeenattributedtoavarietyoffactors,frominadequateobservationsofthe
10
atmosphereandupperocean,tolackofabilitytoassimilateobservations,tomodelerrors,but
11
inrecentyearstherehasbeenaconcertedefforttoimproveintensityforecasts(Galletal.,
12
2013).
Inarecentlypublishedpaper(EmanuelandZhang,2016),theauthorsattemptedto
13
14
quantifytheintrinsicpredictabilityoftropicalcycloneintensityandtodistinguishthevarious
15
causesoflossofpredictability,usingaperfectmodelframeworktoisolatetheintrinsic
16
predictability.Theyshowedthatforecastintensityerrorouttoafewdaysisdominatedby
17
errorsintheinitialwindfield,afterwhicherrorsinforecastingthelarge-scaleenvironment
18
begintodominatethroughtheireffectsonthetrackofandwindshearexperiencedbythe
19
storms.Theyalsoprovidedevidencethatthereremainsasignificantgapbetweenoperational
20
intensityforecastskillandskillthatistheoreticallyachievablegivenoptimisticestimatesof
21
tropicalcycloneinitialconditionspecificationandoflarge-scaleenvironmentalpredictionskill.
22
Inthatwork,thewatervaporcontentoftheinnercoreofthetropicalcyclonemodelwas
23
heldfixedbetweenthecontrolandperturbationexperimentsandsowasnotconsideredasa
24
sourceofforecasterror.Herewefocusontheimportanceofthecorrectinitializationofinner
25
coremoisture.
3
26
Hereweusetheterm“innercore”somewhatlooselytodenotethebroadregionofascent
27
thatincludestheeyewallandweakerbutdeepconvectionjustoutsideit,butdoesnotinclude
28
theeyeitself(ifthereisone)ortheregionofmoreisolatedspiralbandsfurtherawayfromthe
29
center.Inidealizednumericalsimulationsthatbeginwithaweakcyclonicdisturbancenearthe
30
surface,storm-scaleascentoccursinsidetheradiusatwhichtheradialmassfluxpeaks,andthis
31
radiuscouldbeused,thoughnotwithoutsomeambiguity,toseparatetheinnercorefromthe
32
outerregion,whiletheeyecouldbeidentifiedwithweakdescentinsidetheeyewall.
33
Thereareabundantreasonstofocusoninnercoremoisture.Emanuel(1989)
34
demonstrated,usingasimplebalancedaxisymmetrictropicalcyclonemodel,thattheinner
35
core,definedasintheprecedingparagraph,hadtobenearlysaturatedbeforeintensification
36
bysurfacefluxescouldbegin.Heshowedthatevensmalldegreesofsubsaturationresultedin
37
convectivedowndrafts,drivenbyevaporationofrain,thatimportlowentropyairintothe
38
subcloudlayerandtherebynegatethetendencyofsurfacefluxestoincreasesubcloudlayer
39
entropy.
Moistureoutsidewhatweareherereferringtoastheinnercoreisalsoimportanttostorm
40
41
intensity,especiallywhenenvironmentalshearispresent.Iftheshearisstrongenough,lower
42
moiststaticenergyoutsidethecorecanbeadvectedintothecore,inaprocessthatisknownas
43
“ventilation”(TangandEmanuel,2010).Butthishappensonanadvectivetimescale,sothat
44
moistureanomaliesfarfromthestormcentertakesometimetoinfluencethecore,whereas
45
initialerrorsininnercoremoisturehaveanalmostimmediateeffect.Whileweherefocuson
46
innercoremoistureanomalies,wedonotclaimthatanomaliesoutsidethecoreare
47
unimportant,particularlyatlongerleadtimes.
4
Rappinetal.(2010)usedtheWeatherResearchandForecasting(WRF)modeltoperform
48
49
three-dimensionalsimulationsoftropicalcyclogenesisathigh(convectionpermitting)
50
horizontalresolution.Theyalsodemonstratedthatsurfaceintensificationofvorticesbegins
51
onlyifandwhenamesoscalecolumninthestorm’scorebecomesnearlysaturated.Beforethat
52
happens,orinfailedcasesofgenesis,convectivedowndraftsquenchanytendencyofenhanced
53
surfaceenthalpyfluxestoincreaseboundarylayerentropy,eventhoughamesocyclonealoft
54
mayintensifybyevaporationandmeltingoffallingprecipitation.
55
Morefundamentally,PauluisandHeld(2002)showedthatinordinaryradiative-convective
56
equilibrium,theoverallirreversibleentropyproductioninthesystemislimitedbytheradiative
57
exportofentropytospace,andthatthegreatmajorityofthislimitedtotalentropyproduction
58
isusedupinmixing(diffusion)acrossstronggradientsofwatervapor,leavingverylittlefor
59
kineticenergydissipation.Totransitiontoastatehavinglargedissipationofkineticenergy,as
60
withtropicalcyclones,theremustbeadrasticreductioninentropyproductionbymixingacross
61
watervaporgradients.Thiscanonlyhappenifthemoistconvectiontakesplaceinnearly
62
saturatedair,sothatthereislittlemixingofdryairintoclouds.
Evenwhenatropicalcyclonedoesdevelop,itremainssusceptibletomixingofdryairinto
63
64
thecore,asfirstsuggestedbySimpsonandRiehl(1958).TangandEmanuel(2010)showed
65
quantitativelyhowventilationofthetropicalcyclonecorereducesthestorm’sintensity,and
66
thattoomuchventilationwilldestroyitaltogether.ThisisconsistentwithPauluisandHeld’s
67
(2002)observationthatentropyproductioniseasilydominatedbymixingofdryandmoistair,
68
subtractingfromthatwhichcouldbeusedforkineticenergydissipation.
5
Itstandstoreason,therefore,thattherateofintensificationoftropicalcyclonesissensitive
69
70
tothedegreeofsubsaturationoftheinnercore,wheretheeyewallconvectionoccurs.Inthe
71
simpleCoupledHurricaneIntensityPredictionSystem(CHIPS;Emanueletal.,2004),used
72
routinelytopredicttropicalcycloneintensityinnearrealtime2,theinnercoremoistureis
73
initializedbymatchingtheinitialrateofintensitychangetotheobservedchangeofintensity
74
overthehistoryofthestormtodate.Failuretoinitializetheinnercoremoistureproperlyyields
75
largeforecasterrors,eveniftheinitialmaximumwindspeedisfreeoferror.
Ourpurposehereistoquantitativelyassesstheinfluenceofinitialinnercoremoisture
76
77
errorsontropicalcyclonepredictionskill.Wetakethreeapproachestothis.First,weexaminea
78
singlecasestudy:HurricaneJoaquinof2015.Usingafull-physicsWRFmodel(Skamarocketal.
79
2008)andanensemble-baseddataassimilationsystem(Zhangetal.2009;WengandZhang
80
2012,2016)weproduceseverallargeensemblesofforecaststhatdifferintheirinitializationof
81
innercoremoistureeitherwithorwithoutinitialdifferenceinwindspeed,whilekeepingthe
82
environmentalinitialconditionsandboundaryconditionsthesameforallensemblemembers.
83
WerepeatthisexerciseusingthesimpleCHIPSmodel.Second,weextendtheworkofEmanuel
84
andZhang(2016)toincludeinitialinnercoremoistureperturbations,comparingtheirgrowth
85
tothegrowthoferrorfromothersourcesinaperfectmodelframework.Finally,weintroducea
86
newtoyintensitymodel,consistingofapairofordinarydifferentialequations,designedto
87
mimicthebehaviorofthefullCHIPSmodel,andusethistoassesserrorgrowthinasimple
88
forecastsystem.
2
http://wind.mit.edu/~emanuel/storm.html
6
89
2. Sensitivitytoinnercoremoisture:Acasestudy
90
Webeginwithasinglecaseasanexampleofthesensitivityofintensityforecaststoinitial
91
innercoremoisture.ThecaseinpointisAtlanticHurricaneJoaquinof2015.Joaquindeveloped
92
eastoftheBahamasonoraboutSeptember27thanddriftedslowlysouthwestward,turning
93
backnortheastwardonOctober2nd.Itintensifiedveryrapidlybeginningatabout12GMTon
94
September29th,adevelopmentthattheNationalHurricaneCenterforecastandmostobjective
95
guidanceproductsfailedtoanticipate,asshowninFigure1.Moreremarkableisthelarge
96
spreadinforecastintensities.At12GMTonOctober3rd,whenthestormreacheditspeak
97
intensityof135kts,forecastintensitiesrangedfrom60to140kts.Thisisgoodexampleofthe
98
largeuncertaintyandlowskillcurrentlyassociatedwithtropicalcycloneintensityforecasts.
99
Tragically,inthiscase,failuretoanticipatetherapiddevelopmentandhighintensityachieved
100
byJoaquinmayhavebeenamongthefactorsleadingtothelossoftheshipElFarowithall
101
hands.
a. WRFmodelsimulations
102
103
ConsistentwiththeoperationalpredictiondisplayedinFigure1,theensembleforecasts
104
basedontheWeatherResearchandForecasting(WRF)modelversion3.5.1(Skamarocketal.
105
2008)initiatedwiththeensembleKalmanfilter(EnKF)analysisperturbationsat12GMT29
106
September2015fromthePennsylvaniaStateUniversity(PSU)experimentalreal-time
107
convection-permittinghurricaneanalysisandforecastsystemproducedalargeensemble
108
spread,consistentwiththelargeerrorsinJoaquin’sintensityforecasts,aswellasthelarge
109
divergenceamongtheensembletrackforecasts(notshown).Thereal-timePSUWRF-EnKF
7
110
system(WengandZhang2016)useda60-memberensemblewiththefinestgridspacingof3
111
kmthatassimilatednon-radianceconventionalobservationsplusreconnaissanceairborne
112
dropsondeandflight-levelobservationsforJoaquin.
Toseparatetheinfluenceoftheinner-coreversusenvironmentalconditionson
113
114
Joaquin’sintensityforecastuncertainties,weperformedaWRF-basedensembleforecast
115
experimentthatissimilartothereal-timePSUWRF-EnKFensembleexceptforusingonlythe
116
real-timeensembleperturbationsintheinner-coreregion(withinaradiusof300km)while
117
relocatingthecenterofeachmember’sinitialvortextothePSUWRF-EnKFanalysismean
118
position.Theenvironmentalconditions(outsidearadiusof600kmfromthevortex)arethe
119
sameinallmembersandareinterpolatedfromtheNCEPoperationalGlobalForecastSystem
120
(GFS)analysis.Linearinterpolationisappliedtoeachmemberforradiibetween300and600
121
km,assigningadecreasingweight(from1to0)tothereal-timeWRF-EnKFinitialensemble
122
perturbationsandanincreasingweight(from0to1)totheGFSanalysis.Themeanand
123
ensemblespread(intermsofstandardderivation)oftheazimuthallyaveragedtangentialwind
124
andrelativehumidityareshowninFigure2.Thespreadinsurfaceazimuthalwindreaches
125
peakvaluesofabout 10 ms -1 whiletherelativehumidityspreadreachesapeakamplitudeof
126
around16%nearthestormcenterinthemiddletouppertroposphere.Butnotethatthe
127
largesthumidityperturbationsareintheunsaturatedeyeregionandprobablydonothave
128
mucheffectonsubsequentintensification.Wewilladdressthisissuepresently.
129
8
ThisnewWRFensemblesimulationwithonlyinitialinner-coreperturbations
130
131
reproducedtheintensityforecastuncertainties(Figure3)butasweusedthesameGFS
132
environmentalconditionsforeachensemblemember,thereislittleforecastdivergenceinthe
133
ensembletracks(notshown),implyingthatatleastforthisforecastinitializationtimeof
134
Joaquin,thetrackforecastisprimarilyinfluencedbythelarge-scaleenvironment(tobe
135
examinedinaseparatestudy),whiletheintensityforecastispredominantlydeterminedbythe
136
initialinner-coredynamicandthermodynamicconditions.
Toisolatetheinfluenceofinner-coremoistureabovethehurricaneboundarylayer,we
137
138
performtwootherensembleexperiments,identicaltothatillustratedinFigure3butone
139
retainingonlymoistureperturbations(Figure2,right)andtheotherretainingonlymoisture
140
perturbationsonlyabovetheboundarylayer(usingalineartransitionzonefromzero
141
perturbationat900mbtofullperturbationat850mb)andoutsideoftheeye(fromzero
142
perturbationsat25kmradiustofullperturbationsat50km).TheresultsareshowninFigures4-
143
5.Thesetwoadditionalensembleexperimentsdemonstratethatwhileinitialinner-coreinitial
144
vortexintensityperturbationsarestronglyinfluential,thereareconsiderableuncertaintiesin
145
thehurricaneintensityforecastwithonlyinner-coremoistureperturbations(Figure4).
146
Moreover,evenretainingtheinner-coremoistureperturbationsonlyabovetheboundarylayer
147
andoutsidetheeyewillleadtoconsiderableintensityspread(Figure5).Anotherensemble
148
experimentthesameasinFigure5exceptforretainingonlytheboundarylayermoisture
149
perturbationsshowsasimilarlevelofinfluenceonhurricaneintensity(notshown).
Sensitivityoftropicalcycloneintensitytoinitialmoistureuncertaintieswasalsoinvestigated
150
151
throughreal-datafull-physicsconvection-permittingensemblesimulationsinSippelandZhang
9
152
(2008,2010),ZhangandSippel(2009)andMunselletal.(2013,2015),thoughnoneofthese
153
previousstudiesexclusivelyfocusedonrealisticinner-coremoistureonlyperturbations.
154
Meanwhile,recentlyidealizedfull-physicsWRFsimulations(ZhangandTao2013,Taoand
155
Zhang2015)alsoshowedthattheintensityforecastcanbeintrinsicallylimited(especially
156
duringthedevelopmentstage)evenifonlyperturbedwithminute,unobservableboundary
157
layermoistureuncertaintiesformoderatelyshearedtropicalcyclones,thoughaconstant
158
environmentalconditionwilleventuallygrowtheensemblememberstosimilarintensityafter
159
rapidintensification.
160
161
b. CHIPSsimulations
162
CHIPS(Emanueletal.,2004)isasimple,axisymmetric,quasi-balancedtropicalcyclone
163
modelphrasedinangularmomentumcoordinatesandcoupledtoasimple,one-dimensional
164
upperoceanmodelthatallowsforthephysicsofstorm-inducedverticalmixing.CHIPShasbeen
165
usedforabout15yearstomakereal-timeforecastsoftropicalcycloneintensityglobally.The
166
forecaststhemselveshavebeenarchived,togetherwithkeyenvironmentalparametersalong
167
theforecasttrack;theseincludepotentialintensityandverticalshearofthelarge-scale
168
horizontalwind.Inrecentyears,wehaveruna7-memberensembledefinedbyperturbingthe
169
initialintensityandinnercoremoisture,andpredictedenvironmentalwindshear.Thecontrol
170
forecastforJoaquinmadeat12GMTon29September2015isshowninFigure1.
Afteraparticulareventhasoccurred,weroutinelyre-runtheCHIPSmodelusingthe
171
172
observed(ratherthanforecast)trackandtheoperationallyanalyzedwindshearandpotential
10
173
intensityalongthetrack.Thisallowsustominimizeerrorsourcesrelatedtoincorrectlyforecast
174
trackandwindshearsoastofocusonmodelandinitializationerrors.
Herewecreateensemblesofsuchpost-stormsimulationsbyperturbingtheinitialintensity
175
176
andinnercoremoisture.Eachensemblememberusesthesametrackandlarge-scale
177
environmentalconditions.Theinitialvortexisspecifiedbyapeakgradientwindatthesurface,
178
andtheradiusatwhichthisgradientwindreachesitspeakvalue.Thusperturbingtheinitial
179
peakwindisstraightforward.
180
Forreal-timeforecasts,CHIPSisrunfromtheinceptionofthestormuptothecurrenttime,
181
andthedegreeofinnercoresaturationiscontinuouslyvariedsoastobestmatchthehistoryof
182
thestorm’sintensity.Intheseforecasts,andinwhatfollows,“innercore”isdefinedtobe
183
within1.3timestheradiusofmaximumwinds.TherateofintensificationofCHIPS-simulated
184
stormsisquitesensitivetoinnercoremoisture,somatchingthesimulatedstorm’sintensityto
185
thehistoryoftherealstorm’sintensityuptothecurrenttimehastheeffectofinitializingthe
186
innercoremoisture.Thisishighlyadvantageousinviewofthepaucityofobservationsof
187
troposphericwatervaporintheinnercoresoftropicalcyclones.Weshallreturntothispointin
188
advocatingfortropicalcyclonedataassimilationthataccountsforatleasttherecenthistoryof
189
thestorm.
Onceinitialized,theinnercoremoistureispredictedbyarateequationthataccountsfor
190
191
verticaladvectionwithinthestormandaparameterizedinteractionwithenvironmentalwind
192
shear.(SeeEmanueletal.,2004,foramorecompletediscussionofthis.)
11
193
Forthepresentpurposes,weinitializetheinnercoremoisturethroughspecificationofa
194
parameterwelabel d ,whichvariesfrom0to1.When d = 0 ,theinitialinnercoremoiststatic
195
energyatmid-levelsinthetroposphereisidenticaltothatoftheunperturbedenvironment,
196
while d = 1 correspondstosaturationoftheinnercore.Thus d isdefined
197
dº
hic - he
, hic* - he
198
where hic isthemoiststaticenergyoftheinnercore, hic* isitssaturationvalue,and he isthe
199
environmentalmoiststaticenergy.
200
Figure6ashowstheevolutionof21CHIPShindcastsinwhichtheinitialvalueofthe d 201
parameterisfixedat0.9whiletheinitialwindspeedisvariedovertherange -5 to +5 ms -1 in
202
incrementsof 0.5 ms -1 .Thisrangeisconservativerelativetocontemporaryestimatesof
203
uncertaintyintropicalcycloneintensity(LandseaandFranklin,2013).Clearly,theforecast
204
intensityissensitivetotheinitialintensity,whichisconsistentwiththefull3-Dconvection-
205
permittingWRFensembleexperimentsshowninFigure2forthesameevent.
AllofthehindcastsshowninFigure6bareinitializedattheobservedintensitybutwith
206
207
initial d valuesrangingfrom 0.5 to 1 inincrementsof 0.05 .(Iftheenvironmentalrelative
208
humiditywere50%,aninitial d valueof0.5wouldcorrespondtoaninnercorerelative
209
humidityofabout75%.Inthiscase,varying d valuesrangingfrom 0.5 to 1 wouldcorrespond
210
tovaryingtherelativehumidityoverarangeofabout25%.Thisisabitlargerthanthe
211
ensemblevarianceweusedintheWRFsimulations(Figure2).Toourknowledgethereareno
212
publishedstudiesoftheuncertaintyininitialestimatesofobservedtropicalcycloneinnercore
12
213
humidity.)Theintensityevolutionisquitesensitivetoinnercoremoisturevariationsovera
214
realisticrange.ThustheCHIPSmodelexhibitsroughlythesamesensitivitytoinitialinnercore
215
moistureasexhibitedbythefullWRFmodelensembleexperimentsdiscussedintheprevious
216
subsection(Figures4-5).
Thissensitivity,sofardemonstratedacrosstwomodels,isthemainresultofthepresent
217
218
work.
219
c. Tropicalcycloneintensitysimulator
220
Partlytoencouragefurthertropicalcycloneintensitypredictabilitystudies,wedevelopeda
221
highlysimplifiedtropicalcycloneintensityalgorithmthatcanbeveryrapidlycodedandsolved.
222
WestartedwithatheoreticaldevelopmentequationdevelopedbyEmanuel(2012)forthe
223
specialcaseinwhichatropicalcyclonehasacompletelysaturatedinnercoreanddevelops
224
withoutinteractionwithshearorfeedbackfromtheoceanorfromisothermalexpansion
225
effects:
226
dV CD 2
@
(Vp - V 2 ) , dt
2h
(1)
227
where V isthemaximumcircularwindspeednearthesurface, C D isthesurfacedrag
228
coefficient, h isaboundarylayerdepth,and V p isthepotentialintensitymodifiedbya
229
functionofthesurfaceexchangecoefficientsofenthalpyandmomentum.Wesoughttomodify
230
(1)toaccountforunsaturatedinnercores,windshear,andinteractionwiththeunderlying
231
ocean.Aftermuchexperimentation,wedevelopedthefollowingpairofordinarydifferential
232
equations:
13
233
234
and
235
dV 1 CD
éëaV p2m3 - V 2 ùû , =
dt 2 h
(2)
dm 1 CD
=
é(1 - m )V - 2.2Sm ùû , dt 2 h ë
(3)
236
where V isthemaximumcircularwindspeed, m isaninnercoremoisturevariablethatvaries
237
between 0 and 1 , S isthemagnitudeofthe850–250hPaenvironmentalwindshear,and a 238
isanoceaninteractionparameter.(In(2)and(3),theunitsof V , V p , S , and h mustbe
239
consistent.)TheoceanfeedbackparameterismodeledaftertheresultsofSchadeandEmanuel
240
(1999):
241
242
where
243
a = 1 - 0.87e- z , (4)
z º 0.01G-0.4hmuTVpV -1. (5)
244
Here G isthesub-mixedlayerthermalstratificationin K (100m) -1 , hm istheoceanmixedlayer
245
depthinmeters,and uT isthestormtranslationspeedin ms -1 .
In(2)and(3)wehavenotexplicitlyaccountedforisothermalexpansioneffects,though
246
247
theymaybeincorporatedinthedefinitionof V p .
Notethatintheabsenceofoceanfeedback (a = 1) andshear,thesteadysolutionof(2)
248
249
and(3)is V = V p , m = 1 ,asexpected.Ifweregardtheproduct 2.2Sm astheventilationu 14
250
introducedbyTangandEmanuel(2010),thenintheabsenceofoceanfeedback,thesteady
251
solutionof(2)and(3)isgivenasthesolutionto
252
V
*5
3
- V * + u * = 0, (6)
253
wheretheasterisksindicatethatthequantityhasbeennormalizedbythepotentialintensity,
254
V p .ThismaybecomparedtotheequilibriumequationdevelopedbyTangandEmanuel
255
(2010),whichhastheform
V *3 - V * + u * = 0. 256
257
Thedifferentexponentsin(6)and(7)arisefromdifferentassumptionsaboutthephysics
258
andfromthedesireheretocloselymimicthefullCHIPSmodelbehavior.Solutionsto(6)and(7)
259
,normalizedtohavethesamethresholdvalueofu * ,arecomparedinFigure7.Theyarequite
260
similarinform.AsshownbyTangandEmanuel(2010),theupperbranchesofthesolutionare
261
stableequilibria,whilethelowerbranchesareunstable.
262
Inourcase(andperhapsinthatofTangandEmanuel,2010), u * dependson m, sothe
263
solutionsto(6)arenottrulyintermsofexternalquantities.Expressedasafunctionofthe
264
externalquantity S * (shearnormalizedbypotentialintensity),theequilibriumequationis
*1
- V * - S * = 0. (7)
265
266
Solutionsof(8)areplottedinFigure8.Notethattheupperstableequilibriumintensity
267
decaysalmostlinearlywithincreasingshear,untiltheshearapproachesitscriticalvalue,when
268
theintensitydropsoffmoresharply.Alsonotethatthecriticalintensityneededfor
V
3
15
(8)
269
amplification(thelowerbranchofthecurve)isverysmalluntiltheshearapproachesitscritical
270
value.Abovethecriticalshear,givenbytheright-mostpointinFigure8,noequilibriumsolution
271
existsandallsolutionsdecayovertime.
Weapplythesystemgivenby(2)and(3)totheforecastofJoaquininitializedasbeforeat
272
273
12GMTon29September2015.Asbefore,wedrivethesimplemodelwiththeanalyzed
274
potentialintensity,environmentalwindshear,andupperoceanpropertiesalongthetrack.We
275
use CD = 1.2 ´ 10-3 and h = 1400 m, andintegratethesystemwithasimpleleap-frogtime
276
schemewithanAsselinfiltervalueof0.1andatimestepof240s.A6-dayforecastwiththis
277
schemerunsinabout0.002sonanordinarylaptopcomputer.
Asbefore,werunoneensembleinwhichperturbationsrangingfrom -5 ms -1 to 5 ms -1 in
278
279
incrementsof 0.5 ms -1 areaddedtotheobservedinitialwindspeed.Forthesesimulations,we
280
initialized m withavalueof 0.3. Inasecondensemble,wefixtheinitialintensityatits
281
observedvaluewhilevaryingtheinitialvalueof m from 0.1 to 0.6 inincrementsof 0.05. The
282
resultsofthesetwosetsofsimulationsareshowninFigure9togetherwiththeevolutionsof
283
theobservedpotentialintensityandenvironmentalwindshearalongtheobservedtrack,the
284
best-trackintensity,andasinglesimulationofthefullCHIPSmodel(oneofthesimulations
285
displayedinFigure6).
ComparingtheseresultswiththoseofthefullCHIPSmodelinFigure6,itisclearthatthe
286
287
simplemodelintensityerrorsdonotamplifyasquickly(ordecayfaster),perhapsbecausethe
288
nonlinearityofthesimplemodelisweakerthanofthefullCHIPS.Buteveninthissimplemodel,
289
errorsresultingfromthemoistureinitializationamplifyquicklyoverthefirstdayorsoand
16
290
persistformanydays.Butoncethestormceasesintensifying,theerrorscollapsesmoothlyto
291
zeroasthestormequilibratestoenvironmentalconditions.Thiserrordecayisalsoevidentin
292
thefullCHIPSsimulations(Figure6)buthappensmoreslowly.
293
Wehopethatoursimplesystem,consistingofequations(2)-(5),willinspirefurtherstudies
294
ofintrinsictropicalcycloneintensitypredictability,andwebelieveitmayserveasanalternative
295
topurelystatisticalintensityalgorithmsforuseintropicalcycloneriskmodels.
296
297
3. Comparativeeffectsofinitialinnercoremoistureonintensityerrors
Toexploremorecomprehensivelytheerrorgrowthowingtomoistureinitialization
298
299
errors,weapplytheframeworkdevelopedbyEmanuelandZhang(2016).Theyusedthe
300
tropicalcycloneriskmodelofEmanueletal.(2008)tosimulate3100tropicalcyclonesinthe
301
NorthAtlantic,downscaledfromNCAR/NCEPreanalyses.Thestormswereinitializedwith
302
intensitiesvaryingrandomlybetween10and110ktsandrunforwarduntiltheirsurfacewinds
303
droppedbelowathreshold.Thestormswerethenre-initializedwithperturbationsappliedto
304
theirinitialintensitiesand/ortotheirtracksandenvironmentalwindshears.Comparisonof
305
theseperturbedsimulationstothecontrolgaveestimatesofintensityerrorgrowthovertime.
306
(SeeEmanuelandZhang,2016,fordetaileddescriptionsoftheexperiments.)
AlltheeventssimulatedinthatworkwereinitializedwiththeCHIPSmoistureparameter
307
308
d setto1,sosensitivitytomoistureinitializationwasnotexamined.Hereweaddonenewset
309
ofsimulationsidenticaltothecontrolsetbutwith d = 0.8, soeacheventbeginswithadrier
310
innercore.(Foranenvironmentalrelativehumidityof50%,thiscorrespondstoaninnercore
17
311
relativehumidityofabout90%.)Theroot-mean-squaredifferencebetweenthissetof
312
simulationsandthecontrolisshownbythecyancurveinFigure10andcomparedtotheother
313
errorsourcesdocumentedbyEmanuelandZhang(2016).(Figure10isidenticaltotheirFigure4
314
exceptfortheadditionofthecyancurveshowingerrorgrowthduetoinitialinnercore
315
moistureperturbations.)
ConsistentwithouranalysesoftheJoaquinsimulations,errorgrowthowingtoinitialinner
316
317
coremoistureerrorsisveryfastandreachesalimitveryquickly.Fortheperturbationtothe
318
CHIPS d parameterusedhere,thislimitingerrorissomewhatlargerthanthatresultingfrom
319
theinitialintensityperturbationsusedbyEmanuelandZhang(2016).Theinitialinnercore
320
humidityperturbationisequivalentto20%ofthedifferencebetweentheactualandsaturation
321
specifichumiditiesonthemiddletroposphere,yetthisissufficienttocauserapiddivergenceof
322
thesolutionfromthecontrol.
ThisresultgeneralizesourfindingsfromthesinglecasestudyofHurricaneJoaquin:Failure
323
324
toproperlyinitializeinnercorewatervaporinthefreetropospherecanbealargesourceof
325
tropicalcycloneintensityerror.
326
327
4. Summary
328
Usingthefull-physicsconvection-permittingtropicalcyclonedataassimilationandforecast
329
systemdevelopedbyZhangetal.(2009)andrefinedbyWengandZhang(2016),weshowed
330
thattheevolutionofforecastintensityissensitivetoinitialinnercoretroposphericmoistureas
331
wellastotheinitialwindfield.ThissensitivityisalsoapparentinthesimplerCHIPSmodel
18
332
(Emanueletal.,2004)aswellasaverysimpleintensitysimulatorpresentedhereforthefirst
333
time.Forreasonableestimatesofitsmagnitude,initialinnercoremoistureerrormaywell
334
dominateforecastintensityerrorouttoseveraldays’leadtime.Beyondthat,errorsinfree
335
troposphericmoistureoutsidethecore,thoughnotexaminedhere,alsoplayaroleasthey
336
affectthemagnitudeofventilationofthecoreiflarge-scaleshearispresent.
Sensitivitytoinitialinnercoremoisturehasbeendemonstratedinseveralprevious
337
338
modelingstudiesandisconsistentwiththefindingbyPauluisandHeld(2002)thatirreversible
339
entropyproductionintropicalconvectingsystemsisdominatedbyirreversiblemixingacross
340
strongmoisturegradients.Thisdominancepersistsunlessoruntiltheconvectionpenetratesair
341
thatisalreadysaturatedorverynearlyso,thusreducingentropyproductionbymixingacross
342
watervaporgradients.Onlythencanentropyproductionbydissipationofthekineticenergyof
343
windbecomeanimportantentropysource.
Thesensitivityoftropicalcycloneintensificationtoinnercoremoisturehasobvious
344
345
implicationsforinitializingtropicalcycloneintensityforecasts.Unfortunately,watervaporis
346
amongtheleastwellobservedquantitiesintropicalcyclonecores,andthepresenceofdeep
347
convectionandstrongflowssuggeststhatwatervaporpresentsasignificantsamplingproblem.
348
Ontheotherhand,thisverysensitivitytomoisturepresentsasignificantopportunityfor
349
dataassimilation,sincethetimehistoryofintensity,beingstronglyinfluencedbyinnercore
350
moisture,containsimportantinformationaboutthelatter.Ourcrudeinitializationofthe
351
operationalCHIPSmodeltakesadvantageofthisfactbyadjustingtheinitialcoremoistureto
352
matchtherecentlyobservedintensificationrate.Thissuggeststhatassimilationinthetime
19
353
domain,suchas4D-VarorcyclingEnKFwithflow-dependentbackgrounderrorcovariance,may
354
becriticaltothequalityoftropicalcycloneforecastinitialization,provideditimplicitlyor
355
explicitlyrecognizesthecorrelationbetweenintensificationratesandinnercorehumidity.
Ourresultssuggestthatexcellentinitializationoftheinstantaneouswindandassociated
356
357
thermalfieldscannotbythemselvesyieldaccurateintensityforecastsabsentahighquality
358
initializationoftroposphericwatervapor,atleastinthestorm’sinnercore.Unlikewith
359
temperatureandwind,thereisnoinstantaneousbalanceconditionthatconstrainswatervapor
360
unlesstheairiscompletelysaturated.Thusimprovementintropicalcycloneintensityforecasts
361
willdependinpartonbetterobservationsofinnercorewatervaporand/ordataassimilation
362
schemesthatareabletolinkinnercoremoisturetoobservedratesofintensification.
363
Acknowledgements:ThefirstauthorgratefullyacknowledgessupportfromONRthroughgrant
364
N000141410062.ThesecondauthorispartiallysupportedbyONRgrantN000140910526and
365
NOAAundertheHurricaneForecastImprovementProgram(HFIP).TheauthorsthankYonghui
366
WengandRobertNystromfortheirhelpontheWRFexperiments.Computingwasconducted
367
attheTexasAdvancedComputingCenter.
368
20
References
369
370
DeMaria,M.,C.R.Sampson,J.A.Knaff,andK.D.Musgrave,2014:Istropicalcycloneintensity
guidanceimproving?Bull.Amer.Meteor.Soc.,95,387-398.
371
372
Emanuel,K.,2012:Self-stratificationoftropicalcycloneoutflow:PartII:Implicationsforstorm
intensification.J.Atmos.Sci.,69,988-996.
373
374
Emanuel,K.,andF.Zhang,2016:Onthepredictabilityanderrorsourcesoftropicalcyclone
375
intensityforecastsJ.Atmos.Sci.,73,3739-3747.10.1175/JAS-D-16-0100.1.
376
Emanuel,K.,R.Sundararajan,andJ.Williams,2008:Hurricanesandglobalwarming:Results
fromdownscalingIPCCAR4simulations.Bull.Amer.Meteor.Soc.,89,347-367.
377
378
Emanuel,K.,C.DesAutels,C.Holloway,andR.Korty,2004:Environmentalcontroloftropical
cycloneintensity.J.Atmos.Sci.,61,843-858.
379
380
Emanuel,K.A.,1989:Thefinite-amplitudenatureoftropicalcyclogenesis.J.Atmos.Sci.,46,
3431-3456.
381
382
Gall,R.,J.Franklin,F.Marks,E.N.Rappaport,andF.Toepfer,2013:Thehurricaneforecast
improvementproject.Bull.Amer.Meteor.Soc.,94,329-343.
383
384
Munsell,E.B.,F.Zhang,andD.P.Stern,2013:Predictabilityanddynamicsofanon-intensifying
tropicalstorm:Erika(2009).J.Atmos.Sci.,70,2505–2524.
385
386
Landsea,C.W.,andJ.L.Franklin,2013:Atlantichurricanedatabaseuncertaintyand
presentationofanewdatabaseformat.Mon.Wea.Rev.,141,3576-3592.
387
21
388
Pauluis,O.,andI.M.Held,2002:Entropybudgetofanatmosphereinradiative-convective
equilibrium.PartI:Maximumworkandfrictionaldissipation.J.Atmos.Sci.,59,125-139.
389
390
Rappin,E.D.,D.S.Nolan,andK.Emanuel,2010:Thermodynamiccontroloftropical
391
cyclogenesisinenvironmentsofradiative-convectiveequilibriumwithshear.Quart.J.
392
Roy.Meteor.Soc.,136,1954-1971.
393
Schade,L.R.,andK.A.Emanuel,1999:Theocean'seffectontheintensityoftropicalcyclones:
394
Resultsfromasimplecoupledatmosphere-oceanmodel.J.Atmos.Sci.,56,642-651.
395
Simpson,R.H.,andH.Riehl,1958:Mid-troposphericventilationasaconstraintonhurricane
396
developmentandmaintenance.TechnicalConf.onHurricanes,Amer.Meteor.Soc.,D4-
397
10.
398
Skamarock,W.C.,andCoauthors,2008:AdescriptionoftheAdvancedResearchWRFversion3.
399
NCAR/TN–4751STR,113pp.[Availableonlineat
400
http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]
401
Tang,B.,andK.Emanuel,2010:Midlevelventilation'sconstraintontropicalcycloneintensity.J.
Atmos.Sci.,67,1817-1830.
402
403
Tao,D.,andF.Zhang,2014:Effectofenvironmentalshear,sea-surfacetemperatureand
404
ambientmoistureontheformationandpredictabilityoftropicalcyclones:anensemble-
405
meanperspective.J.Adv.Model.EarthSyst.,6,384–404,doi:10.1002/2014MS000314.
22
406
Weng,Y.,andF.Zhang,2012:AssimilatingairborneDopplerradarobservationswithan
407
ensembleKalmanfilterforconvection-permittinghurricaneinitializationandprediction:
408
Katrina(2005).Mon.Wea.Rev.,140,841–859,doi:10.1175/2011MWR3602.1.
409
Weng,Y.,andF.Zhang,2016:Advancesinconvection-permittingtropicalcycloneanalysisand
410
predictionthroughEnKFassimilationofreconnaissanceaircraftobservations.J.Meteor.
411
Soc.Japan,94,345-358.
412
Zhang,F.,andJ.A.Sippel,2009:Effectsofmoistconvectiononhurricanepredictability.J.
Atmos.Sci.,66,1944–1961.
413
414
Zhang,F.,andD.Tao,2013:Effectsofverticalwindshearonthepredictabilityoftropical
cyclones.J.Atmos.Sci.,70,975–983.
415
416
ZhangF.,Y.Weng,J.A.Sippel,Z.Meng,andC.H.Bishop,2009:Cloud-resolvinghurricane
417
initializationandpredictionthroughassimilationofDopplerradarobservationswithan
418
ensembleKalmanfilter:Humberto(2007).Mon.Wea.Rev.,137,2105–2125.
419
23
420
Figures
421
Figure1:EvolutionovertimeofthemaximumsurfacewindspeedinHurricaneJoaquinas
422
observed(thickblue)andpredictedon12GMTonSeptember29thaccordingtotheNational
423
HurricaneCenter(OFCL,black),andfourobjectiveintensityguidanceproducts:theCoupled
424
HurricaneIntensityPredictionSystem(CHIPS,lightblue),theStatisticalHurricanePrediction
425
(DSHP,green),theGeophysicalFluidDynamicsmodel(GFDL,yellow),andtheHurricane
426
Weather,ResearchandForecastingmodel(HWRF,red).
24
427
Figure2:Ensemblemean(solidblackcontours)andstandarddeviations(coloredshading)of
428
azimuthallyaveragedtangentialwind(left;inms-1)andrelativehumidity(right;inpercent)for
429
theWRFmodelsimulations.
25
180
Best Track
Ensemble Members
160
140
V max (knots)
120
100
80
60
40
20
29
30
01
02
September - October
03
430
Figure 3: The intensity forecast of the WRF ensemble using only the PSU WRF-EnKF real-time
431
ensembleanalysisperturbationsintheinner-coreregion.Thethickredlineshowstheensemble
432
memberconsideredtobetheclosestmatchtobest-trackobservations.
433
26
180
Best Track
Ensemble Members
160
140
Vmax (knots)
120
100
80
60
40
20
29
30
01
02
03
September - October
434
435
Figure4:AsinFigure3exceptforretainingonlytheinner-coremoistureperturbations.Theinitial
436
wind speed corresponds to PSU WRF-EnKF real-time analysis mean shown in the left panel of
437
Figure2.
438
27
439
440
Figure5:AsinFigure4exceptforusingonlyinitialinner-coremoistureperturbationsabovethe
441
boundarylayer(withalineartransitionzonefromzeroperturbationat900mbtofullperturbation
442
at850mb)outsideoftheeye(fromzeroperturbationsat25kmradiustoperturbationsat50km).
443
TheinitialwindspeedcorrespondstoPSUWRF-EnKFreal-timeanalysismeanshownintheleft
444
panelofFigure2.
445
28
446
Figure6:EvolutionofCHIPShindcasts(red)ofJoaquin,initializedat12GMTon29September
447
2015,comparedtobest-trackintensity(blue).Ina),eachhindcastisinitializedwith d = 0.9 and
448
withtheinitialwindspeedvaryingby ±5 ms -1 fromtheinitialbesttrackvalue.Inb)each
449
hindcastisinitializedwiththeobservedwindspeedbutwith d valuesrangingfrom 0.5 to 1 .
29
450
Figure7:Equilibriumsolutionsfornormalizedmaximumwindasafunctionofnormalized
451
ventilation,forTangandEmanuel(2010;red)andof(6)(blue).Theupperbranchesarestable
452
equilibria,whilethelowerbranchesareunstable.
30
453
Figure8:Solutionof(8)fortheequilibriummaximumwindspeedasafunctionofthe
454
normalizedenvironmentalwindshear,S*.Asbefore,theupperbranchisstablewhilethelower
455
branchisunstable.Theright-mostpointofthecurverepresentsacriticalshearabovewhichno
456
equilibriumsolutionexistsandallsolutionsdecaywithtime.
31
457
Figure9:Evolutionsofensemblesofthesimplemodel(red)initializedat12GMTonSeptember
458
29th2015,comparedtothebest-trackintensity(black)andasinglehindcastusingthefullCHIPS
459
model(blue).Potentialintensity(dashedblue)andenvironmentalshear(green)arealsoshown.
460
Theleftpanelshowsandensembleformedbyvaryingtheinitialintensityby ±5 ms -1 withthe
461
initialvalueof m fixedat 0.3, whiletheensembleintherightisinitializedwiththeobserved
462
intensitybutvariestheinitialvalueof m from 0.1 to 0.6 .
32
463
Figure10:SameasFigure4fromEmanuelandZhang(2016),exceptfortheadditionofroot-
464
mean-squareintensityerrorowingsolelytoinitialinnercoremoistureperturbations(cyan
465
curve).Othercurvesareerrorsresultingfrominitialintensityerroronly(deepblue),errorsin
466
forecastenvironmentalshear(red),initialintensityandforecastsheartogether(yellow),
467
forecasttrackerrors(magenta)andinitialintensityandforecasttrackerrortogether(green).
33