International Tables for Crystallography (2006). Vol. A, Space group 136, pp. 468–469. P 42/m n m D144h No. 136 P 42/m 21/n 2/m 4/m m m Tetragonal Patterson symmetry P 4/m m m Origin at centre (m m m) at 2/m 1 2/m Asymmetric unit 0 ≤ x ≤ 12 ; 0 ≤ y ≤ 21 ; 0 ≤ z ≤ 12 ; x≤y Symmetry operations (1) (5) (9) (13) 1 2(0, 12 , 0) 14 , y, 41 1̄ 0, 0, 0 n( 12 , 0, 21 ) x, 14 , z (2) (6) (10) (14) 2 0, 0, z 2( 12 , 0, 0) x, 41 , 14 m x, y, 0 n(0, 21 , 12 ) 41 , y, z (3) (7) (11) (15) Copyright 2006 International Union of Crystallography 4+ (0, 0, 21 ) 0, 21 , z 2 x, x, 0 4̄+ 21 , 0, z; 12 , 0, 41 m x, x̄, z 468 (4) (8) (12) (16) 4− (0, 0, 21 ) 21 , 0, z 2 x, x̄, 0 4̄− 0, 21 , z; 0, 21 , 14 m x, x, z P 42/m n m No. 136 CONTINUED Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 16 k 1 Reflection conditions General: (1) (5) (9) (13) x, y, z (2) x̄, ȳ, z (3) ȳ + 12 , x + 12 , z + 21 (4) y + 12 , x̄ + 12 , z + 12 1 1 1 1 1 1 (8) ȳ, x̄, z̄ x̄ + 2 , y + 2 , z̄ + 2 (6) x + 2 , ȳ + 2 , z̄ + 2 (7) y, x, z̄ x̄, ȳ, z̄ (10) x, y, z̄ (11) y + 12 , x̄ + 12 , z̄ + 21 (12) ȳ + 12 , x + 12 , z̄ + 21 (16) y, x, z x + 12 , ȳ + 12 , z + 21 (14) x̄ + 12 , y + 12 , z + 12 (15) ȳ, x̄, z 0kl : k + l = 2n 00l : l = 2n h00 : h = 2n Special: as above, plus 8 j ..m x, x, z x̄ + 21 , x + 12 , z̄ + 21 x̄ + 12 , x + 12 , z + 21 x, x, z̄ 8 i m.. x, y, 0 x̄ + 12 , y + 21 , 12 8 h 2.. 0, 21 , z 0, 12 , z̄ 0, 21 , z + 12 0, 21 , z̄ + 21 4 g m . 2m x, x̄, 0 x̄, x, 0 x + 12 , x + 12 , 12 x̄ + 12 , x̄ + 12 , 21 no extra conditions 4 f m . 2m x, x, 0 x̄, x̄, 0 x̄ + 12 , x + 12 , 12 x + 12 , x̄ + 12 , 21 no extra conditions 4 e 2 . mm 0, 0, z 1 2 0, 0, z̄ hkl : h + k + l = 2n 4 d 4̄ . . 0, 21 , 14 0, 21 , 34 1 2 , 0, 41 1 2 , 0, 43 hkl : h + k, l = 2n 4 c 2/m . . 0, 12 , 0 0, 12 , 12 1 2 , 0, 21 1 2 , 0, 0 hkl : h + k, l = 2n 2 b m . mm 0, 0, 12 1 2 , 21 , 0 hkl : h + k + l = 2n 2 a m . mm 0, 0, 0 1 2 , 21 , 12 hkl : h + k + l = 2n x̄, x̄, z x + 12 , x̄ + 12 , z̄ + 21 ȳ + 21 , x + 12 , 12 y, x, 0 x̄, ȳ, 0 x + 12 , ȳ + 21 , 21 1 2 1 2 , 21 , z + 12 1 2 , 0, z̄ + 21 , 0, z + 21 , 21 , z̄ + 12 1 2 1 2 x + 12 , x̄ + 12 , z + 21 no extra conditions x̄, x̄, z̄ y + 12 , x̄ + 21 , 21 ȳ, x̄, 0 no extra conditions hkl : h + k, l = 2n , 0, z̄ , 0, z Symmetry of special projections Along [001] p 4 g m a′ = a b′ = b Origin at 0, 12 , z Along [110] p 2 m m b′ = c a′ = 21 (−a + b) Origin at x, x, 0 Along [100] c 2 m m b′ = c a′ = b Origin at x, 0, 0 Maximal non-isomorphic subgroups I [2] P 4̄ n 2 (118) 1; 2; 7; 8; 11; 12; 13; 14 IIa IIb [2] P 4̄ 21 m (113) [2] P 42 n m (102) [2] P 42 21 2 (94) [2] P 42 /m 1 1 (P42 /m, 84) [2] P 2/m 1 2/m (C m m m, 65) [2] P 2/m 21/n 1 (Pn n m, 58) none none 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 5; 3; 3; 3; 7; 5; 6; 4; 4; 4; 8; 6; 11; 12; 15; 16 13; 14; 15; 16 5; 6; 7; 8 9; 10; 11; 12 9; 10; 15; 16 9; 10; 13; 14 Maximal isomorphic subgroups of lowest index IIc [3] P 42 /m n m (c′ = 3c) (136); [9] P 42 /m n m (a′ = 3a, b′ = 3b) (136) Minimal non-isomorphic supergroups I none II [2] C 42 /m c m (P42 /m m c, 131); [2] I 4/m m m (139); [2] P 4/m b m (c′ = 21 c) (127) 469 International Tables for Crystallography (2006). Vol. A, Space group 164, pp. 540–541. P 3̄ m 1 D33d No. 164 P 3̄ 2/m 1 3̄ m 1 Patterson symmetry P 3̄ m 1 Origin at centre (3̄ m 1) Asymmetric unit Vertices 0 ≤ x ≤ 23 ; 0 ≤ y ≤ 31 ; 0, 0, 0 12 , 0, 0 32 , 13 , 0 0, 0, 1 12 , 0, 1 32 , 13 , 1 0 ≤ z ≤ 1; x ≤ (1 + y)/2; Symmetry operations (1) (4) (7) (10) 1 2 x, x, 0 1̄ 0, 0, 0 m x, x̄, z (2) (5) (8) (11) 3+ 2 3̄+ m 0, 0, z x, 0, 0 0, 0, z; 0, 0, 0 x, 2x, z (3) (6) (9) (12) Trigonal 3− 2 3̄− m Copyright 2006 International Union of Crystallography 0, 0, z 0, y, 0 0, 0, z; 0, 0, 0 2x, x, z 540 y ≤ x/2 No. 164 CONTINUED P 3̄ m 1 Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 12 j 1 Reflection conditions General: (1) (4) (7) (10) x, y, z y, x, z̄ x̄, ȳ, z̄ ȳ, x̄, z (2) (5) (8) (11) (3) (6) (9) (12) ȳ, x − y, z x − y, ȳ, z̄ y, x̄ + y, z̄ x̄ + y, y, z x̄ + y, x̄, z x̄, x̄ + y, z̄ x − y, x, z̄ x, x − y, z no conditions Special: no extra conditions 6 i .m. x, x̄, z x, 2x, z 2x̄, x̄, z 6 h .2. x, 0, 12 0, x, 21 x̄, x̄, 12 x̄, 0, 12 0, x̄, 21 x, x, 12 6 g .2. x, 0, 0 0, x, 0 x̄, x̄, 0 x̄, 0, 0 0, x̄, 0 x, x, 0 3 f . 2/m . 1 2 , 0, 21 0, 12 , 21 1 2 , 12 , 12 3 e . 2/m . 1 2 , 0, 0 0, 12 , 0 1 2 , 21 , 0 2 d 3m. 1 3 , 23 , z 2 3 2 c 3m. 0, 0, z 1 b 3̄ m . 0, 0, 21 1 a 3̄ m . 0, 0, 0 2x, x, z̄ x̄, x, z̄ x̄, 2x̄, z̄ , 13 , z̄ 0, 0, z̄ Symmetry of special projections Along [001] p 6 m m a′ = a b′ = b Origin at 0, 0, z Along [100] p 2 a′ = 12 (a + 2b) Origin at x, 0, 0 b′ = c Maximal non-isomorphic subgroups I [2] P 3 m 1 (156) 1; 2; 3; 10; 11; 12 [2] P 3 2 1 (150) 1; 2; 3; 4; 5; 6 [2] P 3̄ 1 1 (P 3̄, 147) 1; 2; 3; 7; 8; 9 [3] P 1 2/m 1 (C 2/m, 12) 1; 4; 7; 10 [3] P 1 2/m 1 (C 2/m, 12) 1; 5; 7; 11 [3] P 1 2/m 1 (C 2/m, 12) 1; 6; 7; 12 IIa none IIb [2] P 3̄ c 1 (c′ = 2c) (165); [3] H 3̄ m 1 (a′ = 3a, b′ = 3b) (P 3̄ 1 m, 162) Maximal isomorphic subgroups of lowest index IIc [2] P 3̄ m 1 (c′ = 2c) (164); [4] P 3̄ m 1 (a′ = 2a, b′ = 2b) (164) Minimal non-isomorphic supergroups I [2] P 6/m m m (191); [2] P 63 /m m c (194) II [3] H 3̄ m 1 (P 3̄ 1 m, 162); [3] R 3̄ m (obverse) (166); [3] R 3̄ m (reverse) (166) 541 Along [210] p 2 m m a′ = 21 b b′ = c Origin at x, 12 x, 0 International Tables for Crystallography (2006). Vol. A, Space group 166, pp. 544–547. R 3̄ m D53d No. 166 R 3̄ 2/m 3̄ m Patterson symmetry R 3̄ m HEXAGONAL AXES Origin at centre (3̄ m) Asymmetric unit Vertices 0 ≤ x ≤ 23 ; 0 ≤ y ≤ 32 ; 0, 0, 0 23 , 31 , 0 31 , 23 , 0 0, 0, 61 23 , 31 , 16 31 , 23 , 16 0 ≤ z ≤ 16 ; Copyright 2006 International Union of Crystallography Trigonal x ≤ 2y; 544 y ≤ min(1 − x, 2x) No. 166 CONTINUED R 3̄ m Symmetry operations For (0, 0, 0)+ set (1) 1 (4) 2 x, x, 0 (7) 1̄ 0, 0, 0 (10) m x, x̄, z (2) (5) (8) (11) 3+ 2 3̄+ m 0, 0, z x, 0, 0 0, 0, z; 0, 0, 0 x, 2x, z (3) (6) (9) (12) 3− 2 3̄− m For ( 23 , 13 , 13 )+ set (1) t( 32 , 13 , 31 ) (4) 2( 21 , 12 , 0) x, x − 16 , 61 (7) 1̄ 13 , 16 , 16 (10) g( 16 , − 61 , 31 ) x + 12 , x̄, z (2) (5) (8) (11) 3+ (0, 0, 13 ) 31 , 13 , z 2( 12 , 0, 0) x, 16 , 61 3̄+ 13 , − 31 , z; 13 , − 31 , 16 g( 16 , 31 , 13 ) x + 41 , 2x, z (3) (6) (9) (12) 3− (0, 0, 13 ) 31 , 0, z 2 13 , y, 61 3̄− 31 , 23 , z; 13 , 32 , 16 g( 23 , 13 , 31 ) 2x, x, z For ( 13 , 23 , 23 )+ set (1) t( 31 , 23 , 32 ) (4) 2( 12 , 12 , 0) x, x + 16 , 31 (7) 1̄ 61 , 13 , 13 (10) g(− 61 , 61 , 32 ) x + 12 , x̄, z (2) (5) (8) (11) 3+ (0, 0, 23 ) 0, 13 , z 2 x, 31 , 13 3̄+ 23 , 31 , z; 32 , 13 , 13 g( 13 , 32 , 23 ) x, 2x, z (3) (6) (9) (12) 3− (0, 0, 23 ) 31 , 31 , z 2(0, 21 , 0) 16 , y, 31 3̄− − 31 , 13 , z; − 13 , 31 , 13 g( 13 , 16 , 32 ) 2x − 12 , x, z 0, 0, z 0, y, 0 0, 0, z; 0, 0, 0 2x, x, z Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t( 32 , 13 , 31 ); (2); (4); (7) Positions 36 i 1 Reflection conditions Coordinates Multiplicity, Wyckoff letter, Site symmetry (0, 0, 0)+ ( 32 , 13 , 31 )+ (1) (4) (7) (10) x, y, z y, x, z̄ x̄, ȳ, z̄ ȳ, x̄, z (2) (5) (8) (11) ( 13 , 32 , 23 )+ (3) (6) (9) (12) ȳ, x − y, z x − y, ȳ, z̄ y, x̄ + y, z̄ x̄ + y, y, z General: x̄ + y, x̄, z x̄, x̄ + y, z̄ x − y, x, z̄ x, x − y, z hkil : hki0 : hh2hl : hh̄0l : 000l : hh̄00 : −h + k + l = 3n −h + k = 3n l = 3n h + l = 3n l = 3n h = 3n Special: no extra conditions 18 h .m x, x̄, z x, 2x, z 2x̄, x̄, z 18 g .2 x, 0, 12 0, x, 21 x̄, x̄, 12 x̄, 0, 12 0, x̄, 21 x, x, 12 18 f .2 x, 0, 0 0, x, 0 x̄, x̄, 0 x̄, 0, 0 0, x̄, 0 x, x, 0 9 e . 2/m 1 2 , 0, 0 0, 12 , 0 1 2 , 21 , 0 9 d . 2/m 1 2 , 0, 21 0, 21 , 21 1 2 , 21 , 12 6 c 3m 0, 0, z 0, 0, z̄ 3 b 3̄ m 0, 0, 21 3 a 3̄ m 0, 0, 0 2x, x, z̄ x̄, x, z̄ x̄, 2x̄, z̄ Symmetry of special projections Along [001] p 6 m m a′ = 31 (2a + b) b′ = 31 (−a + b) Origin at 0, 0, z Along [100] p 2 a′ = 12 (a + 2b) Origin at x, 0, 0 b′ = 31 (−a − 2b + c) 545 Along [210] p 2 m m a′ = 12 b b′ = 31 c 1 Origin at x, 2 x, 0 R 3̄ m No. 166 CONTINUED HEXAGONAL AXES Maximal non-isomorphic subgroups I [2] R 3 m (160) (1; 2; 3; 10; 11; 12)+ [2] R 3 2 (155) [2] R 3̄ 1 (R 3̄, 148) [3] R 1 2/m (C 2/m, 12) [3] R 1 2/m (C 2/m, 12) [3] R 1 2/m (C 2/m, 12) ⎧ IIa ⎨ [3] P 3̄ m 1 (164) [3] P 3̄ m 1 (164) ⎩ [3] P 3̄ m 1 (164) IIb (1; (1; (1; (1; (1; 2; 2; 4; 5; 6; 3; 3; 7; 7; 7; 4; 5; 6)+ 7; 8; 9)+ 10)+ 11)+ 12)+ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + ( 32 , 13 , 13 ) 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + ( 13 , 23 , 23 ) [2] R 3̄ c (a′ = −a, b′ = −b, c′ = 2c) (167) Maximal isomorphic subgroups of lowest index IIc [2] R 3̄ m (a′ = −a, b′ = −b, c′ = 2c) (166); [4] R 3̄ m (a′ = −2a, b′ = −2b) (166) Minimal non-isomorphic supergroups I [4] P m 3̄ m (221); [4] P n 3̄ m (224); [4] F m 3̄ m (225); [4] F d 3̄m (227); [4] I m 3̄ m (229) II [3] P 3̄ 1 m (a′ = 31 (2a + b), b′ = 31 (−a + b), c′ = 13 c) (162) RHOMBOHEDRAL AXES Maximal non-isomorphic subgroups I [2] R 3 m (160) 1; 2; 3; 10; 11; 12 [2] R 3 2 (155) 1; 2; 3; 4; 5; 6 [2] R 3̄ 1 (R 3̄, 148) 1; 2; 3; 7; 8; 9 [3] R 1 2/m (C 2/m, 12) 1; 4; 7; 10 [3] R 1 2/m (C 2/m, 12) 1; 5; 7; 11 [3] R 1 2/m (C 2/m, 12) 1; 6; 7; 12 IIa none IIb [2] F 3̄ c (a′ = 2a, b′ = 2b, c′ = 2c) (R 3̄ c, 167); [3] P 3̄ m 1 (a′ = a − b, b′ = b − c, c′ = a + b + c) (164) Maximal isomorphic subgroups of lowest index IIc [2] R 3̄ m (a′ = b + c, b′ = a + c, c′ = a + b) (166); [4] R 3̄ m (a′ = −a + b + c, b′ = a − b + c, c′ = a + b − c) (166) Minimal non-isomorphic supergroups I [4] P m 3̄ m (221); [4] P n 3̄ m (224); [4] F m 3̄ m (225); [4] F d 3̄m (227); [4] I m 3̄ m (229) II [3] P 3̄ 1 m (a′ = 31 (2a − b − c), b′ = 13 (−a + 2b − c), c′ = 31 (a + b + c)) (162) 546 Trigonal 3̄ m Patterson symmetry R 3̄ m D53d R 3̄ m R 3̄ 2/m No. 166 RHOMBOHEDRAL AXES (For drawings see hexagonal axes) Origin at centre (3̄ m) Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 12 ; 0, 0, 0 1, 0, 0 1, 1, 0 12 , 21 , 12 Vertices y ≤ x; z ≤ min(y, 1 − x) Symmetry operations (1) (4) (7) (10) 1 2 x̄, 0, x 1̄ 0, 0, 0 m x, y, x (2) (5) (8) (11) 3+ 2 3̄+ m (3) (6) (9) (12) x, x, x x, x̄, 0 x, x, x; 0, 0, 0 x, x, z 3− 2 3̄− m x, x, x 0, y, ȳ x, x, x; 0, 0, 0 x, y, y Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 12 i 1 Reflection conditions General: (1) (4) (7) (10) x, y, z z̄, ȳ, x̄ x̄, ȳ, z̄ z, y, x (2) (5) (8) (11) (3) (6) (9) (12) z, x, y ȳ, x̄, z̄ z̄, x̄, ȳ y, x, z no conditions y, z, x x̄, z̄, ȳ ȳ, z̄, x̄ x, z, y Special: no extra conditions 6 h .m x, x, z 6 g .2 x, x̄, 12 1 2 6 f .2 x, x̄, 0 3 e . 2/m 0, 21 , 12 3 d . 2/m 1 2 , 0, 0 0, 12 , 0 2 c 3m x, x, x x̄, x̄, x̄ 1 b 3̄ m 1 2 1 a 3̄ m 0, 0, 0 z, x, x x, z, x z̄, x̄, x̄ , x, x̄ x̄, 21 , x x̄, x, 12 1 2 , x̄, x x, 12 , x̄ 0, x, x̄ x̄, 0, x x̄, x, 0 0, x̄, x x, 0, x̄ 1 2 , 0, 21 1 2 x̄, x̄, z̄ x̄, z̄, x̄ , 21 , 0 0, 0, 21 , 21 , 12 Symmetry of special projections Along [111] p 6 m m a′ = 31 (2a − b − c) Origin at x, x, x b′ = 13 (−a + 2b − c) Along [11̄0] p 2 a′ = 21 (a + b − 2c) Origin at x, x̄, 0 (Continued on preceding page) 547 b′ = c Along [21̄1̄] p 2 m m a′ = 12 (b − c) b′ = 31 (a + b + c) Origin at 2x, x̄, x̄ International Tables for Crystallography (2006). Vol. A, Space group 167, pp. 548–551. R 3̄ c D63d No. 167 R 3̄ 2/c 3̄ m Patterson symmetry R 3̄ m HEXAGONAL AXES Origin at centre (3̄) at 3̄ c Asymmetric unit Vertices 0 ≤ x ≤ 23 ; 0 ≤ y ≤ 32 ; 0, 0, 0 12 , 0, 0 32 , 13 , 0 0, 0, 121 12 , 0, 121 32 , 13 , 121 0 ≤ z ≤ 121 ; x ≤ (1 + y)/2; 1 2 0, 21 , 0 3, 3,0 1 2 1 0, 21 , 121 3 , 3 , 12 Copyright 2006 International Union of Crystallography Trigonal 548 y ≤ min(1 − x, (1 + x)/2) No. 167 CONTINUED R 3̄ c Symmetry operations For (0, 0, 0)+ set (1) 1 (4) 2 x, x, 14 (7) 1̄ 0, 0, 0 (10) c x, x̄, z (2) (5) (8) (11) 3+ 2 3̄+ c 0, 0, z x, 0, 14 0, 0, z; 0, 0, 0 x, 2x, z (3) (6) (9) (12) 3− 2 3̄− c For ( 23 , 13 , 13 )+ set (1) t( 32 , 13 , 31 ) (4) 2( 21 , 12 , 0) x, x − 16 , 125 (7) 1̄ 13 , 16 , 16 (10) g( 16 , − 61 , 65 ) x + 12 , x̄, z (2) (5) (8) (11) 3+ (0, 0, 13 ) 31 , 13 , z 2( 12 , 0, 0) x, 16 , 125 3̄+ 13 , − 31 , z; 13 , − 31 , 16 g( 16 , 31 , 56 ) x + 41 , 2x, z (3) (6) (9) (12) 3− (0, 0, 13 ) 31 , 0, z 2 13 , y, 125 3̄− 31 , 23 , z; 13 , 32 , 16 g( 23 , 13 , 65 ) 2x, x, z For ( 13 , 23 , 23 )+ set (1) t( 31 , 23 , 32 ) (4) 2( 12 , 12 , 0) x, x + 16 , 121 (7) 1̄ 61 , 13 , 13 (10) g(− 61 , 61 , 61 ) x + 12 , x̄, z (2) (5) (8) (11) 3+ (0, 0, 23 ) 0, 13 , z 2 x, 31 , 121 3̄+ 23 , 31 , z; 32 , 13 , 13 g( 13 , 32 , 16 ) x, 2x, z (3) (6) (9) (12) 3− (0, 0, 23 ) 31 , 31 , z 2(0, 21 , 0) 16 , y, 121 3̄− − 31 , 13 , z; − 13 , 31 , 13 g( 13 , 16 , 61 ) 2x − 12 , x, z 0, 0, z 0, y, 41 0, 0, z; 0, 0, 0 2x, x, z Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t( 32 , 13 , 31 ); (2); (4); (7) Positions 36 f 1 Reflection conditions Coordinates Multiplicity, Wyckoff letter, Site symmetry (0, 0, 0)+ ( 32 , 13 , 31 )+ (1) (4) (7) (10) (2) (5) (8) (11) x, y, z y, x, z̄ + 21 x̄, ȳ, z̄ ȳ, x̄, z + 21 ( 13 , 32 , 23 )+ General: (3) (6) (9) (12) ȳ, x − y, z x − y, ȳ, z̄ + 21 y, x̄ + y, z̄ x̄ + y, y, z + 21 x̄ + y, x̄, z x̄, x̄ + y, z̄ + 12 x − y, x, z̄ x, x − y, z + 12 hkil : hki0 : hh2hl : hh̄0l : 000l : hh̄00 : −h + k + l = 3n −h + k = 3n l = 3n h + l = 3n, l = 2n l = 6n h = 3n Special: as above, plus 18 e .2 x, 0, 14 0, x, 14 18 d 1̄ 1 2 , 0, 0 0, 21 , 0 12 c 3. 0, 0, z 0, 0, z̄ + 12 6 b 3̄ . 0, 0, 0 0, 0, 12 hkil : l = 2n 6 a 32 0, 0, 14 0, 0, 34 hkil : l = 2n x̄, x̄, 41 1 2 , 12 , 0 0, 0, z̄ x̄, 0, 34 0, x̄, 34 0, 12 , 21 1 2 , 0, 21 x, x, 43 1 2 , 12 , 21 0, 0, z + 12 no extra conditions hkil : l = 2n hkil : l = 2n Symmetry of special projections Along [001] p 6 m m a′ = 13 (2a + b) b′ = 31 (−a + b) Origin at 0, 0, z Along [100] p 2 a′ = 61 (2a + 4b + c) Origin at x, 0, 0 549 b′ = 16 (−a − 2b + c) Along [210] p 2 g m a′ = 21 b b′ = 13 c 1 Origin at x, 2 x, 0 R 3̄ c No. 167 CONTINUED HEXAGONAL AXES Maximal non-isomorphic subgroups I [2] R 3 c (161) (1; 2; 3; 10; 11; 12)+ [2] R 3 2 (155) [2] R 3̄ 1 (R 3̄, 148) [3] R 1 2/c (C 2/c, 15) [3] R 1 2/c (C 2/c, 15) [3] R 1 2/c (C 2/c, 15) ⎧ IIa ⎨ [3] P 3̄ c 1 (165) [3] P 3̄ c 1 (165) ⎩ [3] P 3̄ c 1 (165) IIb none (1; (1; (1; (1; (1; 2; 2; 4; 5; 6; 3; 3; 7; 7; 7; 4; 5; 6)+ 7; 8; 9)+ 10)+ 11)+ 12)+ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + ( 32 , 31 , 13 ) 1; 2; 3; 10; 11; 12; (4; 5; 6; 7; 8; 9) + ( 31 , 32 , 23 ) Maximal isomorphic subgroups of lowest index IIc [4] R 3̄ c (a′ = −2a, b′ = −2b) (167); [5] R 3̄ c (a′ = −a, b′ = −b, c′ = 5c) (167) Minimal non-isomorphic supergroups I [4] P n 3̄ n (222); [4] P m 3̄ n (223); [4] F m 3̄ c (226); [4] F d 3̄c (228); [4] I a 3̄ d (230) II [2] R 3̄ m (a′ = −a, b′ = −b, c′ = 12 c) (166); [3] P 3̄ 1 c (a′ = 13 (2a + b), b′ = 31 (−a + b), c′ = 13 c) (163) RHOMBOHEDRAL AXES Maximal non-isomorphic subgroups I [2] R 3 c (161) 1; 2; 3; 10; 11; 12 [2] R 3 2 (155) 1; 2; 3; 4; 5; 6 [2] R 3̄ 1 (R 3̄, 148) 1; 2; 3; 7; 8; 9 [3] R 1 2/c (C 2/c, 15) 1; 4; 7; 10 [3] R 1 2/c (C 2/c, 15) 1; 5; 7; 11 [3] R 1 2/c (C 2/c, 15) 1; 6; 7; 12 IIa none IIb [3] P 3̄ c 1 (a′ = a − b, b′ = b − c, c′ = a + b + c) (165) Maximal isomorphic subgroups of lowest index IIc [4] R 3̄ c (a′ = −a + b + c, b′ = a − b + c, c′ = a + b − c) (167); [5] R 3̄ c (a′ = a + 2b + 2c, b′ = 2a + b + 2c, c′ = 2a + 2b + c) (167) Minimal non-isomorphic supergroups I [4] P n 3̄ n (222); [4] P m 3̄ n (223); [4] F m 3̄ c (226); [4] F d 3̄c (228); [4] I a 3̄ d (230) II [2] R 3̄ m (a′ = 12 (−a + b + c), b′ = 21 (a − b + c), c′ = 12 (a + b − c)) (166); [3] P 3̄ 1 c (a′ = 31 (2a − b − c), b′ = 31 (−a + 2b − c), c′ = 31 (a + b + c)) (163) 550 Trigonal D63d 3̄ m R 3̄ c R 3̄ 2/c Patterson symmetry R 3̄ m No. 167 RHOMBOHEDRAL AXES (For drawings see hexagonal axes) Origin at centre (3̄) at 3̄c Asymmetric unit 1 4 ≤ x ≤ 54 ; 41 ≤ y ≤ 45 ; 41 ≤ z ≤ 34 ; 5 1 1 5 5 1 3 3 3 1 1 1 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 Vertices y ≤ x; z ≤ min(y, 23 − x) Symmetry operations (1) (4) (7) (10) 1 2 x̄ + 12 , 14 , x 1̄ 0, 0, 0 n( 21 , 12 , 21 ) x, y, x 3+ x, x, x 2 x, x̄ + 12 , 41 3̄+ x, x, x; 0, 0, 0 n( 12 , 21 , 12 ) x, x, z (2) (5) (8) (11) (3) (6) (9) (12) 3− x, x, x 2 14 , y + 21 , ȳ 3̄− x, x, x; 0, 0, 0 n( 21 , 12 , 21 ) x, y, y Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 12 f 1 Reflection conditions General: (1) (4) (7) (10) x, y, z z̄ + 12 , ȳ + 21 , x̄ + 12 x̄, ȳ, z̄ z + 12 , y + 21 , x + 12 (2) (5) (8) (11) (3) (6) (9) (12) z, x, y ȳ + 21 , x̄ + 12 , z̄ + 12 z̄, x̄, ȳ y + 21 , x + 12 , z + 12 y, z, x x̄ + 12 , z̄ + 12 , ȳ + 12 ȳ, z̄, x̄ x + 12 , z + 12 , y + 12 hhl : l = 2n hhh : h = 2n Special: as above, plus 6 e .2 x, x̄ + 21 , 41 x̄, x + 21 , 43 6 d 1̄ 1 2 4 c 3. x, x, x 2 b 3̄ . 0, 0, 0 2 a 32 1 4 , 0, 0 , 14 , 41 1 4 3 4 , x, x̄ + 21 , x̄, x + 21 0, 21 , 0 x̄ + 12 , 14 , x x + 12 , 34 , x̄ 0, 0, 12 x̄ + 12 , x̄ + 21 , x̄ + 12 1 2 no extra conditions , 12 , 0 x̄, x̄, x̄ 1 2 , 0, 21 0, 12 , 21 x + 21 , x + 12 , x + 12 hkl : h + k + l = 2n hkl : h + k + l = 2n 1 2 , 21 , 12 hkl : h + k + l = 2n 3 4 , 43 , 34 hkl : h + k + l = 2n Symmetry of special projections Along [111] p 6 m m a′ = 31 (2a − b − c) Origin at x, x, x b′ = 13 (−a + 2b − c) Along [11̄0] p 2 a′ = 21 (a + b − 2c) Origin at x, x̄, 0 (Continued on preceding page) 551 b′ = 12 c Along [21̄1̄] p 2 g m a′ = 21 (b − c) b′ = 13 (a + b + c) Origin at 2x, x̄, x̄ International Tables for Crystallography (2006). Vol. A, Space group 186, pp. 584–585. P 63 m c C6v4 No. 186 P 63 m c 6mm Patterson symmetry P 6/m m m Origin on 3 m 1 on 63 m c Asymmetric unit Vertices 0 ≤ x ≤ 23 ; 0 ≤ y ≤ 31 ; 0, 0, 0 12 , 0, 0 32 , 13 , 0 0, 0, 1 12 , 0, 1 32 , 13 , 1 x ≤ (1 + y)/2; 0 ≤ z ≤ 1; y ≤ x/2 Symmetry operations (1) (4) (7) (10) 1 2(0, 0, 21 ) 0, 0, z m x, x̄, z c x, x, z (2) (5) (8) (11) 3+ 0, 0, z 6− (0, 0, 12 ) 0, 0, z m x, 2x, z c x, 0, z Hexagonal (3) (6) (9) (12) Copyright 2006 International Union of Crystallography 3− 0, 0, z 6+ (0, 0, 21 ) 0, 0, z m 2x, x, z c 0, y, z 584 No. 186 CONTINUED P 63 m c Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 12 Reflection conditions General: d 1 (1) (4) (7) (10) 6 c .m. x, x̄, z 2 b 3m. 1 3 2 a 3m. 0, 0, z (2) (5) (8) (11) x, y, z x̄, ȳ, z + 12 ȳ, x̄, z y, x, z + 12 (3) (6) (9) (12) ȳ, x − y, z y, x̄ + y, z + 21 x̄ + y, y, z x − y, ȳ, z + 21 x̄ + y, x̄, z x − y, x, z + 12 x, x − y, z x̄, x̄ + y, z + 12 hh2hl : l = 2n 000l : l = 2n Special: as above, plus , 32 , z x, 2x, z 2 3 2x̄, x̄, z x̄, x, z + x̄, 2x̄, z + 1 2 , 31 , z + 21 1 2 2x, x, z + 1 2 no extra conditions hkil : l = 2n or h − k = 3n + 1 or h − k = 3n + 2 hkil : l = 2n 0, 0, z + 21 Symmetry of special projections Along [001] p 6 m m a′ = a b′ = b Origin at 0, 0, z Along [100] p 1 g 1 a′ = 12 (a + 2b) b′ = c Origin at x, 0, 0 Maximal non-isomorphic subgroups I [2] P 63 1 1 (P 63 , 173) 1; 2; 3; 4; 5; 6 [2] P 3 1 c (159) 1; 2; 3; 10; 11; 12 [2] P 3 m 1 (156) 1; 2; 3; 7; 8; 9 [3] P 21 m c (C m c 21 , 36) 1; 4; 7; 10 [3] P 21 m c (C m c 21 , 36) 1; 4; 8; 11 [3] P 21 m c (C m c 21 , 36) 1; 4; 9; 12 IIa none IIb [3] H 63 m c (a′ = 3a, b′ = 3b) (P 63 c m, 185) Maximal isomorphic subgroups of lowest index IIc [3] P 63 m c (c′ = 3c) (186); [4] P 63 m c (a′ = 2a, b′ = 2b) (186) Minimal non-isomorphic supergroups I [2] P 63 /m m c (194) II [3] H 63 m c (P 63 c m, 185); [2] P 6 m m (c′ = 21 c) (183) 585 Along [210] p 1 m 1 a′ = 12 b b′ = 21 c 1 Origin at x, 2 x, 0 International Tables for Crystallography (2006). Vol. A, Space group 216, pp. 658–660. F 4̄ 3 m Td2 No. 216 F 4̄ 3 m 4̄ 3 m Patterson symmetry F m 3̄ m Origin at 4̄ 3 m Asymmetric unit Vertices 0 ≤ x ≤ 12 ; 0 ≤ y ≤ 41 ; − 41 ≤ z ≤ 14 ; 0, 0, 0 12 , 0, 0 41 , 14 , 14 41 , 41 , − 41 Copyright 2006 International Union of Crystallography Cubic y ≤ min(x, 12 − x); 658 −y ≤ z ≤ y No. 216 CONTINUED Symmetry operations For (0,0,0)+ set (1) 1 (5) 3+ x,x,x (9) 3− x,x,x (13) m x,x,z (17) m x,y,y (21) m x,y,x (2) (6) (10) (14) (18) (22) 2 3+ 3− m 4̄+ 4̄− For (0, 12 , 12 )+ set (1) t(0, 21 , 12 ) (5) 3+ ( 31 , 13 , 13 ) x− 31 ,x− 16 ,x (9) 3− ( 31 , 13 , 13 ) x− 61 ,x+ 16 ,x (13) g( 14 , 41 , 12 ) x− 41 ,x,z (17) g(0, 21 , 12 ) x,y,y (21) g( 41 , 21 , 14 ) x− 41 ,y,x (2) (6) (10) (14) (18) (22) For ( 21 ,0, 21 )+ set (1) t( 12 ,0, 21 ) (5) 3+ ( 31 , 13 , 13 ) x+ 61 ,x− 16 ,x (9) 3− ( 13 , 13 , 13 ) x− 61 ,x− 13 ,x (13) g( 41 , 41 , 12 ) x+ 41 ,x,z (17) g( 12 , 41 , 14 ) x,y− 41 ,y (21) g( 21 ,0, 12 ) x,y,x For ( 21 , 12 ,0)+ set (1) t( 21 , 21 ,0) (5) 3+ ( 31 , 13 , 13 ) x+ 61 ,x+ 13 ,x (9) 3− ( 13 , 13 , 13 ) x+ 31 ,x+ 16 ,x (13) g( 12 , 21 ,0) x,x,z (17) g( 12 , 41 , 14 ) x,y+ 41 ,y (21) g( 41 , 21 , 14 ) x+ 41 ,y,x 0,0,z x̄,x, x̄ x, x̄, x̄ x, x̄,z x,0,0; 0,0,0 0,y,0; 0,0,0 (3) (7) (11) (15) (19) (23) 2 3+ 3− 4̄+ 4̄− m 2(0,0, 21 ) 0, 41 ,z 3+ x̄,x+ 12 , x̄ 3− (− 13 , 31 , 13 ) x+ 16 , x̄+ 61 , x̄ g(− 41 , 41 , 12 ) x+ 14 , x̄,z 4̄+ x, 12 ,0; 0, 21 ,0 4̄− 14 ,y, 41 ; 14 , 41 , 14 (3) (7) (11) (15) (19) (23) 2(0, 21 ,0) 0,y, 41 3+ (− 13 , 31 , 31 ) x+ 13 , x̄− 61 , x̄ 3− x̄+ 12 , x̄+ 12 ,x 4̄+ 41 , 14 ,z; 41 , 14 , 41 4̄− x,0, 12 ; 0,0, 21 g(− 41 , 12 , 41 ) x̄+ 41 ,y,x (2) (6) (10) (14) (18) (22) 2(0,0, 21 ) 14 ,0,z 3+ ( 13 ,− 31 , 13 ) x̄+ 61 ,x+ 61 , x̄ 3− x+ 21 , x̄, x̄ g( 14 ,− 41 , 12 ) x+ 14 , x̄,z 4̄+ x, 14 , 41 ; 14 , 41 , 14 4̄− 21 ,y,0; 21 ,0,0 (3) (7) (11) (15) (19) (23) 2 3+ 3− 4̄+ 4̄− m (2) (6) (10) (14) (18) (22) 2 3+ 3− m 4̄+ 4̄− (3) (7) (11) (15) (19) (23) 2(0, 21 ,0) 14 ,y,0 3+ x+ 12 , x̄, x̄ 3− ( 13 , 13 ,− 31 ) x̄+ 13 , x̄+ 61 ,x 4̄+ 21 ,0,z; 12 ,0,0 4̄− x, 14 , 14 ; 41 , 14 , 41 g( 41 , 21 ,− 41 ) x̄+ 41 ,y,x 1 4 , 41 ,z x̄+ 21 ,x, x̄ x, x̄+ 12 , x̄ x+ 21 , x̄,z x, 14 ,− 41 ; 41 , 14 ,− 41 1 1 1 1 1 4 ,y,− 4 ; 4 , 4 ,− 4 0,y,0 x, x̄, x̄ x̄, x̄,x 0,0,z; 0,0,0 x,0,0; 0,0,0 x̄,y,x 1 4 ,y, 14 x+ 12 , x̄− 12 , x̄ x̄+ 12 , x̄,x 1 1 1 1 1 4 ,− 4 ,z; 4 ,− 4 , 4 1 1 1 x,− 4 , 4 ; 4 ,− 41 , 41 x̄+ 12 ,y,x F 4̄ 3 m (4) (8) (12) (16) (20) (24) 2 3+ 3− 4̄− m 4̄+ x,0,0 x̄, x̄,x x̄,x, x̄ 0,0,z; 0,0,0 x,y,ȳ 0,y,0; 0,0,0 (4) (8) (12) (16) (20) (24) 2 3+ 3− 4̄− m 4̄+ x, 14 , 14 x̄, x̄+ 12 ,x x̄− 21 ,x+ 21 , x̄ − 41 , 14 ,z; − 14 , 41 , 14 x,y+ 21 ,ȳ − 41 ,y, 41 ; − 14 , 41 , 14 (4) (8) (12) (16) (20) (24) 2( 21 ,0,0) x,0, 14 3+ x̄+ 21 , x̄+ 21 ,x 3− ( 13 ,− 31 , 31 ) x̄− 61 ,x+ 13 , x̄ 4̄− 41 , 14 ,z; 41 , 14 , 14 g( 12 ,− 41 , 14 ) x,y+ 41 ,ȳ 4̄+ 0,y, 21 ; 0,0, 21 (4) (8) (12) (16) (20) (24) 2( 12 ,0,0) x, 41 ,0 3+ ( 13 , 31 ,− 31 ) x̄+ 61 , x̄+ 13 ,x 3− x̄,x+ 12 , x̄ 4̄− 0, 21 ,z; 0, 21 ,0 g( 12 , 41 ,− 14 ) x,y+ 41 ,ȳ 4̄+ 41 ,y, 14 ; 41 , 14 , 14 Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 12 , 21 ); t( 12 , 0, 21 ); (2); (3); (5); (13) Positions Multiplicity, Wyckoff letter, Site symmetry 96 i 1 Coordinates (0, 0, 0)+ (0, 12 , 21 )+ (1) (5) (9) (13) (17) (21) x, y, z z, x, y y, z, x y, x, z x, z, y z, y, x (2) (6) (10) (14) (18) (22) Reflection conditions ( 12 , 0, 21 )+ ( 12 , 21 , 0)+ (3) (7) (11) (15) (19) (23) x̄, ȳ, z z, x̄, ȳ ȳ, z, x̄ ȳ, x̄, z x̄, z, ȳ z, ȳ, x̄ h, k, l permutable General: (4) (8) (12) (16) (20) (24) x̄, y, z̄ z̄, x̄, y y, z̄, x̄ y, x̄, z̄ x̄, z̄, y z̄, y, x̄ hkl : 0kl : hhl : h00 : x, ȳ, z̄ z̄, x, ȳ ȳ, z̄, x ȳ, x, z̄ x, z̄, ȳ z̄, ȳ, x h + k, h + l, k + l = 2n k, l = 2n h + l = 2n h = 2n Special: no extra conditions 48 h ..m x, x, z z̄, x̄, x x̄, x̄, z z̄, x, x̄ 24 g 2 . mm x, 14 , 41 x̄, 34 , 41 1 4 24 f 2 . mm x, 0, 0 x̄, 0, 0 0, x, 0 16 e .3m x, x, x x̄, x̄, x x̄, x, x̄ 4 d 4̄ 3 m 3 4 , 34 , 43 4 c 4̄ 3 m 1 4 , 14 , 41 4 b 4̄ 3 m 1 2 , 12 , 21 4 a 4̄ 3 m 0, 0, 0 x̄, x, z̄ x, z, x , x, 41 x, x̄, z̄ x̄, z, x̄ 1 4 z, x, x x, z̄, x̄ , x̄, 34 1 4 0, x̄, 0 x, x̄, x̄ 659 , 14 , x 0, 0, x z, x̄, x̄ x̄, z̄, x 3 4 , 41 , x̄ 0, 0, x̄ F 4̄ 3 m No. 216 CONTINUED Symmetry of special projections Along [001] p 4 m m a′ = 12 a b′ = 12 b Origin at 0, 0, z Along [111] p 3 1 m a′ = 61 (2a − b − c) Origin at x, x, x b′ = 16 (−a + 2b − c) Along [110] c 1 m 1 a′ = 12 (−a + b) b′ = c Origin at x, x, 0 Maximal non-isomorphic subgroups I [2] F 2 3 1 (F 2 3, 196) (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12)+ [3] F 4̄ 1 m (I 4̄ m 2, 119) [3] F 4̄ 1 m (I 4̄ m 2, 119) [3] F 4̄ 1 m (I 4̄ m 2, 119) [4] F 1 3 m (R 3 m, 160) [4] F 1 3 m (R 3 m, 160) [4] F 1 3 m (R 3 m, 160) [4] F 1 3 m (R 3 m, 160) [4] P 4̄ 3 m (215) IIa [4] P 4̄ 3 m (215) [4] P 4̄ 3 m (215) [4] P 4̄ 3 m (215) [4] P 4̄ 3 m (215) [4] P 4̄ 3 m (215) IIb [4] P 4̄ 3 m (215) [4] P 4̄ 3 m (215) (1; (1; (1; (1; (1; (1; (1; 2; 2; 2; 5; 6; 7; 8; 3; 4; 13; 14; 15; 16)+ 3; 4; 17; 18; 19; 20)+ 3; 4; 21; 22; 23; 24)+ 9; 13; 17; 21)+ 12; 14; 20; 21)+ 10; 14; 17; 23)+ 11; 13; 20; 23)+ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24 1; 2; 3; 4; 13; 14; 15; 16; (9; 10; 11; 12; 17; 18; 19; 20) + (0, 21 , 21 ); (5; 6; 7; 8; 21; 22; 23; 24) + ( 21 , 0, 21 ) 1; 2; 3; 4; 17; 18; 19; 20; (9; 10; 11; 12; 21; 22; 23; 24) + ( 21 , 0, 21 ); (5; 6; 7; 8; 13; 14; 15; 16) + ( 21 , 12 , 0) 1; 2; 3; 4; 21; 22; 23; 24; (5; 6; 7; 8; 17; 18; 19; 20) + (0, 21 , 21 ); (9; 10; 11; 12; 13; 14; 15; 16) + ( 21 , 12 , 0) 1; 5; 9; 13; 17; 21; (4; 6; 11; 15; 20; 22) + (0, 21 , 12 ); (3; 8; 10; 16; 18; 23) + ( 21 , 0, 21 ); (2; 7; 12; 14; 19; 24) + ( 21 , 12 , 0) 1; 6; 12; 14; 20; 21; (4; 5; 10; 16; 17; 22) + (0, 12 , 21 ); (3; 7; 11; 15; 19; 23) + ( 21 , 0, 21 ); (2; 8; 9; 13; 18; 24) + ( 21 , 12 , 0) 1; 7; 10; 14; 17; 23; (4; 8; 12; 16; 20; 24) + (0, 12 , 21 ); (3; 6; 9; 15; 18; 21) + ( 12 , 0, 21 ); (2; 5; 11; 13; 19; 22) + ( 21 , 12 , 0) 1; 8; 11; 13; 20; 23; (4; 7; 9; 15; 17; 24) + (0, 12 , 12 ); (3; 5; 12; 16; 19; 21) + ( 21 , 0, 21 ); (2; 6; 10; 14; 18; 22) + ( 21 , 12 , 0) none Maximal isomorphic subgroups of lowest index IIc [27] F 4̄ 3 m (a′ = 3a, b′ = 3b, c′ = 3c) (216) Minimal non-isomorphic supergroups I [2] F m 3̄ m (225); [2] F d 3̄ m (227) II [2] P 4̄ 3 m (a′ = 21 a, b′ = 12 b, c′ = 12 c) (215) 660
© Copyright 2026 Paperzz