TheRoleofInnerCoreMoistureinTropicalCyclonePredictabilityandPracticalForecastSkill KerryEmanuel1 LorenzCenter MassachusettsInstituteofTechnology Cambridge,Massachusetts FuqingZhang DepartmentofMeteorologyandAtmosphericScience,andCenterforAdvancedData AssimilationandPredictabilityTechniques,ThePennsylvaniaStateUniversity,UniversityPark, Pennsylvania Revised April,2017 1 Corresponding author address and email: Rm 54-1814, MIT; 77 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-253-2462. Email: [email protected] . 1 Abstract 1 Errorsintropicalcycloneintensityforecastsaredominatedbyinitialconditionerrorsouttoat 2 leastafewdays.Initializationerrorsareusuallythoughtofintermsofpositionandintensity, 3 buthereweshowthatgrowthofintensityerrorisatleastassensitivetothespecificationof 4 innercoremoistureastothatofthewindfield.Wediscussimplicationsofthisfindingfor 5 tropicalcycloneobservationalstrategiesandforoverallpredictabilityofstormintensity. 2 6 1. Introduction 7 Predictionoftropicalcycloneintensityremainsasignificantchallenge,withlittle 8 improvementinforecastskilloverthepastfewdecades(DeMariaetal.,2014).Thislackof 9 improvementhasbeenattributedtoavarietyoffactors,frominadequateobservationsofthe 10 atmosphereandupperocean,tolackofabilitytoassimilateobservations,tomodelerrors,but 11 inrecentyearstherehasbeenaconcertedefforttoimproveintensityforecasts(Galletal., 12 2013). Inarecentlypublishedpaper(EmanuelandZhang,2016),theauthorsattemptedto 13 14 quantifytheintrinsicpredictabilityoftropicalcycloneintensityandtodistinguishthevarious 15 causesoflossofpredictability,usingaperfectmodelframeworktoisolatetheintrinsic 16 predictability.Theyshowedthatforecastintensityerrorouttoafewdaysisdominatedby 17 errorsintheinitialwindfield,afterwhicherrorsinforecastingthelarge-scaleenvironment 18 begintodominatethroughtheireffectsonthetrackofandwindshearexperiencedbythe 19 storms.Theyalsoprovidedevidencethatthereremainsasignificantgapbetweenoperational 20 intensityforecastskillandskillthatistheoreticallyachievablegivenoptimisticestimatesof 21 tropicalcycloneinitialconditionspecificationandoflarge-scaleenvironmentalpredictionskill. 22 Inthatwork,thewatervaporcontentoftheinnercoreofthetropicalcyclonemodelwas 23 heldfixedbetweenthecontrolandperturbationexperimentsandsowasnotconsideredasa 24 sourceofforecasterror.Herewefocusontheimportanceofthecorrectinitializationofinner 25 coremoisture. 3 26 Hereweusetheterm“innercore”somewhatlooselytodenotethebroadregionofascent 27 thatincludestheeyewallandweakerbutdeepconvectionjustoutsideit,butdoesnotinclude 28 theeyeitself(ifthereisone)ortheregionofmoreisolatedspiralbandsfurtherawayfromthe 29 center.Inidealizednumericalsimulationsthatbeginwithaweakcyclonicdisturbancenearthe 30 surface,storm-scaleascentoccursinsidetheradiusatwhichtheradialmassfluxpeaks,andthis 31 radiuscouldbeused,thoughnotwithoutsomeambiguity,toseparatetheinnercorefromthe 32 outerregion,whiletheeyecouldbeidentifiedwithweakdescentinsidetheeyewall. 33 Thereareabundantreasonstofocusoninnercoremoisture.Emanuel(1989) 34 demonstrated,usingasimplebalancedaxisymmetrictropicalcyclonemodel,thattheinner 35 core,definedasintheprecedingparagraph,hadtobenearlysaturatedbeforeintensification 36 bysurfacefluxescouldbegin.Heshowedthatevensmalldegreesofsubsaturationresultedin 37 convectivedowndrafts,drivenbyevaporationofrain,thatimportlowentropyairintothe 38 subcloudlayerandtherebynegatethetendencyofsurfacefluxestoincreasesubcloudlayer 39 entropy. Moistureoutsidewhatweareherereferringtoastheinnercoreisalsoimportanttostorm 40 41 intensity,especiallywhenenvironmentalshearispresent.Iftheshearisstrongenough,lower 42 moiststaticenergyoutsidethecorecanbeadvectedintothecore,inaprocessthatisknownas 43 “ventilation”(TangandEmanuel,2010).Butthishappensonanadvectivetimescale,sothat 44 moistureanomaliesfarfromthestormcentertakesometimetoinfluencethecore,whereas 45 initialerrorsininnercoremoisturehaveanalmostimmediateeffect.Whileweherefocuson 46 innercoremoistureanomalies,wedonotclaimthatanomaliesoutsidethecoreare 47 unimportant,particularlyatlongerleadtimes. 4 Rappinetal.(2010)usedtheWeatherResearchandForecasting(WRF)modeltoperform 48 49 three-dimensionalsimulationsoftropicalcyclogenesisathigh(convectionpermitting) 50 horizontalresolution.Theyalsodemonstratedthatsurfaceintensificationofvorticesbegins 51 onlyifandwhenamesoscalecolumninthestorm’scorebecomesnearlysaturated.Beforethat 52 happens,orinfailedcasesofgenesis,convectivedowndraftsquenchanytendencyofenhanced 53 surfaceenthalpyfluxestoincreaseboundarylayerentropy,eventhoughamesocyclonealoft 54 mayintensifybyevaporationandmeltingoffallingprecipitation. 55 Morefundamentally,PauluisandHeld(2002)showedthatinordinaryradiative-convective 56 equilibrium,theoverallirreversibleentropyproductioninthesystemislimitedbytheradiative 57 exportofentropytospace,andthatthegreatmajorityofthislimitedtotalentropyproduction 58 isusedupinmixing(diffusion)acrossstronggradientsofwatervapor,leavingverylittlefor 59 kineticenergydissipation.Totransitiontoastatehavinglargedissipationofkineticenergy,as 60 withtropicalcyclones,theremustbeadrasticreductioninentropyproductionbymixingacross 61 watervaporgradients.Thiscanonlyhappenifthemoistconvectiontakesplaceinnearly 62 saturatedair,sothatthereislittlemixingofdryairintoclouds. Evenwhenatropicalcyclonedoesdevelop,itremainssusceptibletomixingofdryairinto 63 64 thecore,asfirstsuggestedbySimpsonandRiehl(1958).TangandEmanuel(2010)showed 65 quantitativelyhowventilationofthetropicalcyclonecorereducesthestorm’sintensity,and 66 thattoomuchventilationwilldestroyitaltogether.ThisisconsistentwithPauluisandHeld’s 67 (2002)observationthatentropyproductioniseasilydominatedbymixingofdryandmoistair, 68 subtractingfromthatwhichcouldbeusedforkineticenergydissipation. 5 Itstandstoreason,therefore,thattherateofintensificationoftropicalcyclonesissensitive 69 70 tothedegreeofsubsaturationoftheinnercore,wheretheeyewallconvectionoccurs.Inthe 71 simpleCoupledHurricaneIntensityPredictionSystem(CHIPS;Emanueletal.,2004),used 72 routinelytopredicttropicalcycloneintensityinnearrealtime2,theinnercoremoistureis 73 initializedbymatchingtheinitialrateofintensitychangetotheobservedchangeofintensity 74 overthehistoryofthestormtodate.Failuretoinitializetheinnercoremoistureproperlyyields 75 largeforecasterrors,eveniftheinitialmaximumwindspeedisfreeoferror. Ourpurposehereistoquantitativelyassesstheinfluenceofinitialinnercoremoisture 76 77 errorsontropicalcyclonepredictionskill.Wetakethreeapproachestothis.First,weexaminea 78 singlecasestudy:HurricaneJoaquinof2015.Usingafull-physicsWRFmodel(Skamarocketal. 79 2008)andanensemble-baseddataassimilationsystem(Zhangetal.2009;WengandZhang 80 2012,2016)weproduceseverallargeensemblesofforecaststhatdifferintheirinitializationof 81 innercoremoistureeitherwithorwithoutinitialdifferenceinwindspeed,whilekeepingthe 82 environmentalinitialconditionsandboundaryconditionsthesameforallensemblemembers. 83 WerepeatthisexerciseusingthesimpleCHIPSmodel.Second,weextendtheworkofEmanuel 84 andZhang(2016)toincludeinitialinnercoremoistureperturbations,comparingtheirgrowth 85 tothegrowthoferrorfromothersourcesinaperfectmodelframework.Finally,weintroducea 86 newtoyintensitymodel,consistingofapairofordinarydifferentialequations,designedto 87 mimicthebehaviorofthefullCHIPSmodel,andusethistoassesserrorgrowthinasimple 88 forecastsystem. 2 http://wind.mit.edu/~emanuel/storm.html 6 89 2. Sensitivitytoinnercoremoisture:Acasestudy 90 Webeginwithasinglecaseasanexampleofthesensitivityofintensityforecaststoinitial 91 innercoremoisture.ThecaseinpointisAtlanticHurricaneJoaquinof2015.Joaquindeveloped 92 eastoftheBahamasonoraboutSeptember27thanddriftedslowlysouthwestward,turning 93 backnortheastwardonOctober2nd.Itintensifiedveryrapidlybeginningatabout12GMTon 94 September29th,adevelopmentthattheNationalHurricaneCenterforecastandmostobjective 95 guidanceproductsfailedtoanticipate,asshowninFigure1.Moreremarkableisthelarge 96 spreadinforecastintensities.At12GMTonOctober3rd,whenthestormreacheditspeak 97 intensityof135kts,forecastintensitiesrangedfrom60to140kts.Thisisgoodexampleofthe 98 largeuncertaintyandlowskillcurrentlyassociatedwithtropicalcycloneintensityforecasts. 99 Tragically,inthiscase,failuretoanticipatetherapiddevelopmentandhighintensityachieved 100 byJoaquinmayhavebeenamongthefactorsleadingtothelossoftheshipElFarowithall 101 hands. a. WRFmodelsimulations 102 103 ConsistentwiththeoperationalpredictiondisplayedinFigure1,theensembleforecasts 104 basedontheWeatherResearchandForecasting(WRF)modelversion3.5.1(Skamarocketal. 105 2008)initiatedwiththeensembleKalmanfilter(EnKF)analysisperturbationsat12GMT29 106 September2015fromthePennsylvaniaStateUniversity(PSU)experimentalreal-time 107 convection-permittinghurricaneanalysisandforecastsystemproducedalargeensemble 108 spread,consistentwiththelargeerrorsinJoaquin’sintensityforecasts,aswellasthelarge 109 divergenceamongtheensembletrackforecasts(notshown).Thereal-timePSUWRF-EnKF 7 110 system(WengandZhang2016)useda60-memberensemblewiththefinestgridspacingof3 111 kmthatassimilatednon-radianceconventionalobservationsplusreconnaissanceairborne 112 dropsondeandflight-levelobservationsforJoaquin. Toseparatetheinfluenceoftheinner-coreversusenvironmentalconditionson 113 114 Joaquin’sintensityforecastuncertainties,weperformedaWRF-basedensembleforecast 115 experimentthatissimilartothereal-timePSUWRF-EnKFensembleexceptforusingonlythe 116 real-timeensembleperturbationsintheinner-coreregion(withinaradiusof300km)while 117 relocatingthecenterofeachmember’sinitialvortextothePSUWRF-EnKFanalysismean 118 position.Theenvironmentalconditions(outsidearadiusof600kmfromthevortex)arethe 119 sameinallmembersandareinterpolatedfromtheNCEPoperationalGlobalForecastSystem 120 (GFS)analysis.Linearinterpolationisappliedtoeachmemberforradiibetween300and600 121 km,assigningadecreasingweight(from1to0)tothereal-timeWRF-EnKFinitialensemble 122 perturbationsandanincreasingweight(from0to1)totheGFSanalysis.Themeanand 123 ensemblespread(intermsofstandardderivation)oftheazimuthallyaveragedtangentialwind 124 andrelativehumidityareshowninFigure2.Thespreadinsurfaceazimuthalwindreaches 125 peakvaluesofabout 10 ms -1 whiletherelativehumidityspreadreachesapeakamplitudeof 126 around16%nearthestormcenterinthemiddletouppertroposphere.Butnotethatthe 127 largesthumidityperturbationsareintheunsaturatedeyeregionandprobablydonothave 128 mucheffectonsubsequentintensification.Wewilladdressthisissuepresently. 129 8 ThisnewWRFensemblesimulationwithonlyinitialinner-coreperturbations 130 131 reproducedtheintensityforecastuncertainties(Figure3)butasweusedthesameGFS 132 environmentalconditionsforeachensemblemember,thereislittleforecastdivergenceinthe 133 ensembletracks(notshown),implyingthatatleastforthisforecastinitializationtimeof 134 Joaquin,thetrackforecastisprimarilyinfluencedbythelarge-scaleenvironment(tobe 135 examinedinaseparatestudy),whiletheintensityforecastispredominantlydeterminedbythe 136 initialinner-coredynamicandthermodynamicconditions. Toisolatetheinfluenceofinner-coremoistureabovethehurricaneboundarylayer,we 137 138 performtwootherensembleexperiments,identicaltothatillustratedinFigure3butone 139 retainingonlymoistureperturbations(Figure2,right)andtheotherretainingonlymoisture 140 perturbationsonlyabovetheboundarylayer(usingalineartransitionzonefromzero 141 perturbationat900mbtofullperturbationat850mb)andoutsideoftheeye(fromzero 142 perturbationsat25kmradiustofullperturbationsat50km).TheresultsareshowninFigures4- 143 5.Thesetwoadditionalensembleexperimentsdemonstratethatwhileinitialinner-coreinitial 144 vortexintensityperturbationsarestronglyinfluential,thereareconsiderableuncertaintiesin 145 thehurricaneintensityforecastwithonlyinner-coremoistureperturbations(Figure4). 146 Moreover,evenretainingtheinner-coremoistureperturbationsonlyabovetheboundarylayer 147 andoutsidetheeyewillleadtoconsiderableintensityspread(Figure5).Anotherensemble 148 experimentthesameasinFigure5exceptforretainingonlytheboundarylayermoisture 149 perturbationsshowsasimilarlevelofinfluenceonhurricaneintensity(notshown). Sensitivityoftropicalcycloneintensitytoinitialmoistureuncertaintieswasalsoinvestigated 150 151 throughreal-datafull-physicsconvection-permittingensemblesimulationsinSippelandZhang 9 152 (2008,2010),ZhangandSippel(2009)andMunselletal.(2013,2015),thoughnoneofthese 153 previousstudiesexclusivelyfocusedonrealisticinner-coremoistureonlyperturbations. 154 Meanwhile,recentlyidealizedfull-physicsWRFsimulations(ZhangandTao2013,Taoand 155 Zhang2015)alsoshowedthattheintensityforecastcanbeintrinsicallylimited(especially 156 duringthedevelopmentstage)evenifonlyperturbedwithminute,unobservableboundary 157 layermoistureuncertaintiesformoderatelyshearedtropicalcyclones,thoughaconstant 158 environmentalconditionwilleventuallygrowtheensemblememberstosimilarintensityafter 159 rapidintensification. 160 161 b. CHIPSsimulations 162 CHIPS(Emanueletal.,2004)isasimple,axisymmetric,quasi-balancedtropicalcyclone 163 modelphrasedinangularmomentumcoordinatesandcoupledtoasimple,one-dimensional 164 upperoceanmodelthatallowsforthephysicsofstorm-inducedverticalmixing.CHIPShasbeen 165 usedforabout15yearstomakereal-timeforecastsoftropicalcycloneintensityglobally.The 166 forecaststhemselveshavebeenarchived,togetherwithkeyenvironmentalparametersalong 167 theforecasttrack;theseincludepotentialintensityandverticalshearofthelarge-scale 168 horizontalwind.Inrecentyears,wehaveruna7-memberensembledefinedbyperturbingthe 169 initialintensityandinnercoremoisture,andpredictedenvironmentalwindshear.Thecontrol 170 forecastforJoaquinmadeat12GMTon29September2015isshowninFigure1. Afteraparticulareventhasoccurred,weroutinelyre-runtheCHIPSmodelusingthe 171 172 observed(ratherthanforecast)trackandtheoperationallyanalyzedwindshearandpotential 10 173 intensityalongthetrack.Thisallowsustominimizeerrorsourcesrelatedtoincorrectlyforecast 174 trackandwindshearsoastofocusonmodelandinitializationerrors. Herewecreateensemblesofsuchpost-stormsimulationsbyperturbingtheinitialintensity 175 176 andinnercoremoisture.Eachensemblememberusesthesametrackandlarge-scale 177 environmentalconditions.Theinitialvortexisspecifiedbyapeakgradientwindatthesurface, 178 andtheradiusatwhichthisgradientwindreachesitspeakvalue.Thusperturbingtheinitial 179 peakwindisstraightforward. 180 Forreal-timeforecasts,CHIPSisrunfromtheinceptionofthestormuptothecurrenttime, 181 andthedegreeofinnercoresaturationiscontinuouslyvariedsoastobestmatchthehistoryof 182 thestorm’sintensity.Intheseforecasts,andinwhatfollows,“innercore”isdefinedtobe 183 within1.3timestheradiusofmaximumwinds.TherateofintensificationofCHIPS-simulated 184 stormsisquitesensitivetoinnercoremoisture,somatchingthesimulatedstorm’sintensityto 185 thehistoryoftherealstorm’sintensityuptothecurrenttimehastheeffectofinitializingthe 186 innercoremoisture.Thisishighlyadvantageousinviewofthepaucityofobservationsof 187 troposphericwatervaporintheinnercoresoftropicalcyclones.Weshallreturntothispointin 188 advocatingfortropicalcyclonedataassimilationthataccountsforatleasttherecenthistoryof 189 thestorm. Onceinitialized,theinnercoremoistureispredictedbyarateequationthataccountsfor 190 191 verticaladvectionwithinthestormandaparameterizedinteractionwithenvironmentalwind 192 shear.(SeeEmanueletal.,2004,foramorecompletediscussionofthis.) 11 193 Forthepresentpurposes,weinitializetheinnercoremoisturethroughspecificationofa 194 parameterwelabel d ,whichvariesfrom0to1.When d = 0 ,theinitialinnercoremoiststatic 195 energyatmid-levelsinthetroposphereisidenticaltothatoftheunperturbedenvironment, 196 while d = 1 correspondstosaturationoftheinnercore.Thus d isdefined 197 dº hic - he , hic* - he 198 where hic isthemoiststaticenergyoftheinnercore, hic* isitssaturationvalue,and he isthe 199 environmentalmoiststaticenergy. 200 Figure6ashowstheevolutionof21CHIPShindcastsinwhichtheinitialvalueofthe d 201 parameterisfixedat0.9whiletheinitialwindspeedisvariedovertherange -5 to +5 ms -1 in 202 incrementsof 0.5 ms -1 .Thisrangeisconservativerelativetocontemporaryestimatesof 203 uncertaintyintropicalcycloneintensity(LandseaandFranklin,2013).Clearly,theforecast 204 intensityissensitivetotheinitialintensity,whichisconsistentwiththefull3-Dconvection- 205 permittingWRFensembleexperimentsshowninFigure2forthesameevent. AllofthehindcastsshowninFigure6bareinitializedattheobservedintensitybutwith 206 207 initial d valuesrangingfrom 0.5 to 1 inincrementsof 0.05 .(Iftheenvironmentalrelative 208 humiditywere50%,aninitial d valueof0.5wouldcorrespondtoaninnercorerelative 209 humidityofabout75%.Inthiscase,varying d valuesrangingfrom 0.5 to 1 wouldcorrespond 210 tovaryingtherelativehumidityoverarangeofabout25%.Thisisabitlargerthanthe 211 ensemblevarianceweusedintheWRFsimulations(Figure2).Toourknowledgethereareno 212 publishedstudiesoftheuncertaintyininitialestimatesofobservedtropicalcycloneinnercore 12 213 humidity.)Theintensityevolutionisquitesensitivetoinnercoremoisturevariationsovera 214 realisticrange.ThustheCHIPSmodelexhibitsroughlythesamesensitivitytoinitialinnercore 215 moistureasexhibitedbythefullWRFmodelensembleexperimentsdiscussedintheprevious 216 subsection(Figures4-5). Thissensitivity,sofardemonstratedacrosstwomodels,isthemainresultofthepresent 217 218 work. 219 c. Tropicalcycloneintensitysimulator 220 Partlytoencouragefurthertropicalcycloneintensitypredictabilitystudies,wedevelopeda 221 highlysimplifiedtropicalcycloneintensityalgorithmthatcanbeveryrapidlycodedandsolved. 222 WestartedwithatheoreticaldevelopmentequationdevelopedbyEmanuel(2012)forthe 223 specialcaseinwhichatropicalcyclonehasacompletelysaturatedinnercoreanddevelops 224 withoutinteractionwithshearorfeedbackfromtheoceanorfromisothermalexpansion 225 effects: 226 dV CD 2 @ (Vp - V 2 ) , dt 2h (1) 227 where V isthemaximumcircularwindspeednearthesurface, C D isthesurfacedrag 228 coefficient, h isaboundarylayerdepth,and V p isthepotentialintensitymodifiedbya 229 functionofthesurfaceexchangecoefficientsofenthalpyandmomentum.Wesoughttomodify 230 (1)toaccountforunsaturatedinnercores,windshear,andinteractionwiththeunderlying 231 ocean.Aftermuchexperimentation,wedevelopedthefollowingpairofordinarydifferential 232 equations: 13 233 234 and 235 dV 1 CD éëaV p2m3 - V 2 ùû , = dt 2 h (2) dm 1 CD = é(1 - m )V - 2.2Sm ùû , dt 2 h ë (3) 236 where V isthemaximumcircularwindspeed, m isaninnercoremoisturevariablethatvaries 237 between 0 and 1 , S isthemagnitudeofthe850–250hPaenvironmentalwindshear,and a 238 isanoceaninteractionparameter.(In(2)and(3),theunitsof V , V p , S , and h mustbe 239 consistent.)TheoceanfeedbackparameterismodeledaftertheresultsofSchadeandEmanuel 240 (1999): 241 242 where 243 a = 1 - 0.87e- z , (4) z º 0.01G-0.4hmuTVpV -1. (5) 244 Here G isthesub-mixedlayerthermalstratificationin K (100m) -1 , hm istheoceanmixedlayer 245 depthinmeters,and uT isthestormtranslationspeedin ms -1 . In(2)and(3)wehavenotexplicitlyaccountedforisothermalexpansioneffects,though 246 247 theymaybeincorporatedinthedefinitionof V p . Notethatintheabsenceofoceanfeedback (a = 1) andshear,thesteadysolutionof(2) 248 249 and(3)is V = V p , m = 1 ,asexpected.Ifweregardtheproduct 2.2Sm astheventilationu 14 250 introducedbyTangandEmanuel(2010),thenintheabsenceofoceanfeedback,thesteady 251 solutionof(2)and(3)isgivenasthesolutionto 252 V *5 3 - V * + u * = 0, (6) 253 wheretheasterisksindicatethatthequantityhasbeennormalizedbythepotentialintensity, 254 V p .ThismaybecomparedtotheequilibriumequationdevelopedbyTangandEmanuel 255 (2010),whichhastheform V *3 - V * + u * = 0. 256 257 Thedifferentexponentsin(6)and(7)arisefromdifferentassumptionsaboutthephysics 258 andfromthedesireheretocloselymimicthefullCHIPSmodelbehavior.Solutionsto(6)and(7) 259 ,normalizedtohavethesamethresholdvalueofu * ,arecomparedinFigure7.Theyarequite 260 similarinform.AsshownbyTangandEmanuel(2010),theupperbranchesofthesolutionare 261 stableequilibria,whilethelowerbranchesareunstable. 262 Inourcase(andperhapsinthatofTangandEmanuel,2010), u * dependson m, sothe 263 solutionsto(6)arenottrulyintermsofexternalquantities.Expressedasafunctionofthe 264 externalquantity S * (shearnormalizedbypotentialintensity),theequilibriumequationis *1 - V * - S * = 0. (7) 265 266 Solutionsof(8)areplottedinFigure8.Notethattheupperstableequilibriumintensity 267 decaysalmostlinearlywithincreasingshear,untiltheshearapproachesitscriticalvalue,when 268 theintensitydropsoffmoresharply.Alsonotethatthecriticalintensityneededfor V 3 15 (8) 269 amplification(thelowerbranchofthecurve)isverysmalluntiltheshearapproachesitscritical 270 value.Abovethecriticalshear,givenbytheright-mostpointinFigure8,noequilibriumsolution 271 existsandallsolutionsdecayovertime. Weapplythesystemgivenby(2)and(3)totheforecastofJoaquininitializedasbeforeat 272 273 12GMTon29September2015.Asbefore,wedrivethesimplemodelwiththeanalyzed 274 potentialintensity,environmentalwindshear,andupperoceanpropertiesalongthetrack.We 275 use CD = 1.2 ´ 10-3 and h = 1400 m, andintegratethesystemwithasimpleleap-frogtime 276 schemewithanAsselinfiltervalueof0.1andatimestepof240s.A6-dayforecastwiththis 277 schemerunsinabout0.002sonanordinarylaptopcomputer. Asbefore,werunoneensembleinwhichperturbationsrangingfrom -5 ms -1 to 5 ms -1 in 278 279 incrementsof 0.5 ms -1 areaddedtotheobservedinitialwindspeed.Forthesesimulations,we 280 initialized m withavalueof 0.3. Inasecondensemble,wefixtheinitialintensityatits 281 observedvaluewhilevaryingtheinitialvalueof m from 0.1 to 0.6 inincrementsof 0.05. The 282 resultsofthesetwosetsofsimulationsareshowninFigure9togetherwiththeevolutionsof 283 theobservedpotentialintensityandenvironmentalwindshearalongtheobservedtrack,the 284 best-trackintensity,andasinglesimulationofthefullCHIPSmodel(oneofthesimulations 285 displayedinFigure6). ComparingtheseresultswiththoseofthefullCHIPSmodelinFigure6,itisclearthatthe 286 287 simplemodelintensityerrorsdonotamplifyasquickly(ordecayfaster),perhapsbecausethe 288 nonlinearityofthesimplemodelisweakerthanofthefullCHIPS.Buteveninthissimplemodel, 289 errorsresultingfromthemoistureinitializationamplifyquicklyoverthefirstdayorsoand 16 290 persistformanydays.Butoncethestormceasesintensifying,theerrorscollapsesmoothlyto 291 zeroasthestormequilibratestoenvironmentalconditions.Thiserrordecayisalsoevidentin 292 thefullCHIPSsimulations(Figure6)buthappensmoreslowly. 293 Wehopethatoursimplesystem,consistingofequations(2)-(5),willinspirefurtherstudies 294 ofintrinsictropicalcycloneintensitypredictability,andwebelieveitmayserveasanalternative 295 topurelystatisticalintensityalgorithmsforuseintropicalcycloneriskmodels. 296 297 3. Comparativeeffectsofinitialinnercoremoistureonintensityerrors Toexploremorecomprehensivelytheerrorgrowthowingtomoistureinitialization 298 299 errors,weapplytheframeworkdevelopedbyEmanuelandZhang(2016).Theyusedthe 300 tropicalcycloneriskmodelofEmanueletal.(2008)tosimulate3100tropicalcyclonesinthe 301 NorthAtlantic,downscaledfromNCAR/NCEPreanalyses.Thestormswereinitializedwith 302 intensitiesvaryingrandomlybetween10and110ktsandrunforwarduntiltheirsurfacewinds 303 droppedbelowathreshold.Thestormswerethenre-initializedwithperturbationsappliedto 304 theirinitialintensitiesand/ortotheirtracksandenvironmentalwindshears.Comparisonof 305 theseperturbedsimulationstothecontrolgaveestimatesofintensityerrorgrowthovertime. 306 (SeeEmanuelandZhang,2016,fordetaileddescriptionsoftheexperiments.) AlltheeventssimulatedinthatworkwereinitializedwiththeCHIPSmoistureparameter 307 308 d setto1,sosensitivitytomoistureinitializationwasnotexamined.Hereweaddonenewset 309 ofsimulationsidenticaltothecontrolsetbutwith d = 0.8, soeacheventbeginswithadrier 310 innercore.(Foranenvironmentalrelativehumidityof50%,thiscorrespondstoaninnercore 17 311 relativehumidityofabout90%.)Theroot-mean-squaredifferencebetweenthissetof 312 simulationsandthecontrolisshownbythecyancurveinFigure10andcomparedtotheother 313 errorsourcesdocumentedbyEmanuelandZhang(2016).(Figure10isidenticaltotheirFigure4 314 exceptfortheadditionofthecyancurveshowingerrorgrowthduetoinitialinnercore 315 moistureperturbations.) ConsistentwithouranalysesoftheJoaquinsimulations,errorgrowthowingtoinitialinner 316 317 coremoistureerrorsisveryfastandreachesalimitveryquickly.Fortheperturbationtothe 318 CHIPS d parameterusedhere,thislimitingerrorissomewhatlargerthanthatresultingfrom 319 theinitialintensityperturbationsusedbyEmanuelandZhang(2016).Theinitialinnercore 320 humidityperturbationisequivalentto20%ofthedifferencebetweentheactualandsaturation 321 specifichumiditiesonthemiddletroposphere,yetthisissufficienttocauserapiddivergenceof 322 thesolutionfromthecontrol. ThisresultgeneralizesourfindingsfromthesinglecasestudyofHurricaneJoaquin:Failure 323 324 toproperlyinitializeinnercorewatervaporinthefreetropospherecanbealargesourceof 325 tropicalcycloneintensityerror. 326 327 4. Summary 328 Usingthefull-physicsconvection-permittingtropicalcyclonedataassimilationandforecast 329 systemdevelopedbyZhangetal.(2009)andrefinedbyWengandZhang(2016),weshowed 330 thattheevolutionofforecastintensityissensitivetoinitialinnercoretroposphericmoistureas 331 wellastotheinitialwindfield.ThissensitivityisalsoapparentinthesimplerCHIPSmodel 18 332 (Emanueletal.,2004)aswellasaverysimpleintensitysimulatorpresentedhereforthefirst 333 time.Forreasonableestimatesofitsmagnitude,initialinnercoremoistureerrormaywell 334 dominateforecastintensityerrorouttoseveraldays’leadtime.Beyondthat,errorsinfree 335 troposphericmoistureoutsidethecore,thoughnotexaminedhere,alsoplayaroleasthey 336 affectthemagnitudeofventilationofthecoreiflarge-scaleshearispresent. Sensitivitytoinitialinnercoremoisturehasbeendemonstratedinseveralprevious 337 338 modelingstudiesandisconsistentwiththefindingbyPauluisandHeld(2002)thatirreversible 339 entropyproductionintropicalconvectingsystemsisdominatedbyirreversiblemixingacross 340 strongmoisturegradients.Thisdominancepersistsunlessoruntiltheconvectionpenetratesair 341 thatisalreadysaturatedorverynearlyso,thusreducingentropyproductionbymixingacross 342 watervaporgradients.Onlythencanentropyproductionbydissipationofthekineticenergyof 343 windbecomeanimportantentropysource. Thesensitivityoftropicalcycloneintensificationtoinnercoremoisturehasobvious 344 345 implicationsforinitializingtropicalcycloneintensityforecasts.Unfortunately,watervaporis 346 amongtheleastwellobservedquantitiesintropicalcyclonecores,andthepresenceofdeep 347 convectionandstrongflowssuggeststhatwatervaporpresentsasignificantsamplingproblem. 348 Ontheotherhand,thisverysensitivitytomoisturepresentsasignificantopportunityfor 349 dataassimilation,sincethetimehistoryofintensity,beingstronglyinfluencedbyinnercore 350 moisture,containsimportantinformationaboutthelatter.Ourcrudeinitializationofthe 351 operationalCHIPSmodeltakesadvantageofthisfactbyadjustingtheinitialcoremoistureto 352 matchtherecentlyobservedintensificationrate.Thissuggeststhatassimilationinthetime 19 353 domain,suchas4D-VarorcyclingEnKFwithflow-dependentbackgrounderrorcovariance,may 354 becriticaltothequalityoftropicalcycloneforecastinitialization,provideditimplicitlyor 355 explicitlyrecognizesthecorrelationbetweenintensificationratesandinnercorehumidity. Ourresultssuggestthatexcellentinitializationoftheinstantaneouswindandassociated 356 357 thermalfieldscannotbythemselvesyieldaccurateintensityforecastsabsentahighquality 358 initializationoftroposphericwatervapor,atleastinthestorm’sinnercore.Unlikewith 359 temperatureandwind,thereisnoinstantaneousbalanceconditionthatconstrainswatervapor 360 unlesstheairiscompletelysaturated.Thusimprovementintropicalcycloneintensityforecasts 361 willdependinpartonbetterobservationsofinnercorewatervaporand/ordataassimilation 362 schemesthatareabletolinkinnercoremoisturetoobservedratesofintensification. 363 Acknowledgements:ThefirstauthorgratefullyacknowledgessupportfromONRthroughgrant 364 N000141410062.ThesecondauthorispartiallysupportedbyONRgrantN000140910526and 365 NOAAundertheHurricaneForecastImprovementProgram(HFIP).TheauthorsthankYonghui 366 WengandRobertNystromfortheirhelpontheWRFexperiments.Computingwasconducted 367 attheTexasAdvancedComputingCenter. 368 20 References 369 370 DeMaria,M.,C.R.Sampson,J.A.Knaff,andK.D.Musgrave,2014:Istropicalcycloneintensity guidanceimproving?Bull.Amer.Meteor.Soc.,95,387-398. 371 372 Emanuel,K.,2012:Self-stratificationoftropicalcycloneoutflow:PartII:Implicationsforstorm intensification.J.Atmos.Sci.,69,988-996. 373 374 Emanuel,K.,andF.Zhang,2016:Onthepredictabilityanderrorsourcesoftropicalcyclone 375 intensityforecastsJ.Atmos.Sci.,73,3739-3747.10.1175/JAS-D-16-0100.1. 376 Emanuel,K.,R.Sundararajan,andJ.Williams,2008:Hurricanesandglobalwarming:Results fromdownscalingIPCCAR4simulations.Bull.Amer.Meteor.Soc.,89,347-367. 377 378 Emanuel,K.,C.DesAutels,C.Holloway,andR.Korty,2004:Environmentalcontroloftropical cycloneintensity.J.Atmos.Sci.,61,843-858. 379 380 Emanuel,K.A.,1989:Thefinite-amplitudenatureoftropicalcyclogenesis.J.Atmos.Sci.,46, 3431-3456. 381 382 Gall,R.,J.Franklin,F.Marks,E.N.Rappaport,andF.Toepfer,2013:Thehurricaneforecast improvementproject.Bull.Amer.Meteor.Soc.,94,329-343. 383 384 Munsell,E.B.,F.Zhang,andD.P.Stern,2013:Predictabilityanddynamicsofanon-intensifying tropicalstorm:Erika(2009).J.Atmos.Sci.,70,2505–2524. 385 386 Landsea,C.W.,andJ.L.Franklin,2013:Atlantichurricanedatabaseuncertaintyand presentationofanewdatabaseformat.Mon.Wea.Rev.,141,3576-3592. 387 21 388 Pauluis,O.,andI.M.Held,2002:Entropybudgetofanatmosphereinradiative-convective equilibrium.PartI:Maximumworkandfrictionaldissipation.J.Atmos.Sci.,59,125-139. 389 390 Rappin,E.D.,D.S.Nolan,andK.Emanuel,2010:Thermodynamiccontroloftropical 391 cyclogenesisinenvironmentsofradiative-convectiveequilibriumwithshear.Quart.J. 392 Roy.Meteor.Soc.,136,1954-1971. 393 Schade,L.R.,andK.A.Emanuel,1999:Theocean'seffectontheintensityoftropicalcyclones: 394 Resultsfromasimplecoupledatmosphere-oceanmodel.J.Atmos.Sci.,56,642-651. 395 Simpson,R.H.,andH.Riehl,1958:Mid-troposphericventilationasaconstraintonhurricane 396 developmentandmaintenance.TechnicalConf.onHurricanes,Amer.Meteor.Soc.,D4- 397 10. 398 Skamarock,W.C.,andCoauthors,2008:AdescriptionoftheAdvancedResearchWRFversion3. 399 NCAR/TN–4751STR,113pp.[Availableonlineat 400 http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.] 401 Tang,B.,andK.Emanuel,2010:Midlevelventilation'sconstraintontropicalcycloneintensity.J. Atmos.Sci.,67,1817-1830. 402 403 Tao,D.,andF.Zhang,2014:Effectofenvironmentalshear,sea-surfacetemperatureand 404 ambientmoistureontheformationandpredictabilityoftropicalcyclones:anensemble- 405 meanperspective.J.Adv.Model.EarthSyst.,6,384–404,doi:10.1002/2014MS000314. 22 406 Weng,Y.,andF.Zhang,2012:AssimilatingairborneDopplerradarobservationswithan 407 ensembleKalmanfilterforconvection-permittinghurricaneinitializationandprediction: 408 Katrina(2005).Mon.Wea.Rev.,140,841–859,doi:10.1175/2011MWR3602.1. 409 Weng,Y.,andF.Zhang,2016:Advancesinconvection-permittingtropicalcycloneanalysisand 410 predictionthroughEnKFassimilationofreconnaissanceaircraftobservations.J.Meteor. 411 Soc.Japan,94,345-358. 412 Zhang,F.,andJ.A.Sippel,2009:Effectsofmoistconvectiononhurricanepredictability.J. Atmos.Sci.,66,1944–1961. 413 414 Zhang,F.,andD.Tao,2013:Effectsofverticalwindshearonthepredictabilityoftropical cyclones.J.Atmos.Sci.,70,975–983. 415 416 ZhangF.,Y.Weng,J.A.Sippel,Z.Meng,andC.H.Bishop,2009:Cloud-resolvinghurricane 417 initializationandpredictionthroughassimilationofDopplerradarobservationswithan 418 ensembleKalmanfilter:Humberto(2007).Mon.Wea.Rev.,137,2105–2125. 419 23 420 Figures 421 Figure1:EvolutionovertimeofthemaximumsurfacewindspeedinHurricaneJoaquinas 422 observed(thickblue)andpredictedon12GMTonSeptember29thaccordingtotheNational 423 HurricaneCenter(OFCL,black),andfourobjectiveintensityguidanceproducts:theCoupled 424 HurricaneIntensityPredictionSystem(CHIPS,lightblue),theStatisticalHurricanePrediction 425 (DSHP,green),theGeophysicalFluidDynamicsmodel(GFDL,yellow),andtheHurricane 426 Weather,ResearchandForecastingmodel(HWRF,red). 24 427 Figure2:Ensemblemean(solidblackcontours)andstandarddeviations(coloredshading)of 428 azimuthallyaveragedtangentialwind(left;inms-1)andrelativehumidity(right;inpercent)for 429 theWRFmodelsimulations. 25 180 Best Track Ensemble Members 160 140 V max (knots) 120 100 80 60 40 20 29 30 01 02 September - October 03 430 Figure 3: The intensity forecast of the WRF ensemble using only the PSU WRF-EnKF real-time 431 ensembleanalysisperturbationsintheinner-coreregion.Thethickredlineshowstheensemble 432 memberconsideredtobetheclosestmatchtobest-trackobservations. 433 26 180 Best Track Ensemble Members 160 140 Vmax (knots) 120 100 80 60 40 20 29 30 01 02 03 September - October 434 435 Figure4:AsinFigure3exceptforretainingonlytheinner-coremoistureperturbations.Theinitial 436 wind speed corresponds to PSU WRF-EnKF real-time analysis mean shown in the left panel of 437 Figure2. 438 27 439 440 Figure5:AsinFigure4exceptforusingonlyinitialinner-coremoistureperturbationsabovethe 441 boundarylayer(withalineartransitionzonefromzeroperturbationat900mbtofullperturbation 442 at850mb)outsideoftheeye(fromzeroperturbationsat25kmradiustoperturbationsat50km). 443 TheinitialwindspeedcorrespondstoPSUWRF-EnKFreal-timeanalysismeanshownintheleft 444 panelofFigure2. 445 28 446 Figure6:EvolutionofCHIPShindcasts(red)ofJoaquin,initializedat12GMTon29September 447 2015,comparedtobest-trackintensity(blue).Ina),eachhindcastisinitializedwith d = 0.9 and 448 withtheinitialwindspeedvaryingby ±5 ms -1 fromtheinitialbesttrackvalue.Inb)each 449 hindcastisinitializedwiththeobservedwindspeedbutwith d valuesrangingfrom 0.5 to 1 . 29 450 Figure7:Equilibriumsolutionsfornormalizedmaximumwindasafunctionofnormalized 451 ventilation,forTangandEmanuel(2010;red)andof(6)(blue).Theupperbranchesarestable 452 equilibria,whilethelowerbranchesareunstable. 30 453 Figure8:Solutionof(8)fortheequilibriummaximumwindspeedasafunctionofthe 454 normalizedenvironmentalwindshear,S*.Asbefore,theupperbranchisstablewhilethelower 455 branchisunstable.Theright-mostpointofthecurverepresentsacriticalshearabovewhichno 456 equilibriumsolutionexistsandallsolutionsdecaywithtime. 31 457 Figure9:Evolutionsofensemblesofthesimplemodel(red)initializedat12GMTonSeptember 458 29th2015,comparedtothebest-trackintensity(black)andasinglehindcastusingthefullCHIPS 459 model(blue).Potentialintensity(dashedblue)andenvironmentalshear(green)arealsoshown. 460 Theleftpanelshowsandensembleformedbyvaryingtheinitialintensityby ±5 ms -1 withthe 461 initialvalueof m fixedat 0.3, whiletheensembleintherightisinitializedwiththeobserved 462 intensitybutvariestheinitialvalueof m from 0.1 to 0.6 . 32 463 Figure10:SameasFigure4fromEmanuelandZhang(2016),exceptfortheadditionofroot- 464 mean-squareintensityerrorowingsolelytoinitialinnercoremoistureperturbations(cyan 465 curve).Othercurvesareerrorsresultingfrominitialintensityerroronly(deepblue),errorsin 466 forecastenvironmentalshear(red),initialintensityandforecastsheartogether(yellow), 467 forecasttrackerrors(magenta)andinitialintensityandforecasttrackerrortogether(green). 33
© Copyright 2026 Paperzz