Vismon: Facilitating Analysis of Trade

VISMON: FACILITATING ANALYSIS OF TRADE-OFFS,
UNCERTAINTY, AND SENSITIVITY IN FISHERIES
MANAGEMENT DECISION MAKING
by
Maryam Booshehrian
B.Sc. Sharif University of Technology, 2005
M.Sc., Sharif University of Technology, 2007
a Thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science
in the
School of Computing Science
Faculty of Applied Sciences
c Maryam Booshehrian 2012
SIMON FRASER UNIVERSITY
Fall 2012
All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance
with the law, particularly if cited appropriately.
APPROVAL
Name:
Maryam Booshehrian
Degree:
Master of Science
Title of Thesis:
Vismon: Facilitating Analysis of Trade-Offs, Uncertainty, and
Sensitivity in Fisheries Management Decision Making
Examining Committee:
Dr. Alexandra Fedorova, Associate Professor
Chair
Dr. Torsten Möller
Senior Supervisor
Professor, Computing Science
Dr. Randall Peterman
Co-Supervisor
Professor, Resource and Environmental Management
Dr. Tamara Munzner
Co-Supervisor
Professor, Computer Science
University of British Columbia
Dr. Hao Zhang
Internal Examiner
Associate Professor, Computing Science
Date Approved:
ii
Abstract
In this work, we present an analysis and abstraction of the data and task in the domain
of fisheries management, and the design and implementation of the Vismon tool to address
the identified requirements. Vismon was designed to support sophisticated data analysis of
simulation results by managers who are highly knowledgeable about the fisheries domain
but not experts in simulation software and statistical data analysis. The previous workflow
required the scientists who built the models to spearhead the analysis process. The features
of Vismon include sensitivity analysis, comprehensive and global trade-offs analysis, and a
staged approach to the visualization of the uncertainty of the underlying simulation model.
The tool was iteratively refined through a multi-year engagement with fisheries scientists
with a two-phase approach, where an initial diverging experimentation phase to test many
alternatives was followed by a converging phase where the set of multiple linked views that
proved effective were integrated together in a useable way. We performed a user study in
Alaska among a group of fisheries scientists and managers to examine the usefulness of Vismon in data analysis. To date, several fisheries scientists have used Vismon to communicate
with policy makers, and it is scheduled for deployment to policy makers in Alaska.
iii
to my parents, Fatemeh and Mohammad Hassan
whose love and support enlightened the path
.
to my husband, Mehran
without whom this would not be finished
.
to my daughter, Avina
who gave me joy and enthusiasm
iv
“Data is not information;
information is not knowledge;
knowledge is not understanding;
understanding is not wisdom.”
— Clifford Stoll
v
Acknowledgments
I would like to thank my supervisor, Dr. Torsten Möller, for finding a project that suitably
matched my passion and kept me enthusiastic during these years. I also would like to thank
Dr. Randall M. Peterman for introducing the great world of fisheries science to me. His
productive criticism pushed me to think about things more deeply. I also thank Dr. Tamara
Munzner. Her experience and knowledge in her field helped me gain greater understanding
of the research work.
I also thank my labmates in GrUVi and SCIRF lab. They made the lab a more enjoyable
place to work in. My many years of study at SFU was special because of the great people
working here.
I would like thank my parents and my brother, Ahmad, and my sisters, Tara and Mahnaz.
Although there were far from me, their understanding and support made me feel they were
close-by all the time.
And finally, I am truly thankful to my husband, Mehran. His endless conversations,
reviews, and critiques were of great assistance in my research.
This thesis is based on the following paper:
• Maryam Booshehrian, Torsten Möller, Randall M. Peterman, and Tamara Munzner.
”Vismon: Facilitating Analysis of Trade-Offs, Uncertainty, and Sensitivity In Fisheries Management Decision Making”. Computer Graphics Forum (Proceedings of
Eurographics Conference on Visualization 2012 (EuroVis 2012)), vol. 31, no. 3, pp.
1235-1244.
The paper received the second best paper award in EuroVis 2012, in June 2012.
vi
Contents
Approval
ii
Abstract
iii
Dedication
iv
Quotation
v
Acknowledgments
vi
Contents
vii
List of Tables
ix
List of Figures
x
1 Introduction
1
2 Fisheries Background
3
2.1
Fisheries Policy Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
2.2
Fisheries Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
3 Data and Task Analysis
6
3.1
The AYK Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
3.2
Data Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
3.3
Analysis Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
3.4
Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
vii
4 Related Work
14
4.1
Multidimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2
Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
Uncertainty Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4
Fisheries Visualization Tools
. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Vismon Interface
17
5.1
Constraint Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2
Contours Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3
Trade-offs Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4
General Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Case Study
6.1
36
AYK Chum Salmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Process and Validation
46
7.1
Two-Phase Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2
Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3
Staged Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4
Validation and Initial Deployment Outcome . . . . . . . . . . . . . . . . . . . 53
7.4.1
Initial Deployment in Alaska . . . . . . . . . . . . . . . . . . . . . . . 53
8 Conclusion and Future Work
64
Appendix A Questionnaire
66
Appendix B Vismon Versions
74
viii
List of Tables
3.1
Analysis tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1
Q3 Results: The participants in the workshop were either managers or fisheries scientists. Only one participant did not give his/her occupation.
7.2
. . . . 54
Q4 Results: Division/Section of respondents, who came from Alaska Department of Food and Game (ADF&G), U.S. Fish and Wildlife Service (USFWS),
or universities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3
Q6 : Previous tools or methods used to carry out the kind of analysis supported by Vismon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4
Q7 and Q8 Results: Number of management options and indicators in fisheries analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ix
List of Figures
3.1
The Arctic-Yukon-Kuskokwim (AYK) region of Alaska, U.S.A. . . . . . . . .
3.2
The simulation model used by Vismon takes two inputs, known as manage-
7
ment options, and produces groups of output, called indicators. This example
has three groups of indicators, each with a median, average, CV value, and a
percentage of simulated years with undesirable behaviour. The data underlying each summarized indicator are from 500 Monte Carlo trials.
3.3
. . . . . .
8
The AYK model has two management options: Escapement target (X axis)
and Harvest rate (Y axis). The plots show the contours of the statistical
summaries of the 3 indicators in the high-level dataset. The indicators are
Escapement (top row), Subsistence catch (middle row), and Commercial catch
(bottom row). The statistical measures are Median, Average, CV, and %,
from left to right, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1
The Vismon interface: (a) Constraint pane, top-left, shows the list of management options and indicators in separate tabs; (b) Contour Plot Matrix pane,
top-right, shows the contour plots of indicators as functions of the two management options and supports scenario selection; (c) Trade-offs pane, bottom,
shows detail with the indicators for the selected scenarios; (d) Separate sliders
are assigned to management options and indicators in the Constraint pane. . 18
5.2
The Constraint pane: (a) Management Options tab shows bidirectional sliders
and two text fields for each management option; (b) Indicators tab shows
single handle sliders and one text field for each indicator. The handle’s small
flag and the label Best show the desirable direction for the indicator (i.e.,
either minimum or maximum value).
x
. . . . . . . . . . . . . . . . . . . . . . 19
5.3
(a) Moving the management option slider results in (b) straight line sweeping
out horizontally or vertically to change the active region of the contour plots.
5.4
(a) Moving the indicator slider results in (b) complex and non-obvious shapes
for the active region.
5.5
20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
The Constraint pane sliders become scented widgets showing histograms on
demand. (a) MC Trials shows the distribution of all indicator values across
all Monte Carlo trials (500 in our example data). (b) Selecting a scenario
shows its distribution vs. the full distribution, log-scaled vertically. (c)
Probabilistic Objectives allows the user to set a second probabilistic constraint. (d) Any histogram can show the cumulative density function rather
than the direct probability density function.
5.6
. . . . . . . . . . . . . . . . . . 22
The Contours pane shows a contour plot matrix of two-dimensional plots for
each active output indicator. Numeric legends on contour lines are automatically shown when the plot size is sufficiently large.
5.7
. . . . . . . . . . . . . . 24
A contour plot can (a) be turned off (by selecting Delete plot) and (b) be
turned on with a right-mouse popup menu. . . . . . . . . . . . . . . . . . . . 25
5.8
Several colourmaps are build in Vismon for colouring the contour plots. The
contour plots are coloured by default with the first sequential blue-white
colourmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.9
Indicators tab in the Contours pane shows the list of selected indicators.
. . 27
5.10 Scenarios tab in the Trade-offs pane shows the list of selected scenarios. Here,
the user can (a) change the default colour of a scenario, (b) make a scenario
invisible or visible, (c) select a scenario by clicking on its associated row,
(d) delete a scenario, or (e) create a new scenario by typing the values of
management options.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.11 Contour plots can show (a) small points showing the underlying 11×11 grid of
our example data that is the basis for isocontour interpolation, (b) the points
size coded in two directions to summarize the underlying uncertainty as two
numbers, (c) a histogram showing the full probability distribution for the
point under the cursor, (d) the X’d out region from probabilistic constraints,
for comparison to the greyed-out region from the deterministic constraints. . 29
xi
5.12 The Trade-offs pane shows a detailed assessment of the trade-offs between
the selected scenarios. Coloured bars are associated with scenarios whereas
the grey bars are associated with the scenario represented by the cross-hair’s
current location on a contour plot. . . . . . . . . . . . . . . . . . . . . . . . . 30
5.13 The plots in the Trade-offs pane can be grouped in two modes: (a) the default
mode is to group outputs by indicator, showing one plot for each indicator
with a different coloured bar for each scenario; (b) the second mode is to
group outputs by scenario, having one plot for each scenario with the bar
heights showing all of its indicators. In Group by Scenario mode, the bar
heights are normalized.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.14 Plots in the Trade-offs pane can be sorted by the value of any indicator: (a)
when the plots are grouped by indicator, the bars in all of them are sorted by
the value of the Sort by indicator; in this case Average commercial catch.
The bars for the selected indicator are displayed in the increasing order of
heights; (b) when the plots are grouped by scenario, the plots are sorted by
the value of the Sort by indicator, rather than the default based on the order
in which the scenarios were created. The selected indicator is a grey outline
box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.15 The Trade-offs pane can show uncertainty information on bars in four ways.
(a) None. (b) Error bars. (c) Box plots. (d) Shaded distributions. . . . . . . 33
5.16 The Trade-offs pane shows small multiples of three possible plot types: (a)
Bar charts; (b) Multipodes plot; (c) Star glyph.
. . . . . . . . . . . . . . . . 33
5.17 Vismon enables the users to create scatterplots of any two indicators. Coloured
dots are related to user-selected scenarios. Grey dots are the combination of
management options that fall into the acceptable region, whereas white dots
are the combinations that fall into the unacceptable region given the constraint limits.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.18 Users can add reference lines to contour plots at specific values. (a) The Reference Lines window in which the user can add reference lines; (b) Reference
lines are shown on contour plots. . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1
On startup, no constraint has been set, so there is no grey, inactive region on
contour plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
xii
6.2
After setting a constraint, the active region has an irregular shape.
. . . . . 39
6.3
A second constraint shrinks the region more. . . . . . . . . . . . . . . . . . . 39
6.4
The third constraint shrinks the active region again. . . . . . . . . . . . . . . 40
6.5
Clicking on Contour plots selects scenarios. The scenarios are displayed in
the Trade-offs pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6
Any contour plot can be turned off using a menu available through a rightmouse click.
6.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The plots in the Trade-offs pane are switched to the box plot uncertainty
display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.8
The plots in the Trade-offs pane are switched to the shaded distribution
uncertainty display.
6.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
The plots are grouped by scenario. Labels for the bars appear on mouseover.
42
6.10 The bars are sorted by the Average commercial catch indicator. In the
Constraint pane, the MC Trials histograms are turned on.
. . . . . . . . . . 43
6.11 Choosing the red scenario shows that distribution against the rest at log scale. 43
6.12 The histograms on Contour plots are turned on. A new light blue scenario is
selected based on the floating histograms. . . . . . . . . . . . . . . . . . . . . 44
6.13 The user turns on the second set of histograms underneath the sliders in the
Constraint pane, and sets a probabilistic limit to the Average commercial
catch. The Contour plots now have many crossed out locations on top of
the deterministic constraints (greyed out regions) due to the probabilistic
constraint.
7.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The first-phase prototype of Vismon was developed in a diverging phase. It
included many views that could be created by the user. During that phase,
we gathered feedback for the target users about various views, and concluded
that the users were showing a tendency to use contour plots and scatterplots,
as these were the most familiar to the target users. In addition, the Tradeoffs pane (top-left) was showing the scenarios in separate window which was
overlapping Vismon’s main window. . . . . . . . . . . . . . . . . . . . . . . . 47
xiii
7.2
The Overview pane versus the Constraint pane: (a) In the first-phase prototype of Vismon, the Overview pane (renamed to Constraint in the later
versions) contained the list of management options as well as indicators. The
constraint sliders for indicators were two-way, allowing the user to add constraints to both minimum and maximum values. (b) In the final version of
Vismon, the Constraint pane has two separate tabs, one for management options and the other for indicators. The two-way sliders in the earlier Overview
pane are substituted with one-way sliders, because there is no need to have
both minimum and maximum constraints.
7.3
. . . . . . . . . . . . . . . . . . . 49
The first-phase prototype of Vismon included a correlation matrix. It showed
the correlation value of every two indicators in the cell connecting the two
indicators. The user was able to see the scatterplot of any two indicators,
instead of their correlation value by clicking on their connecting cell. The
colour coding encoded the “goodness” of the correlation between the two
indicators, based on the maximum/minimum preferability.
7.4
. . . . . . . . . . 50
Parallel coordinates were among the many views included in the first-phase
prototype of Vismon. However, they were rejected by the target users.
7.5
. . . 51
(a) The Probability Statement plot was an experimental visual encoding of
uncertainty. It was a two-dimensional plot with the horizontal axis showing
indicator values, from minimum to maximum, and the vertical axis showing probabilities from 0 to 1. A pixel, had a greyscale value indicating the
percentage of management option combinations that satisfied the axis as the
boundary value, and the y axis value as the probability value. This plot
proved to be complicated. (b) The Probability Objectives histogram is substituted the complex Probability Statement plot. It shows only a single one
of those curves. The Probability Statement plot in (a) is annotated with a
red line to show where the Probability Objectives histogram (shown in (b)) is
situated.
7.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Q9 Results: Usefulness of 9 visual encodings on a 5-point Likert scale. On
the left is 1, very valuable; on the right is 5, not very valuable. High frequency
on the left indicates the plot being more valuable, but on the right indicates
the plot being less valuable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
xiv
7.7
Q10 Results: Usefulness of Vismon in data analysis on a 5-point Likert scale.
On the left is 1, strongly agree; on the right is 5, strongly disagree. Note that
high frequency on the left indicates more agreeing, and on the right indicates
more disagreeing.
7.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Q11 Results: How Vismon improved the communication between different
groups of interest on a 5-point Likert scale. On the left is 1, strongly agree;
on the right is 5, strongly disagree. Note that high frequency on the left
indicates more agreeing, and on the right indicates more disagreeing.
xv
. . . . 63
Chapter 1
Introduction
Fisheries management involves the regulation of fishing to balance the interests of groups
of people who want to catch fish now, with the goal of sustaining viable fish populations
for the future. Policy makers make these regulatory decisions in consultation with fisheries scientists, who run extensive computer simulations informed by real-world data. The
sophistication of these simulations has steadily increased, and they now generate complex
multi-dimensional datasets. The latest simulation models are stochastic and time-dynamic
and reflect the variation in environmental influences and uncertainties of many processes [?].
The greatest need in this domain is to analyze the relationship between the simulation inputs
and outputs. That is, there is a need to quantify tradeoffs among the simulation outputs in
the form of outcome indicators, which are produced by the set of management options that
are part of the simulation inputs. A second goal is to support sensitivity and uncertainty
analysis; that is, to understand when small changes in inputs lead to relatively large changes
in outputs.
However, the sophistication of visualization support for the analysis of, and communication about, these model outputs lags far behind, leaving an unmet need for more effective
interactive visualization tools. Most analysis is done with simple individual plots: viewing time series plots with multiple curves, individual scatterplots to see correlations, and
contour plots for overview summary information. The need to link between these plots
has long been recognized; decades ago Peterman proposed doing so manually with carefully
aligned paper printouts of multiple plots and physical transparency printouts with multiple
crosshairs [?]. Obviously, these manual methods are inadequate for the complex datasets of
the present.
1
CHAPTER 1. INTRODUCTION
2
The contribution of this work is two-fold. We present an analysis and abstraction of
the data, tasks, and requirements for this fisheries management domain, elucidating the
similarities and differences from other domains that also involve multi-dimensional analysis
of the relationship between input and output dimensions. We also present the design and
implementation of the Vismon interactive visualization tool. It supports (a) sensitivity
analysis to check whether small changes in input result in small or large changes in output,
and (b) constraint-based analysis to rule out parts of the input space based on constraints in
the output space. Vismon supports the (c) analysis of tradeoffs between indicators globally
distributed in the output space, whereas many previous systems only support analysis within
a local neighbourhood. It allows users to (d) incorporate uncertainty information into their
analysis at many levels of detail, with a staged introduction on demand that allows, but does
not mandate, drilling down to the full complexity of the underlying probability distributions
computed by the stochastic model. Both the abstractions and design were developed and
validated iteratively, through a long-term close collaboration [?] with fisheries scientists.
The main focus of this research is to perform a design study in the domain of fisheries
management and decision making. A design study is a problem-driven research, where the
visualization researchers analyze a particular real-world problem, design a visualization tool
for the domain experts to help solve the real-world problem, validate the solution, and finally
reflect about lessons learned to improve the process of the design [?].
In Chapter 2, we discuss the background information about fisheries policies and science,
followed by the fisheries tasks and data analysis in Chapter 3. After reviewing the related
work in Chapter 4, we continue with a description of the Vismon design and interface in
Chapter 5, and afterwards, we describe an example of using Vismon with a case study in
Chapter 6. In Chapter 7, we review the iterative design and validation process for Vismon.
We conclude with a discussion of future work in Chapter 8.
Chapter 2
Fisheries Background
We begin with background information about the policy making context of decision-making
support for fisheries, and continue with a summary of the scientific problems faced by
fisheries decision makers.
2.1
Fisheries Policy Making
Fisheries management is in the midst of major changes, both in terms of the policy making
situation and in terms of physical and biological conditions. For setting policy, there is
greater stakeholder involvement (known as multi-stakeholder consultation) and a stronger
expectation of accountable decision making than in the past. Institutional roles are also
shifting. Fisheries science was once the uncontested domain of the government and academia,
but is now being undertaken by other groups including nongovernmental conservation groups
and the fishing industry itself. Physically, the impact of climate change means that the processes being studied have moving baselines. Efforts to interpret cause and effect are often
confounded by the reality of multiple simultaneous changes in both natural and human
processes.
The goals of policy makers in fisheries management have evolved over time, in three major waves. The first was a command and control model : “we have the data, and we decide”.
The second model, decide, announce, defend, grew out of a push for public consultation,
but that did not go far enough for meaningful input from the public. The current model
is multi-stakeholder consultation with the new idea of including many stakeholders in the
analysis process itself. Thus, the current goal of policy makers in fisheries management is to
3
CHAPTER 2. FISHERIES BACKGROUND
4
make well-informed decisions based on large amounts of quantitative information. The new
need is to support not only communication to, but also analysis with, multiple stakeholders.
The fisheries scientists need to provide fisheries managers with extensive quantitative
information to support decision making, via simulation informed by monitoring efforts. The
managers choose actions to best meet management objectives, such as maintaining sufficient
spawning fish and allocating the allowed catches among the competing interest groups.
The stakeholders include environmentalists and three different fishing interest groups: the
commercial fishing industry, subsistence fishing communities (both First Nations and other
groups), and recreational anglers.
2.2
Fisheries Science
The goal of fish stock assessment is to quantitatively estimate potential outcomes of contemplated management actions. Simulation has been extensively used for stock assessment for
decades, with increasing complexity and sophistication [?, ?, ?, ?]. Current stochastic simulation models take into account several different sources of uncertainty and risk. Stochastic
dynamic models of the natural population implicitly encode a range of alternative hypotheses, taking into account the scientists’ limited understanding of the structure and function
of aquatic systems and the variability of natural environments. These stochastic models also
take into account the challenges of estimating probabilities for uncertain quantities given
current monitoring capabilities; real-world data collection (based on harvesting and assessment data) inevitably involves observation and sampling error. The stochastic evaluation
of the performance of management options also takes into account both natural variation in
catchability and the fact that there may be imperfect compliance with governmental control
of human behaviour through regulation. A final challenge is communicating complex technical information to decision makers and the public, that is, conveying assumptions, results,
and implications to people not actively involved in the analyses.
Peterman describes a high-level risk assessment framework to use when addressing these
complex problems through simulation [?]. The first step is to define management objectives
along with indicators such as catch variation over time that can measure how well objectives
are met. Indicators might have an associated undesirable probability of falling below some
critical limit. The second step is to consider several management options explicitly by stating
them as inputs to the simulation model. The third step is to run the stochastic model with
CHAPTER 2. FISHERIES BACKGROUND
5
a wide range of hypotheses expressed as parameter values and alternative submodels used
inside the simulation. Finally, a sensitivity analysis can be done to see the effects of the
different assumptions on the outcomes.
In this paper, we refer to the managers and stakeholders as non-expert users. Although
they are experts in the fisheries domain, they are non-expert users of simulation software
and statistical data analysis. In contrast, the fisheries scientists are expert users, as they are
intimately familiar with the data analysis of the simulation systems they have created. The
goal of Vismon is to make the data analysis workflow commonly employed by expert users
accessible to non-expert users without needing the guidance of the expert user. Vismon
is the result of a multi-year two-phase design process in collaboration with various expert
users.
Chapter 3
Data and Task Analysis
We now discuss the data, workflow, and tasks for this design study using an example, moving
from the domain-specific details to abstractions.
3.1
The AYK Simulation Model
The specific simulation model used as a concrete driving example in this paper is for chum
salmon populations in the Arctic-Yukon-Kuskokwim (AYK) region of Alaska, U.S.A. [?]
(Figure 3.1). The motivation for this particular model was concern with the large and
rapid decreases in abundance in the late 1990s. The three major stakeholder interests at
play in this region are sustainability of salmon populations, commercial fishing revenue, and
subsistence fishing.
One input option used to help meet managers’ objectives is the escapement target,
which is the desired number of spawning salmon, that is, the number that “escape” being
fished. The other is the harvest rate, the number of fish that the combination of the
commercial and subsistence harvesters should catch after the escapement target is met.
Each option is set to one of 11 levels; thus, the simulation covers 121 combinations of these
input parameters. Any combination of two options is called a scenario. If the user selects
a scenario that has not been explicitly simulated, we use bilinear interpolation to predict
the outcome of that scenario based on the closest four neighbouring simulated scenarios.
The simulation output is in the form of 12 indicators for each scenario, grouped into
3 categories: escapement, subsistence catch, and commercial catch. Each simulation run
covers a 100-year time period, and the indicators are statistical measures to characterize the
6
CHAPTER 3. DATA AND TASK ANALYSIS
7
Figure 3.1: The Arctic-Yukon-Kuskokwim (AYK) region of Alaska, U.S.A.
results in each category with four output numbers: the average, median, temporal coefficient
of variation (CV, or standard deviation divided by the average), and a risk measure expressed
as the percentage of years that something undesirable happened during the 100 simulated
years. The risks for each respective category are when the run size is below the escapement
target, when the subsistence fishery is below the lower quartile of historical catches, or when
no commercial fishing is allowed.
The stochastic simulation carries out 500 Monte Carlo trial runs for each scenario. The
full dataset has 726,000 data elements in total, from the product of 121 scenarios, 12
indicators, and 500 runs. The high-level dataset of 1452 elements aggregates the values
over the 500 runs into a single number, either the average or the median. We use the term
underlying uncertainty to mean the information contained in the full dataset rather than
CHAPTER 3. DATA AND TASK ANALYSIS
8
the high-level aggregate dataset.
In fisheries science, indicators of outcome need to be either maximized or minimized,
but not both. Each of the twelve indicators has a direction of desired change as associated
metadata, in addition to its set of quantitative values. The simulation output includes both
the average and median so that the analysts can easily see whether these quantities are
similar, indicating symmetric distributions. When they are different, their relative values
give a quick sense of the direction of the distribution’s asymmetry.
Figure 3.2: The simulation model used by Vismon takes two inputs, known as management
options, and produces groups of output, called indicators. This example has three groups
of indicators, each with a median, average, CV value, and a percentage of simulated years
with undesirable behaviour. The data underlying each summarized indicator are from 500
Monte Carlo trials.
CHAPTER 3. DATA AND TASK ANALYSIS
3.2
9
Data Abstraction
Simulation models are one particular example of multi-dimensional models where the dimensions are divided into two classes: inputs and outputs. The independent input dimensions
to the simulation are known as the management options, or options for short (2 in the
AYK model). The dependent output dimensions are known as indicators (12 in the AYK
model). The simulation generates the outputs given the inputs by running hundreds of
Monte Carlo trials (500 in the AYK model). This full underlying dataset is summarized by
a few statistical measures for each indicator (see Figure 3.2).
The design target for Vismon is two input dimensions and ten to twenty output dimensions. This abstraction covers a significant and interesting part of the possible design space,
but not all of it. Our collaborators do not currently run simulations with more than two
input dimensions, and do not anticipate needing more than a few dozen indicators in total
to reflect the interests of the major stakeholder groups. This choice to constrain the tool
to supporting few inputs and a moderate number of outputs has many design implications;
for example, it is possible to provide overviews of the entire input space and output space
without recourse to complex user interactions for selecting which subsets to view or for
exploring only local neighbourhoods.
Simulation run times do not affect the interactivity of Vismon, which loads a precomputed static data file, which is the output file from the stochastic model.
3.3
Analysis Task
Our collaborators, who are expert users, are working with very mature simulation models
that have already been extensively refined and validated [?], so their interest is in using
this model rather than building or verifying it. The analysis workflow established by the
scientists contained a detailed list of domain-specific subtasks:
• W1: summarize a large number of simulations,
• W2: add constraints on value ranges for simulation input (options) and output (indicators) based on stakeholder interests,
• W3: select a few candidate combinations of options,
• W4: quantify trade-offs in indicators between selected options,
CHAPTER 3. DATA AND TASK ANALYSIS
10
The selection and trade-off analysis should allow the user to observe the following constraints:
• C1: avoid sensitive regions of the parameter space where small changes of options
yield large changes of indicators,
• C2: avoid options with high underlying uncertainty across all Monte Carlo trials.
At the start of our collaboration, Peterman’s group was actively engaged in the analysis
of simulation results, as they had been for years. Their previous analysis procedure was
to use a wide range of individual plots generated with scripts for R and other similar
packages. The need to link between these plots has long been recognized; decades ago
Peterman proposed doing so manually with carefully aligned paper printouts of multiple
plots and physical transparency printouts with multiple crosshairs [?]. In addition, although
scripts for general-purpose frameworks are a powerful and flexible way to create nearly any
individual view showing details at a low level, they require users to know exactly what to
specify in advance. As well, such details were accessible to non-expert users only with close
collaboration with scientists. Hence, the overarching goal of our collaborating scientists was:
• G1: enable scientists to communicate simulation results to policy makers.
• G2: to make this workflow accessible to the non-expert users without the scientists’
involvement.
Table 3.1 contains the list of subtasks required for the analysis of our collaborators’ data.
Workflow tasks
W1: summarization
Constraint tasks
C1: sensitivity analysis
W2: constraining
C2: trade-off analysis
W3: selection
W4: trade-off quantification
W4: trade-off quantification
W4: trade-off
quantification
Table 3.1: Analysis tasks
Collaboration goals
G1: collaboration between
scientists and policymakers
G2: non-expert user
involvement
W4: trade-off quantification
W4: trade-off quantification
CHAPTER 3. DATA AND TASK ANALYSIS
11
In addition, in the past, only a tiny fraction of the information theoretically available
in the dataset was actively considered in the analysis process. The scientists and managers
were buried by the quantity of information put out by the models. Essentially, they picked
a few points in the parameter space through trial and error and ignored the rest, because
they did not have a systematic way to explore the information. Their view of the dataset
was narrowly focused; they lacked high-level overviews and other ways to easily synthesize
information across a combination of low-level detail views. Exploring the dataset at the
level of the aggregate statistical measures (see Figure 3.2 and Figure 3.3) was very difficult,
and understanding the underlying uncertainty expressed in the full details of the Monte
Carlo runs was even more challenging.
Their analysis procedure was most successful in supporting the first two subtasks of
summarization (W1) and adding constraints (W2) at a basic level. A very small set of
candidate management scenarios was picked (W3) based on past experience, rather than
through a data-driven exploration of the simulation output. While the high-level trade-offs
were well known to the scientists and managers, quantifying them for any specific combination of choices was difficult because the relationships are nonlinear (W4). Quantifying
trade-offs involved a great deal of cognition and memory, with only minimal help from
their perceptual system, in order to synthesize information across multiple individual views.
Avoiding sensitive regions (C1) required a great deal of trial and error. Inspecting an individual contour plot showing the values for one indicator could show them regions of rapid
change for that indicator where the contour lines were closely spaced, but synthesizing a
mental model across all of the indicators was not well supported by the available methods of analysis. Understanding the complexity of the Monte Carlo trials (C2) was also
not easily addressed; the scientists typically just worked with the averages because the full
dataset was too overwhelming. Communicating results (G1) was only partially addressed.
Although their process did support some level of communication between scientists, simulation results were very difficult for policy makers to understand and extremely challenging
for stakeholders and the public to grasp (G2).
Considering their tasks at a generic level, we conjectured that many useful scenarios
might not even be considered in the candidate set, and conversely that too much analysis
time was being spent exploring candidates later found to be unsuitable. Our goal was to
allow managers to explore the data on their own and together with different stakeholders.
Hence, we needed to create an interface that would allow anyone to quickly find relevant
CHAPTER 3. DATA AND TASK ANALYSIS
12
scenarios and to compare several of them.
3.4
Design Requirements
Two key design requirements were to allow all workflow tasks (W1-W4) and constraints
(C1, C2) to be carried out within a single tool, and to support interleaving these tasks in
any order. For example, the tool should allow uncertainty information to be incorporated
into the process of selecting of the candidate actions.
The requirement of encouraging but not forcing uncertainty analysis led us to the design goal of creating views that could all be used in a straightforward way with only the
information from the high-level simplified dataset. The combination of these two goals led
us to a strategy where views could be augmented with information from the full underlying
uncertainty dataset at different levels of complexity. For example, a user should be able to
start exploring scenarios using only the high-level average values, and then later incorporate
uncertainty information to see which of them are uncertain or risky. The user should also be
able to include that information in the initial exploration, so that when faced with scenarios
that have the same average values, they can prefer the more certain ones.
Figure 3.3: The AYK model has two management options: Escapement target (X axis) and Harvest rate (Y axis). The
plots show the contours of the statistical summaries of the 3 indicators in the high-level dataset. The indicators are
Escapement (top row), Subsistence catch (middle row), and Commercial catch (bottom row). The statistical measures are
Median, Average, CV, and %, from left to right, respectively.
CHAPTER 3. DATA AND TASK ANALYSIS
13
Chapter 4
Related Work
We will review related work in the area of multidimensional analysis, followed by work
that deals with the problem of parameter estimation. We will briefly discuss uncertainty
visualization, and also fisheries visualization tools.
4.1
Multidimensional Analysis
The previous work most relevant to Vismon pertains to systems for multi-dimensional analysis. One of the earliest systems for exploring multi-dimensional parameter spaces was
HyperSlice [?]. van Wijk and van Liere suggested using a SlicePlane matrix to summarize
the n-dimensional space through 2D slices. Their idea was later extended as the Prosection
Matrix [?]. Contrary to HyperSlice, in Prosection Matrix, an (n-2)-dimensional sub-space
is summarized into a single plot instead of a matrix of 2D slices. These systems required
complex navigation of high-dimensional input spaces that is not necessary given our target
of only two input dimensions, and they did not support uncertainty or trade-offs analysis.
4.2
Parameter Estimation
During recent years, researchers in the visualization community have been actively engaged
in analysis of high-dimensional parameter spaces. The goal is to find a combination of
parameters that best meets the objectives of the users.
The inspirational works of Piringer et al. [?] and Berger et al. [?] address some of the
same problems as Vismon. We share some aspects of their solutions in HyperMoVal and
14
CHAPTER 4. RELATED WORK
15
its follow-on system, including our choice of linked views in general, and sensitivity analysis
via contour plot matrices in particular. Although trade-off analysis was not supported by
HyperMoVal [?], it was added in their follow-on work [?]. They used a Pareto frontier [?]
technique that allowed the user to change the position of a single scenario in order to
understand the trade-off of two indicators, supporting local trade-off analysis. Similarly,
HyperMoVal does not support uncertainty analysis at all, whereas the follow-on system
does provide simple uncertainty visualization such as box plots. A major difference between
these two systems and Vismon is their support for validating simulations by comparing
measured data to simulated data, a task that is not required in our domain. Another is
their emphasis on navigating the space of many input dimensions, adding complexity that
is not necessary for our target of only two inputs.
Two previous systems have focused on parameter selection for image segmentation algorithms [?, ?]. Both of these systems handle the case of many input dimensions rather
than many output dimensions, for a key difference from Vismon. Pretorius et al. [?] support sensitivity analysis for this complex case by presenting segmented images at the leaves
of a tree encapsulating input parameter settings; users can make visual judgements of the
difference in quality between nearby segmentations in local neighbourhoods. Their system
does not support uncertainty analysis. On the other hand, the Tuner system [?] does handle
sensitivity analysis in a similar fashion to Vismon, but only with two outputs rather than
many. Tuner’s trade-off analysis is constrained to a local analysis, and uncertainty analysis
is covered only to a limited extent. A strength of both systems is the incorporation of
sampling into the analysis pipeline; however, in Vismon the simulation of the data and its
analysis are decoupled, so handling sampling issues is not a requirement for our problem.
A number of other systems, such as Design Galleries [?] and the more recent FluidExplorer [?] use clustering to present a comprehensive overview of the variations in the
high-dimensional output space. However, neither sensitivity analysis, trade-offs analysis,
nor uncertainty is covered in their systems.
4.3
Uncertainty Visualization
Due to its uncertain nature, understanding scientific data is a challenging task. Imperfect
data [?] affects the process and result of decision making [?]. Johnson et al. and MacEachren
CHAPTER 4. RELATED WORK
16
et al. give a comprehensive overview of different techniques available for uncertainty visualization [?, ?].
Error bars and box plots are part of the standard visual encodings for uncertain data [?,
?, ?, ?]. Both techniques summarize data distribution, and are useful for comparison of
distributions. To convey more information, variations of box plots are proposed by adding
different density descriptions, such as skewness and modality, to standard box plots [?, ?].
Jackson proposed a density strip [?] to show the uncertainty information in full detail by
using a saturation map that encodes the full distribution as normalized density. The highlevel aggregate number is not the most visually salient aspect of the display, but this visual
encoding conveys the most information.
4.4
Fisheries Visualization Tools
Fisheries scientists usually provide information for fisheries managers using standard sets
of outputs, which include time series projections of future states of the fishery system and
numerous summary statistics in tables and simple, individual graphs such as scatterplots
and contour plots [?, ?]. Static graphs are typically generated by either data analysis
tools, such as Excel, or statistical tools, such as R. Having many indicators and numerous scenarios to consider makes the analysis sophisticated and complex. To the best of
our knowledge, fisheries scientists lack effective interactive visualization tools to cope with
their high-dimensional data. The current manual methods are inadequate for the complex
datasets of the present.
Previous work on specific visual encoding and interaction techniques used in Vismon is
discussed in the context of the design decisions covered in Chapter 5 and Chapter 7.
Chapter 5
Vismon Interface
In this section we explain the design decisions that went into the creation of Vismon. It
is to be seen as complementing the walkthrough of an analysis as performed by a policy
maker, which is described in Chapter 6.
Vismon is built using multiple linked views, as shown in Figure 5.1. The three main
data abstractions used in Vismon are management options (the two input dimensions),
indicators (the many output dimensions), and scenarios (a specific combination of the
two input options, each of which has associated with it a value for each output dimension).
Each of the three main views has a different visual encoding to emphasize different aspects
of these elements and the relationship between them. The colour coding for scenarios is
the same across all these main views. Each main view is itself composed of small-multiple
charts, with linked highlighting between analogous items on mouseover. All views provide
ways to show uncertainty at multiple levels of complexity on demand, but do not force
uncertainty analysis on users who want to start simply.
The Constraint pane on the left (Figure 5.1(a)) has sliders that show ranges for, and
allow constraints to be imposed on, individual options and indicators (Figure 5.1(d)), with
optional histograms showing the underlying data distributions for a richer view. The location
of the average or median of each scenario with respect to the value ranges is shown with a
coloured triangle. The Contours pane on the right (Figure 5.1(b)) has a contour plot matrix
with one plot for each active indicator showing values with respect to options axes, with
scenarios shown as coloured dots. The Trade-offs pane on the bottom (Figure 5.1(c)) shows
details about indicator values for the active scenarios through rectangular or radial charts.
The view can either show a chart for each scenario with marks for indicators, or vice versa.
17
Figure 5.1: The Vismon interface: (a) Constraint pane, top-left, shows the list of management options and indicators
in separate tabs; (b) Contour Plot Matrix pane, top-right, shows the contour plots of indicators as functions of the two
management options and supports scenario selection; (c) Trade-offs pane, bottom, shows detail with the indicators for the
selected scenarios; (d) Separate sliders are assigned to management options and indicators in the Constraint pane.
CHAPTER 5. VISMON INTERFACE
18
CHAPTER 5. VISMON INTERFACE
5.1
19
Constraint Pane
The Constraint pane shows a tab for the management options and a tab for indicators, both
as one-dimensional ranges (see Figure 5.2). In both cases, the base small-multiple view
shows a range slider [?, ?], with both a moveable handle for quick interactive positioning
and a text box for precise numerical entry when the user knows a value of interest in advance.
The sliders allow the user to restrict the active range of any input option or output indicator
to avoid unacceptable regions, which changes the shape of the shaded permissible scenario
region in the Contours pane plots.
(a)
(b)
Figure 5.2: The Constraint pane: (a) Management Options tab shows bidirectional sliders
and two text fields for each management option; (b) Indicators tab shows single handle
sliders and one text field for each indicator. The handle’s small flag and the label Best
show the desirable direction for the indicator (i.e., either minimum or maximum value).
The results of moving the input option sliders are not surprising; a straight line sweeps
CHAPTER 5. VISMON INTERFACE
20
(a)
(b)
Figure 5.3: (a) Moving the management option slider results in (b) straight line sweeping
out horizontally or vertically to change the active region of the contour plots.
out horizontally or vertically to change the rectangular size of the active region (see Figure 5.3(b)), because these values correspond with the underlying grid used for both simulation computation and the contour plot display axes. However, changing the undesirable
range of the output indicators leads to complex and non-obvious shapes for the active region, as shown in Figure 5.4(b). With just a few minutes of exploring with these sliders,
the analyst can get the gist of how constraining the different input and output dimensions
affects the set of possible scenarios (helping to achieve goal W2).
Options have bidirectional sliders with both a minimum and maximum handle, and two
text boxes (see Figure 5.3(a)). Indicator sliders have only a single handle (Figure 5.4(a)),
since their directionality is known from the metadata. The label Best appears instead of a
text box on the side that is the most desirable direction, and the handle also has a small
flag pointing in that direction as a subtle visual cue.
The plain sliders for the indicators convert to scented widgets [?] on demand from the
user, showing histograms of distributions in the underlying dataset in order to provide more
CHAPTER 5. VISMON INTERFACE
21
(a)
(b)
Figure 5.4: (a) Moving the indicator slider results in (b) complex and non-obvious shapes
for the active region.
guidance on what choices to make when setting the ranges (Figure 5.5).
There are two choices, either or both of which can be shown. The simpler choice, MC
Trials, shows a histogram with the distribution of all values for this indicator across all the
Monte Carlo trials. Figure 5.5(a) shows an example for the Average commercial catch
indicator, where the slider bar has been moved from the default position of 0 to the value of
100K. We can see this is an indicator where the maximum value is the most desirable because
the Best label is on the right side of the slider. The geometric intuition is straightforward:
the user can see in advance whether a small or a large part of the distribution will be filtered
out when the slider bar is moved to a particular position, rather than using a trial and error
process where the slider is moved and then the results are scrutinized. Figure 5.5(b) shows
the result of drilling down even further by clicking on the red triangle. The histogram has a
coloured overlay allowing the user to compare the distribution of the 500 Monte Carlo trials
just for the chosen scenario with that of the full dataset of all simulated scenarios. The Log
label appears on the left to show that in this mode the vertical axis is now log-scale rather
CHAPTER 5. VISMON INTERFACE
22
(a)
(b)
(c)
(d)
Figure 5.5: The Constraint pane sliders become scented widgets showing histograms on
demand. (a) MC Trials shows the distribution of all indicator values across all Monte Carlo
trials (500 in our example data). (b) Selecting a scenario shows its distribution vs. the full
distribution, log-scaled vertically. (c) Probabilistic Objectives allows the user to set a
second probabilistic constraint. (d) Any histogram can show the cumulative density function
rather than the direct probability density function.
than linear, to ensure that the overlay details are fully visible.
The more complex choice, Probabilistic Objectives (see Figure 5.5(c)), allows a
sophisticated user to reason about all the Monte Carlo trials, not just their average (following
constraint C2). It uses a two-part filter with a second slider and histogram. The base slider
still sets a limit on the value of the target indicator. The second slider allows the user to set
a probabilistic limit corresponding to the percentage of Monte Carlo simulation trials that
are above that indicator limit for indicators that need to be maximized, or below for those
that need to be minimized. The second slider allows the user to change this probability
value interactively from the default of 0%, meaning that no possibilities have been ruled
out, up to a higher number. In Figure 5.5(c), the user has set the probability to 80% that
the % of years escapement below target indicator is smaller than 50; that is, a high
probability of avoiding low escapement. The plots in the Contours pane will show which
scenarios have been ruled out by this limit by crossing them out with X’s, as illustrated in
Figure 5.11(d).
Typically, one can think of probability distributions as cumulative or direct distributions.
CHAPTER 5. VISMON INTERFACE
23
By default all histograms show probability directly, but the user can switch them to show
cumulative density functions, as in Figure 5.5(d), if this is the preferred mental model.
We considered a design change to compress the histograms in the Constraint pane to
use less vertical space, so that users could see more augmented sliders at once without the
need to scroll. However, our collaborators had strong opinions that current information
density is at a good set point, and that making the histograms any smaller would impede
their utility.
The sliders are not only controls but also displays, even when not augmented by the
histograms. They act as legends that document the range of each option or indicator; the
sliders have the same visual range on the screen but cover very different regions of data
space. They also show the full name for options and indicators, rather than the short
names used in the other panes to save space. Most importantly, the scenario triangles
show the distribution of the scenarios with respect to these ranges in a high-precision way
using spatial position. That distribution would require more mental effort to glean from the
Contour plots, where it is encoded more indirectly and with lower precision as the colour of
the contour band in which the scenario dot is embedded.
5.2
Contours Pane
The Contours pane contains a contour plot matrix (Figure 5.6) that has one two-dimensional
plot for each active output indicator. Each contour plot is drawn using Marching Squares [?]
based on simulation values given at an 11 × 11 grid. Each (x,y) location in the contour plot
represents a scenario. Again, a scenario is characterized by two independent variables, the
parameter settings used for the input management option choices, and has many dependent
variables, the output indicators. The small-multiple views are linked with a crosshair that
appears at the same (x,y) location in each of them when the cursor moves across any of
them, and the exact numeric value for the indicator at that point is shown in each title bar.
The scenario at the same (x,y) location is also shown in the Trade-offs pane. The cross-hair
scenario is displayed with grey to be distinguished from the already selected scenarios, as
shown in Figure 5.1.
Numeric legends on contour lines are automatically shown when the plot size is sufficiently large, as shown in Figure 5.6; these are different in each plot, since each indicator is
separately normalized to the colour map.
CHAPTER 5. VISMON INTERFACE
24
Figure 5.6: The Contours pane shows a contour plot matrix of two-dimensional plots for
each active output indicator. Numeric legends on contour lines are automatically shown
when the plot size is sufficiently large.
The plots are all linked to the Constraint pane sliders that provide data-driven constraints on the active region within each of them. All plots have the same two axes of the
options, and the demarcation between the coloured active region and the greyed-out restricted region is the same in all. The plots show the high-level dataset: either the average
or the median of the underlying simulation runs (500 in our example data) for their indicator. The plots resize dynamically to fit within the pane as it resizes or the number of plots
to show changes as indicators are de- or re-activated, so that they are always visible side by
side without the need to scroll. By default, all indicator plots are shown; Figure 5.6 shows
the full set of 12 in the example dataset. They can be turned on and off with a right-mouse
popup menu when the cursor is over a plot (see Figure 5.7), through the control pane which
CHAPTER 5. VISMON INTERFACE
(a)
25
(b)
Figure 5.7: A contour plot can (a) be turned off (by selecting Delete plot) and (b) be
turned on with a right-mouse popup menu.
is accessible through the Indicators tab (Figure 5.9) on the top right of the pane, or through
the Indicator menu. In Figure 5.7, the Median escapement contour plot is turned off and
then turned on by right-clicking on the contour plot.
The contour plots are coloured by default with a sequential blue-white colourmap that
incorporates hue and saturation in addition to luminance in order to make the contour
patterns highly visually salient. Several other colour-blind-safe colourmaps are built in (see
Figure 5.8), all generated by ColorBrewer [?]. The preferred direction of each indicator
(minimum or maximum value) is taken into account so that the dark and highly saturated
end is the most preferred value for each.
The static array of contour patterns provides an overview of the high-level dataset that
is focused on the individual indicators (helping to achieve W1). Moving the cursor across
the plot allows fast comparison between the indicator values for a single scenario because
of the dynamically linked crosshairs. We chose to keep a contour plot matrix at the heart
of the system because such plots were both familiar and effective, and facilitate sensitivity
analysis by allowing users to note regions where isocontours fall close together as places to
avoid (facilitating constraint C1).
One main use of this view is to guide the user in selecting a small set of candidate
CHAPTER 5. VISMON INTERFACE
26
Figure 5.8: Several colourmaps are build in Vismon for colouring the contour plots. The
contour plots are coloured by default with the first sequential blue-white colourmap.
scenarios (part of W3), which can be compared in detail in the Trade-offs pane. Clicking
within a contour plot selects the scenario at that point. Its location is marked with a
coloured dot in all plots in this pane and a coloured triangle along each indicator range on
the Constraint pane sliders. Marks representing selected scenarios are small and show an
identifier that is unique for each scenario, so they are coded with high-saturation colours in
different hues. This shared colour coding acts as a link across different views. The design
target is that users are unlikely to select more than 10 scenarios to inspect in detail at once.
A palette of pre-selected highly distinguishable colours is used for the first 10 scenarios,
with random colours used for any additional ones. The user can use the colour picker in the
Trade-off pane control panel to override these colour defaults (see Figure 5.10).
The user can also explore some of the underlying uncertainty data in the Contour pane
(facilitating constraint C2), as shown in Figure 5.11. The 11 × 11 grid of our example data
through which the contours are interpolated is the set of 121 pre-computed scenarios, which
can be shown on demand as small points (Figure 5.11(a)). These points can be size coded
with two additional numbers that summarize the underlying Monte Carlo trials in terms of
the same 95% confidence interval information that is used for the error bars described in
CHAPTER 5. VISMON INTERFACE
27
Figure 5.9: Indicators tab in the Contours pane shows the list of selected indicators.
the next section (Figure 5.11(b)). Uncertain regions for a particular indicator across 500
Monte Carlo trials are clearly indicated by large dots, and strongly asymmetric intervals
can be seen where the dots have visibly different aspect ratios. The user can also turn on
a histogram showing the full distribution over all Monte Carlo trials at the point under the
crosshair (Figure 5.11(c)). The histogram updates as the cursor moves, and can be displayed
either in the plot containing the cursor or in all of the linked plots.
Defining probabilistic constraints (in the Constraint Pane as shown in Figure 5.5(c))
adds X’s to the contour plots. This way, the user can compare the greyed-out region (from
the deterministic constraints) to the X’d-out region (from the probabilistic constraints)
(Figure 5.11(d)).
CHAPTER 5. VISMON INTERFACE
28
Figure 5.10: Scenarios tab in the Trade-offs pane shows the list of selected scenarios. Here,
the user can (a) change the default colour of a scenario, (b) make a scenario invisible or
visible, (c) select a scenario by clicking on its associated row, (d) delete a scenario, or (e)
create a new scenario by typing the values of management options.
5.3
Trade-offs Pane
The Trade-offs pane (Figure 5.12) allows a detailed assessment of the trade-offs between a
small set of scenarios with a set of small-multiple bar chart plots (supporting W4).
These plots support two kinds of analysis (see Figure 5.13). The default mode is to
group outputs by indicator, showing one plot for each indicator with a different colored bar
for each scenario, allowing easy comparison of how indicators change across scenarios. The
opposite mode is to group by scenario, where each plot shows a single scenario with the
bar heights showing all of its indicators. Conversely, this mode allows easy comparison of
indicator values within a particular scenario, and the profiles of entire scenarios with each
other.
When the plots are grouped by indicator, the bars in all of them can be sorted by the
value of any indicator, rather than the default based on the order in which the scenarios
were created. Figure 5.14 shows the bars sorted by Average commercial catch. On the
other hand, when the plots are grouped by scenario, the plots can be sorted by the value
of any indicator. Here, the order of the plots changes based on the value of the selected
indicator, as shown in Figure 5.14.
The plots support four different levels of showing the underlying uncertainty information,
as shown in Figure 5.15. The simplest possibility is none (Figure 5.15(a)), so that analysts
who want to do only high-level analysis are not forced to deal with uncertainty. The default
CHAPTER 5. VISMON INTERFACE
29
(a)
(b)
(c)
(d)
Figure 5.11: Contour plots can show (a) small points showing the underlying 11 × 11
grid of our example data that is the basis for isocontour interpolation, (b) the points size
coded in two directions to summarize the underlying uncertainty as two numbers, (c) a
histogram showing the full probability distribution for the point under the cursor, (d) the
X’d out region from probabilistic constraints, for comparison to the greyed-out region from
the deterministic constraints.
error bar mode superimposes a simple error bar showing the 95% confidence interval on top
of the mark (Figure 5.15(b)). In box plot mode (Figure 5.15(c)) the high-level aggregate
number is still shown explicitly, but with less salience. Both error bars and box plots are part
of the standard arsenal of visualization techniques for uncertain data [?, ?, ?, ?]. The shaded
distribution mode shows the uncertainty information in full detail (supporting C2) by using
a saturation map that encodes the full distribution as normalized density (Figure 5.15(d));
this visual encoding was first introduced by Jackson with the name of density strip [?]. The
high-level aggregate number is not the most visually salient aspect of the display, but this
visual encoding conveys the most information.
CHAPTER 5. VISMON INTERFACE
30
Figure 5.12: The Trade-offs pane shows a detailed assessment of the trade-offs between the
selected scenarios. Coloured bars are associated with scenarios whereas the grey bars are
associated with the scenario represented by the cross-hair’s current location on a contour
plot.
The Trade-offs pane provides two other possible plot types. The default choice shown in
Figure 5.16(a) is the familiar bar chart, where one-dimensional marks aligned on a horizontal
axis encode values with spatial position along a vertical axis. The Multipodes plot in
Figure 5.16(b) is a radial alternative where the bars are laid out along a circle. Both the
standard bar chart and the radial bar chart can show the underlying uncertainty in analogous
ways. The third plot type is the Star glyph, a simpler version of the Multipodes plot that
uses a one-pixel width mark instead of a wider bar, shown in Figure 5.16(c). Star glyphs
do not support showing uncertainty information as above, but they are a visual encoding
that is already familiar to many fisheries scientists. We thus include them as a bridge to the
less familiar but more powerful multipodes plots. The highly familiar flat bar chart layout
allows fast and highly accurate comparison between bar lengths, but radial layouts may
better support focusing on a particular data dimension [?]. The multipodes plot is designed
to avoid many of the perceptual problems with previous radial displays [?, ?] by encoding
data with length rather than angle, and is an example of the Disconnected Ring pattern in
the taxonomy of Draper et al. [?].
5.4
General Functionality
The user can request a separate fully-linked window showing a single large contour plot for
any indicator, or select any two indicators to create a separate window with a scatterplot
comparing the simulated scenario values linked to the main windows through the colour
coding of the dots that represent selected scenarios. Scatterplots are created either from
the rightmouse popup menu on contour plots, or from the Constraint pane by clicking
CHAPTER 5. VISMON INTERFACE
31
(a)
(b)
Figure 5.13: The plots in the Trade-offs pane can be grouped in two modes: (a) the default
mode is to group outputs by indicator, showing one plot for each indicator with a different
coloured bar for each scenario; (b) the second mode is to group outputs by scenario, having
one plot for each scenario with the bar heights showing all of its indicators. In Group by
Scenario mode, the bar heights are normalized.
on the desired indicators. Although scatterplots were only occasionally used in the early
prototype, they were sometimes useful for analysis of the Pareto frontier [?]. Figure 5.17
shows the scatter plot of Average commercial catch versus Median escapement. The
grey and white dots show all of the combinations of management options, and the coloured
dots are the scenarios that are selected by the user. When falling into an unacceptable
region given the constraint limits, a grey dot changes to white fill with light-grey borders.
This choice enables the user to focus on acceptable scenarios.
Users can also add persistent reference lines that appear in all contour plots at specific
values of the options. Figure 5.18 shows a contour plot with one horizontal and two vertical
dashed reference lines.
Vismon supports export for both analysis and communication workflows: the selected
set of scenarios can be exported as a comma separated value (CSV) file so that results from
a Vismon session can be imported into other analysis tools, and any window can be exported
as a PNG image file for inclusion into external documents. In addition, users can save the
project file to be reopened for future analysis. The project saves the constraints, as well as
CHAPTER 5. VISMON INTERFACE
32
(a)
(b)
Figure 5.14: Plots in the Trade-offs pane can be sorted by the value of any indicator: (a)
when the plots are grouped by indicator, the bars in all of them are sorted by the value of
the Sort by indicator; in this case Average commercial catch. The bars for the selected
indicator are displayed in the increasing order of heights; (b) when the plots are grouped by
scenario, the plots are sorted by the value of the Sort by indicator, rather than the default
based on the order in which the scenarios were created. The selected indicator is a grey
outline box.
the selected scenarios.
5.5
Implementation
Vismon is implemented in Java 1.6, with diagrams drawn using custom Java2D graphics
code. The tick marks on plot axes dynamically adapt to use the available space [?]. Our
implementation achieves interactive response on current hardware with the datasets in use
by our collaborators, after start-up preprocessing of a few seconds.
CHAPTER 5. VISMON INTERFACE
(a)
33
(b)
(c)
(d)
Figure 5.15: The Trade-offs pane can show uncertainty information on bars in four ways.
(a) None. (b) Error bars. (c) Box plots. (d) Shaded distributions.
(a)
(b)
(c)
Figure 5.16: The Trade-offs pane shows small multiples of three possible plot types: (a)
Bar charts; (b) Multipodes plot; (c) Star glyph.
CHAPTER 5. VISMON INTERFACE
34
Figure 5.17: Vismon enables the users to create scatterplots of any two indicators. Coloured
dots are related to user-selected scenarios. Grey dots are the combination of management
options that fall into the acceptable region, whereas white dots are the combinations that
fall into the unacceptable region given the constraint limits.
CHAPTER 5. VISMON INTERFACE
35
Figure 5.18: Users can add reference lines to contour plots at specific values. (a) The
Reference Lines window in which the user can add reference lines; (b) Reference lines are
shown on contour plots.
Chapter 6
Case Study
6.1
AYK Chum Salmon
This case study summarizes an interactive Vismon session using the driving example dataset
described in Chapter 3. It incorporates the kinds of information shown in demonstrations
by the fisheries scientists.
The target user is a fisheries manager in Alaska who hopes to make an informed policy
decision by finding a scenario with low uncertainty that best suits her objectives. On
startup, no constraints have yet been set, so the entire rectangular region of each plot in
the Contours pane is fully coloured to show that it is active (Figure 6.1). The active region
consists of all the (x,y) combinations of management options that are acceptable given the
constraint limits.
The manager decides to add constraints using the sliders in the Constraint pane on the
left, to reduce the size of the active region by eliminating scenarios that produce unacceptable values of particular indicators. She first chooses 50% as the maximum allowable
percentage of years in which escapement is below the target, and a curvilinear region in
the upper right becomes greyed out, as shown in Figure 6.2. She then chooses 30% as the
maximum acceptable percentage of time in which subsistence catch is in the lower quartile
historically, and Figure 6.3 shows the continuing decrease in the size of the active range.
Finally, she sets a minimum of 100,000 fish for the average annual commercial catch, as
shown in Figure 6.4. The resulting active region in the contour plots showing the set of feasible scenarios is much smaller than the full original set, thereby simplifying the complexity
faced by the manager. Some indicators within the active region are dark blue, showing that
36
CHAPTER 6. CASE STUDY
37
they are in the highly preferred range, while others are the lighter green colour indicating
unfavourable values.
The manager then explores a few management options by clicking the mouse in a few
locations within the active region, and the Vismon window updates to include the Trade-offs
pane showing detailed information about those scenarios. The Trade-offs pane shows the
cross-hair scenario in grey as the manager changes the location of the cursor, as shown in
Figure 6.5.
The manager decides that she no longer needs to consider any of the indicators that
pertain to median values. After she deactivates those with the rightmouse popup menu,
contour plots use the newly available room, as shown in Figure 6.6.
Figure 6.7 shows the Trade-offs pane after she switches to showing more detailed uncertainty information as box plots rather than error bars. She then digs even deeper by looking
at the shaded distributions (Figure 6.8). By assessing the trade-offs for the chosen scenario,
and considering her objectives of having high commercial catch while having low percentage
of years with low escapement target and no commercial fisheries, she decides that the red
scenario looks promising.
She then switches to grouping by scenario rather than indicator and returns to error
bars so that she can compare the profiles easily between her five scenarios, as shown in
Figure 6.9. She switches back to grouping the charts by indicator. She scrolls down in
the Constraint pane to look at the commercial catch indicators, and then sorts the charts
in the Trade-offs pane by the Average commercial catch indicator. She also changes the
settings in the Constraint pane to show the distributions for each indicator (Figure 6.10).
Figure 6.11 shows her view after selecting the red scenario to compare its distribution to
the full dataset; the histograms in the Constraint pane are now log-scaled on the vertical
axis so that the details are visible.
Figure 6.12 shows the result of turning on the histograms in the Contours pane to
see details about the full Monte Carlo trials for the scenario under the crosshairs. This
additional uncertainty information leads the manager to realize that the new light blue
scenario has better trade-offs than the red one.
Figure 6.13 shows the display after she turns on the second set of histograms underneath the sliders in the Constraint pane, and sets the probabilistic limit that the Average
commercial catch must be more than 100,000 fish in 70% of the Monte Carlo trials. The
Contours plots now have many crossed out locations (Figure 6.13), indicating the option
CHAPTER 6. CASE STUDY
38
combinations that have been ruled out by this setting for the probabilistic acceptable values. She notes that none of the scenarios are in the crossed out region that is unacceptable
according to this probabilistic constraint (Figure 6.13).
She concludes that the light blue scenario is indeed the best alternative, given her
analysis of the underlying Monte Carlo information in addition to the summarized version
of the dataset.
Figure 6.1: On startup, no constraint has been set, so there is no grey, inactive region on
contour plots.
CHAPTER 6. CASE STUDY
Figure 6.2: After setting a constraint, the active region has an irregular shape.
Figure 6.3: A second constraint shrinks the region more.
39
CHAPTER 6. CASE STUDY
40
Figure 6.4: The third constraint shrinks the active region again.
Figure 6.5: Clicking on Contour plots selects scenarios. The scenarios are displayed in the
Trade-offs pane.
CHAPTER 6. CASE STUDY
41
Figure 6.6: Any contour plot can be turned off using a menu available through a right-mouse
click.
Figure 6.7:
display.
The plots in the Trade-offs pane are switched to the box plot uncertainty
CHAPTER 6. CASE STUDY
42
Figure 6.8: The plots in the Trade-offs pane are switched to the shaded distribution uncertainty display.
Figure 6.9: The plots are grouped by scenario. Labels for the bars appear on mouseover.
CHAPTER 6. CASE STUDY
43
Figure 6.10: The bars are sorted by the Average commercial catch indicator. In the
Constraint pane, the MC Trials histograms are turned on.
Figure 6.11: Choosing the red scenario shows that distribution against the rest at log scale.
CHAPTER 6. CASE STUDY
44
Figure 6.12: The histograms on Contour plots are turned on. A new light blue scenario is
selected based on the floating histograms.
CHAPTER 6. CASE STUDY
45
Figure 6.13: The user turns on the second set of histograms underneath the sliders in the
Constraint pane, and sets a probabilistic limit to the Average commercial catch. The
Contour plots now have many crossed out locations on top of the deterministic constraints
(greyed out regions) due to the probabilistic constraint.
Chapter 7
Process and Validation
The requirements for and design of Vismon were created through an iterative two-phase
process, by engaging with target users in fisheries science and management. It has already
been successfully deployed for communication between scientists and policymakers, and for
use by policymakers in Alaska.
7.1
Two-Phase Process
We embarked on a two-stage design process for Vismon: a diverging phase to test alternatives
and refine our understanding of the requirements, and a converging phase to recombine the
successful elements into a focused and useable system based on the fine-tuned requirements.
We chose a framework featuring multiple linked views as the obvious starting point given
known visualization design principles [?, ?]. We reasoned that this baseline capability would
speed up the previous analysis process immensely, since our target users were essentially
doing linking and brushing [?] by hand in their previous workflow (see Chapter 3.3).
46
Figure 7.1: The first-phase prototype of Vismon was developed in a diverging phase. It included many views that could
be created by the user. During that phase, we gathered feedback for the target users about various views, and concluded
that the users were showing a tendency to use contour plots and scatterplots, as these were the most familiar to the target
users. In addition, the Trade-offs pane (top-left) was showing the scenarios in separate window which was overlapping
Vismon’s main window.
CHAPTER 7. PROCESS AND VALIDATION
47
CHAPTER 7. PROCESS AND VALIDATION
48
In the diverging design phase, we assembled many views, both existing and novel, within
a test-bed linked-view framework (see Figure 7.1). These views included contour plots
and scatterplots as single views or a full matrix, a correlation matrix, parallel coordinates,
histograms, box plots, star glyphs, and an experimental pixel-based view to show probability
distributions, as will be discussed later in this chapter. In the terminology of Lloyd and
Dykes [?], this prototype/test-bed functioned as a data sketch, allowing the users to explore
real data with many different visual encoding and interaction techniques.
In formative testing over the course of 18 months, we gathered feedback from the target
users about many versions of the interactive prototype. We were able to distinguish between
the more and less effective views for their purposes, iteratively refined the more promising
views, and iteratively refined our understanding of the tasks, requirements, and use case.
Chapter 3.3 lays out this final understanding; it was not nearly so clearly understood at the
start of this design study.
In the converging design phase, we redesigned the entire interface for usability based
on the combination of previously gathered user feedback and a cognitive walkthrough that
incorporated our validated requirements. We carefully considered the trade-offs between
the power of multiple views and the cognitive load of excessive window management, and
considered screen real estate as a scarce resource. The final design had a core set of three
main views with critical functionality that were always visible on screen, with a very small
set of optional pop-up views for uncommon operations. This design proved to meet the needs
of the scientists (as expressed in goal G1) much better than the first version (Figure 7.1),
and was finalized after only a short round of further refinement. Chapter 5 describes the
capabilities of this final version.
7.2
Lessons Learned
We were able to simplify some aspects of the interface as we moved to a more precise data
abstraction: for instance, the constraint sliders started as two-way sliders, but after we
realized that indicators did not need to be both maximized and minimized, we substituted
one-way sliders (see Figure 7.2).
Other changes were based on a better understanding of the task abstraction. For example, noting that users had created individual scatterplots as part of their previous analysis
process, we conjectured that a scatterplot matrix might be even more useful than a collection
CHAPTER 7. PROCESS AND VALIDATION
(a)
49
(b)
Figure 7.2: The Overview pane versus the Constraint pane: (a) In the first-phase prototype
of Vismon, the Overview pane (renamed to Constraint in the later versions) contained the
list of management options as well as indicators. The constraint sliders for indicators were
two-way, allowing the user to add constraints to both minimum and maximum values. (b) In
the final version of Vismon, the Constraint pane has two separate tabs, one for management
options and the other for indicators. The two-way sliders in the earlier Overview pane
are substituted with one-way sliders, because there is no need to have both minimum and
maximum constraints.
of separate plots located at haphazard locations; we also provided a correlation matrix with
small boxes colour-coded by correlation as a compact overview (see Figure 7.3). However,
these views were not used; we eventually understood that finding correlations between the
indicators was not a central task for sensitivity analysis.
Several more exotic visual encodings were not effective in this domain. The familiar bar
charts were strongly preferred by many of the users. Some were willing to use star glyphs,
which were left active in the final tool. Parallel coordinates (Figure 7.4) were firmly rejected
by these users.
The histogram sliders underneath the constraint sliders evolved in response to the failure of an experimental visual encoding of uncertainty that proved to be incomprehensibly
CHAPTER 7. PROCESS AND VALIDATION
50
Figure 7.3: The first-phase prototype of Vismon included a correlation matrix. It showed
the correlation value of every two indicators in the cell connecting the two indicators. The
user was able to see the scatterplot of any two indicators, instead of their correlation value
by clicking on their connecting cell. The colour coding encoded the “goodness” of the
correlation between the two indicators, based on the maximum/minimum preferability.
complex. The original probability statement plot encoding (see Figure 7.5(a)) was a twodimensional plot with the horizontal axis encoding indicator values from minimum to maximum, and the vertical axis showing probabilities from 0 to 1. Within the box, a pixel had a
greyscale value indicating the percentage of management option combinations that satisfied
the x axis as the boundary value and the y axis value as the probability value. The final
solution does not attempt to show this entire two-dimensional space simultaneously: the
Probabilistic Objectives histogram (Figure 7.5(b)) shows only a single one of those curves,
and changing the top slider changes which curve is shown. We realized that the users did not
need to internalize the full details of the global uncertainty distribution; they only needed
to inspect local regions.
CHAPTER 7. PROCESS AND VALIDATION
51
Figure 7.4: Parallel coordinates were among the many views included in the first-phase
prototype of Vismon. However, they were rejected by the target users.
7.3
Staged Deployment
Vismon is being deployed through a staged process, in a similar spirit to the staged development approach of LiveRAC [?]. The primary target user is the gatekeeper to other
fisheries scientists, and they in turn are the gatekeepers to fisheries policymakers. These
two interesting deployment milestones for Vismon match our goals G1 and G2.
Several versions of the Vismon prototype (see Appendix B) have been deployed at the G1
(scientists’ communication with policymakers) level by Peterman, including a demonstration
to 40 research biologists and high-level fisheries managers from the Alaska Department of
Fish and Game in October 2009. The response of these policymakers was highly positive,
verifying that the goal of facilitating communication between technical and non-technical
users was achieved. More specifically, the visual framework allowed managers to ask new
questions, promoted discussion and debate, and built trust between managers and scientists
for the data analysis process.
CHAPTER 7. PROCESS AND VALIDATION
(a)
52
(b)
Figure 7.5: (a) The Probability Statement plot was an experimental visual encoding of
uncertainty. It was a two-dimensional plot with the horizontal axis showing indicator values,
from minimum to maximum, and the vertical axis showing probabilities from 0 to 1. A pixel,
had a greyscale value indicating the percentage of management option combinations that
satisfied the axis as the boundary value, and the y axis value as the probability value.
This plot proved to be complicated. (b) The Probability Objectives histogram is substituted
the complex Probability Statement plot. It shows only a single one of those curves. The
Probability Statement plot in (a) is annotated with a red line to show where the Probability
Objectives histogram (shown in (b)) is situated.
In 2008, the AYK Sustainable Salmon Initiative1 called for an expert panel to review the
harvest policies of the AYK region. As part of their work, they recommended a model-based
analysis, whose outcomes are based on simulations, to allow policymakers to consider alternative harvesting policies. One scientist plans to use Vismon as the central tool for scientists
and managers to understand this simulation’s data output, including the uncertainties in
the model as well as the sensitivities of particular policy decisions to various assumptions.
The authors have demonstrated Vismon to a number of Pacific Salmon biologists in
the Department of Fisheries and Oceans in Nanaimo in February 2010. Moreover, another
fisheries scientist used Vismon in a presentation to the managers of the Fraser River Panel
in Vancouver in May 2011.
Vismon is freely available, with written and video tutorials, at http://www.vismon.org.
Scientists have begun to use it at the G1 level using only these training materials, for
1
http://www.aykssi.org/
CHAPTER 7. PROCESS AND VALIDATION
53
example a recent presentation to the Fraser River panel of the Pacific Salmon Commission.
Two scientists have now gained sufficient confidence in Vismon to plan for its deployment at
the G2 (analysis by policymakers) stage as part of the AYK Sustainable Salmon Initiative.
Their trust was gained after the demonstration of Vismon in Alaska in April 2012. (The
results of the deployment are discussed later in Chapter 7.4.) It will be a central tool for
scientists and managers to carry out model-based analysis to consider alternative harvesting
policies. The commitment has been made that “the software will be used by the Panel at
Phase 2 workshops and stakeholder meetings”; the first such workshop was held in April
2012 in Alaska. Workshop participants were trained to build and run a management strategy
evaluation model, and used Vismon to visualize its output.
After the workshop, salmon fisheries managers in the Arctic-Yukon-Kuskokwim region
of Alaska plan to use Vismon starting in Summer of 2012 (alongside their existing methods)
to help them decide which of many management options to choose during the salmon fishing
season.
7.4
Validation and Initial Deployment Outcome
A fisheries scientist with extensive experience in building and analyzing simulation models
was our primary target user and source of domain information (Randall M. Peterman).
Over the course of 30 months, 15 interviews and feedback sessions took place.
We also solicited feedback from four more fisheries scientists who work directly with
fisheries policymakers for the AYK region, as arms-length target users who were not directly
involved in the design process. There were a total of five individual sessions of a few hours
each where they used versions of the Vismon first-phase prototype with Peterman’s data in
individual sessions, and one additional session where one used a near-final Vismon secondphase prototype with his own dataset.
7.4.1
Initial Deployment in Alaska
Overview
In April 2012, Vismon 2.5 (See Appendix B) was demonstrated in a workshop about Management Strategy Evaluation I: Harvest Policy Trade-offs. The workshop was held in Alaska,
CHAPTER 7. PROCESS AND VALIDATION
54
and a group of fisheries scientists and high-level fisheries managers from the Alaska Department of Fish and Game were the main attendees. Vismon was introduced as a tool that
could assist in fisheries analysis. During the workshop, the scientists and managers had the
opportunity to work with Vismon to get familiarized with its workflow.
At the end of the workshop, we handed out a questionnaire to the participants of the
workshop to gather feedback from the participants. A questionnaire was designed to gather
information about the dimensionality of the data with which the participants typically work,
the users’ familiarity of various visual encodings, how Vismon can facilitate data analysis,
how Vismon can assist in communication between scientists, managers and stakeholders
(towards goals G1 and G2), and finally, the usefulness of Vismon in general. In addition,
there were some questions about the background of the participants. Appendix A shows
the full questionnaire; the questions Q1 through Q14 and their results are discussed later.
Results
This section discusses the results of the Alaska initial deployment, which involved 14 respondents. However, not every participant answered all questions. Hence, the total number
of answers for each question is not identical.
Occupation
Managers
Fisheries scientists
No answer
Total
Number of participants
5
8
1
14
Table 7.1: Q3 Results: The participants in the workshop were either managers or fisheries
scientists. Only one participant did not give his/her occupation.
The participants fell into two categories: managers and fisheries scientists. Table 7.1
shows the list of number of managers and fisheries scientists that participated in the workshop. Note that one participant did not mention their occupation. Among 14 participants
who gave us their background information, in response to Q4, 11 participants were from the
commercial fisheries research and sport fishing divisions of the Alaska Department of Fish
and Game (ADF&G), 2 from U.S. Fish and Wildlife Service, and 1 was from a university
(Table 7.2). The fish stocks on which the participants were focusing (Q5 ) were Chinook,
CHAPTER 7. PROCESS AND VALIDATION
55
Chum, Sockeye, and Coho salmons in the Yukon, Kuskokwim, and Unalakleet rivers.
Section
Alaska Department of Fish and Game (ADF&G)
U.S. Fish and Wildlife Service (USFWS)
Universities
Total
Number of participants
11
2
1
14
Table 7.2: Q4 Results: Division/Section of respondents, who came from Alaska Department
of Food and Game (ADF&G), U.S. Fish and Wildlife Service (USFWS), or universities.
Table 7.3 shows the responses the participants gave to Q6: What previous tools or methods did you use to carry out the kind of analysis that Vismon supports?. The participants
used to use models such as the Ricker model or data manipulation tools such as Excel, or
used programming in R to carry out their data analysis. 7 out of 12 participants mentioned
that they did not have any tools with capabilities similar to Vismon. This lack is supporting evidence that the fisheries scientists are in need for a tool that can assist them with
analyzing their data and considering the trade-offs between various actions. Hence, Vismon
has the potential to meet previously unmet needs.
Based on the answers about the dimensionality of the data (Q7 and Q8 ), we found out
that 8 out of 12 participants (67%) deal with 2 management options (Table 7.4). However,
they are all interested to include more than 2 management options in their typical analysis.
The number of indicators in the typical analysis is strictly less than 10, with 75% less than
7, and the desirable number of indicators increases to up to 12.
Q9, Q10, and Q11 have 5-point Likert scales where 1 is best and 5 is worst. Figure 7.6(ai) shows histograms of answers to Q9 about the usefulness of visuals in the users’ analysis,
with 1 being very valuable and 5 being not very valuable (Q9-a to Q9-i ). As expected,
contour plots (Figure 7.6(a)) were the most useful visual encoding, with almost 85% of
participants considering it very useful. However, bar charts (Figure 7.6(b)) and scatterplots
(Figure 7.6(d)) were less favourable compared to contour plots (Figure 7.6(a)). Histograms
(Figure 7.6(c)) seemed to be of less value in the participants’ data analysis. Finally, no one
believed in the usefulness of star glyphs (Figure 7.6(e)) and multipodes plots (Figure 7.6(f)).
Error bars (Figure 7.6(g)) and box plots (Figure 7.6(h)) were both considered valuable. Interestingly, the participants showed interest in using shaded distributions encoding
CHAPTER 7. PROCESS AND VALIDATION
56
What previous tools or methods did you use to carry out the kind of
analysis that Vismon supports?
- Qualitative understanding of trade-offs
- Used Excel and R to visualize outputs of models
- Excel; R; VBA
- Just a cursory examination of historical fishery performance under various exploitation rates of estimated run sizes. Looking at recruits /per spawner = productivity
under varying levels of escapement (?)
- Ricker analysis using Excel
- Lony hand (!?); Excel
- Essentially none
- None have remotely similar capabilities
- Simple S/L assessment of MSY; Not a lot of comparison
- None
- Ricker
- Not sure - conversations w/ managers and stakeholders based on outcomes/(surficial) analysis of historical management actions & run conditions/sizes
Table 7.3: Q6 : Previous tools or methods used to carry out the kind of analysis supported
by Vismon.
(Figure 7.6(i)) which was a newly-introduced visual for uncertainty visualization.
Figure 7.7(a-f) shows the extent the participants agreed about different aspects of helpfulness of Vismon in data analysis (Q10-a to Q10-f ).
7 out of 14 participants (50%) strongly agreed that Vismon would help them do data
analysis more quickly than previous tools (Figure 7.7(a)). Only 3 out of 14 (21%) participants disagreed with such a statement. However, the participants were less sure about
how thoroughly Vismon helps them doing data analysis compared to previous tools. The
high frequency of responses to the second question (Figure 7.7(b)) is more inclined towards
the median (rank 3) compared to the first question (Figure 7.7(a)). Interestingly, 1 person
strongly disbelieved that Vismon supports a thorough data analysis.
We received bimodal answers to the question whether Vismon provides insights into the
user’s data that they did not have using previous tools. 11 out of 14 (strongly) agreed with
this statement, whereas 3 out of 14 strongly disagreed.
We also asked the participants to compare the management policies they found using
Vismon with previous tools. In all three questions (see Figure 7.7(d-f)), most responds were
CHAPTER 7. PROCESS AND VALIDATION
No. of Management Options
Typical Analysis Desired Analysis
2
7
2
2
5-10
5-10
2-4
2-4
7
2
2
5
2
2
6
6
6
9
2
3
3-6
1-4
57
No. of Indicators
Typical Analysis Desired Analysis
5
10
6
6
9
9
5
10
8
8
4
12
-
Table 7.4: Q7 and Q8 Results: Number of management options and indicators in fisheries
analysis
around rank 3, which was stating neither agreeing nor disagreeing with these statements in
question. The participants were more confident about finding better management policies
than they found using previous tools, as they were more agreeing with it (Figure 7.7(d)).
When asked whether Vismon increased their trust that they found the best possible management policy, the participants gave mostly neutral responses (Figure 7.7(e)): 9 out of 12
participants checked rank 3, and 3 out of 12 checked either rank 2 or rank 4. However, they
were more confident in finding a very good management policy (Figure 7.7(f)).
Altogether, from the responses we received about the usefulness of Vismon in data
analysis, we concluded that Vismon has the potential to assist the users to do data analysis
more quickly and throughly than previous tools. In addition, Vismon provides insights into
the users’ data that they did not have using previous tools. However, at this time, the
users do not have enough confidence to use Vismon instead of their previous data analysis
methods; it may be more appropriate to augment rather than to replace them.
Figure 7.8(a-c) show the responses to Q12 : whether Vismon increases the collaboration and communication between different groups of interest. The first question (see Figure 7.8(a)) asks about communication between scientists and managers. 10 out of 13 participants (77%) (strongly) agreed with this statement. Participants agreed less on Vismon
CHAPTER 7. PROCESS AND VALIDATION
58
improving collaboration and communication among managers (Figure 7.8(b)) compared to
the first question. The participants gave neutral responses to whether Vismon improved collaboration and communication between managers and other stakeholders. Two participants
specifically wrote,
“hopeful but will be difficult for manager folks to understand”
“Likely too complicated to present to stakeholders.”
Following the questions related to communication, we asked the participants to expand
their answers with a more detailed explanation, if possible. The responses were:
“Vismon will definitely provide a bridge between managers and research and
once managers become proficient with the software, they will become better at
explaining complexity of management trade-offs to stakeholders. Does provide
transparency in that regard. However, federal and state fisheries managers will
do what their respective bureaucracies mandate them to do.”
“Could be difficult to explain contour plots to stakeholders.”
“not work w/ enough to know.”
“This is a great tool, but generally in a meeting it would be hard to present
much of this in a way that the average person would understand.”
“Looking forward to using Vismon more often. At this point, my experience
is too limited to give any detailed feedback.”
“It’s great to see all the trade-offs in graphical form and multiple scenarios
with mean/CIs. I think this would be especially beneficial to show stakeholders
our options and the probability of a certain outcome.”
The responses to Q13, What aspects of Vismon did you find most useful?, were:
“good visualization; it’s nice to be able to quantify trade-offs”
“contour plots; trade-offs bar plots; scatter plots; results list; histograms”
“Its speed in running; large amounts of simulations to look at variability in
outcomes; It’s flexibility”
“Contour plots, bar charts, scatter plots”
“Am a graphic user to understand dots”
“The ability to look at multiple parameters at same time”
CHAPTER 7. PROCESS AND VALIDATION
59
“visualization of diff. scenarios; Ability to constrain; Comparing multiple
indicators/tradeoffs; Ability to export scenario values/modify colors”
The participants’ responses to Q14, What aspects of Vismon did you find confusing?,
were:
“The scatterplots. grey dots obscured white dots”
“sometimes the dots don’t show up on the plots - or had to click multiple
times to get it to come up”
“Seemed very straight forward, with a very quick learning curve. The confusing part would be interpretation.”
“I have problems with the crosshairs on plots; I couldn’t access the left half
of any plot, therefore was unable to create trade-offs plots.”
“Star glyphs - need labels”
Furthermore, a participant replied to Q15, What aspects of Vismon did you find least
useful? :
“the program was slow and prone to freezing up.”
None of the participants gave informative answers to Q16, What tasks are harder or
impossible to perform, compared with previous tools that you have used?. All except one
mentioned that they needed more time to work with Vismon. One participant wrote:
“haven’t used similar tools”
For Q17, What features are missing from Vismon?, participants mentioned:
“scenario clicking didn’t work well; ability to consider more than 2 policy
axes”
“shaded pattern fills that would show up in black and white publications.
something analogous to pattern fill options in graphing in Excel”
“ability to export specific graphs → good for making presentations where a
lot of graphs would be confusing”
“Ability to modify figure labels for export for presentations”
In questions 13 through 17, we received answers related to the fact that the participants
needed more time to explore the tool.
CHAPTER 7. PROCESS AND VALIDATION
60
Conclusion
The Alaska initial deployment identifies many aspects regarding usefulness of Vismon in
data analysis and communication. The participants agreed that Vismon improves the speed
and the details of data analysis. They also agreed that Vismon includes visual encodings
that are useful for its target users, and that visualizing uncertainty has been appropriately
selected.
The participants also agreed that Vismon can improve the collaboration and communication between scientists and managers, and moderately improve the collaboration between
managers, and between managers and stakeholders. These results provide supporting evidence that Vismon has succeeded in accomplishing goals G1 and G2 (see Chapter 3).
CHAPTER 7. PROCESS AND VALIDATION
61
(a) Contour plots
(b) Bar charts
(c) Histograms
(d) Scatterplots
(e) Star glyphs
(f) Multipodes plot
(g) Error bars
(h) Box plots
(i) Shaded distributions
Figure 7.6: Q9 Results: Usefulness of 9 visual encodings on a 5-point Likert scale. On
the left is 1, very valuable; on the right is 5, not very valuable. High frequency on the
left indicates the plot being more valuable, but on the right indicates the plot being less
valuable.
CHAPTER 7. PROCESS AND VALIDATION
62
(a) Vismon helps me do data analysis
more quickly than previous tools
(b) Vismon helps me do data analysis
more thoroughly than previous tools
(c) Vismon provides insights into my data
that I did not have using previous tools
(d) Vismon allows me to find a better
management policy than I found using
previous tools
(e) Vismon increases my trust that I have
found the best possible management policy
(f) Vismon increases my trust that I have
found a very good management policy
Figure 7.7: Q10 Results: Usefulness of Vismon in data analysis on a 5-point Likert scale.
On the left is 1, strongly agree; on the right is 5, strongly disagree. Note that high frequency
on the left indicates more agreeing, and on the right indicates more disagreeing.
CHAPTER 7. PROCESS AND VALIDATION
(a) Vismon will improve collaboration
and communication between scientists
and managers
63
(b) Vismon will improve collaboration
and communication among managers
(c) Vismon will improve collaboration
and communication between managers
and other stakeholders
Figure 7.8: Q11 Results: How Vismon improved the communication between different
groups of interest on a 5-point Likert scale. On the left is 1, strongly agree; on the right is
5, strongly disagree. Note that high frequency on the left indicates more agreeing, and on
the right indicates more disagreeing.
Chapter 8
Conclusion and Future Work
Over the past three years we worked closely with fisheries scientists to develop a tool that
allows the analysis of fisheries models to move from their builders into the hands of managers
and policymakers. The need for such a tool arose from a changed climate for policy makers
to a) base their policy decisions on a broader scientific basis and to b) incorporate different
stakeholders in the decision process.
We engaged in a requirements analysis that allowed us to articulate and abstract data
and tasks for this domain. The resulting Vismon system facilitates the analysis of multidimensional data with 2 independent inputs (management options), 10 to 20 outputs (indicators), and includes a multi-level view of the models underlying uncertainty, expressed by
multiple Monte Carlo runs. Sensitivity of a policy decision is encoded by close contour lines
in the contour plots. A comprehensive trade-off analysis allows users to compare several
alternative policy options.
Several versions of Vismon have been demonstrated to many fisheries scientists and
managers over the past three years. The response of these policymakers was highly positive,
verifying that our visual framework allows managers and scientists to ask questions, promote
debate and discussions to build trust between them for the data analysis process. In our
last demonstration in Alaska in April 2012, we asked questions from participants about
usefulness of Vismon in data analysis as well as its assistance in communication between
various groups of interest. The feedback we received showed that Vismon in fact has the
potential to assist fisheries scientists and managers along with their traditional methods.
The responses we received on the dimensionality of the data that the domain expert is
64
CHAPTER 8. CONCLUSION AND FUTURE WORK
65
dealing with made us examine the fundamental fact of having only 2 independent dimensions (management options). Although the domain experts typically have 2 management
options in the data analysis (due to lack of a systematic way of looking at more than 2),
they are greatly interested in including higher number of management options. Expanding
Vismon to deal with any number of management options would be interesting future work
to augment Vismon’s current capabilities. Classifying the parameter space into classes of
different outcomes, similar to what Design Galleries [?] and FluidExplorer [?] suggested,
would be one way to do so.
Appendix A
Questionnaire
Vismon 2 Questionnaire for Alaska Workshop
April 2012
Your contact
1. What is your name (optional)?
2. If you are willing to be contacted about your further use of Vismon, please give us an
email address or a phone number (optional):
66
APPENDIX A. QUESTIONNAIRE
67
Vismon 2 Questionnaire for Alaska Workshop
April 2012
Your background
3. Are you a # manager # fisheries scientist # data analyst # other
?
4. What division/section are you in?
5. Which fish stocks are your main concern?
6. What previous tools or methods did you use to carry out the kind of analysis that
Vismon supports? (For example, how did you select sets of management actions? How did
you compare them?)
APPENDIX A. QUESTIONNAIRE
68
Data and visuals
7. How many management objectives and indicators do you use in a typical analysis?
[
management objectives,
indicators]
8. What is the maximum number of management objectives and indicators that you have
wanted to include in analysis?
[
management objectives,
indicators]
How useful do you find these visuals in your analysis
Very
valu-
1
2
3
4
5
able
Not very
Unfamiliar
valuable
9a. Contour plots
#
#
#
#
#
2
9b. Bar charts
#
#
#
#
#
2
9c. Histograms
#
#
#
#
#
2
9d. Scatter plots
#
#
#
#
#
2
9e. Star glyphs
#
#
#
#
#
2
9f. Multipodes plot
#
#
#
#
#
2
9g. Error bars
#
#
#
#
#
2
9h. Box plots
#
#
#
#
#
2
9i. Shaded distributions
#
#
#
#
#
2
9j. Other (please specify)
#
#
#
#
#
2
APPENDIX A. QUESTIONNAIRE
69
Vismon
Please indicate to what extent you agree with the statements below:
Strongly
1
2
3
4
5
agree
10a.
Vismon helps me do data analysis
more quickly than previous tools
10b.
Vismon helps me do data analysis
more thoroughly than previous tools
10c. Vismon provides insights into my data
that I did not have using previous tools
10d. Vismon allows me to find a better
management policy than I found using pre-
disagree
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
vious tools
10e. Vismon increases my trust that I have
found the best possible management policy
10f. Vismon increases my trust that I have
found a very good management policy
11. How often do you expect that you will use Vismon for analysis?
# Daily
# Weekly
# Monthly
Strongly
# Annually
APPENDIX A. QUESTIONNAIRE
70
Please indicate to what extent you agree with the statements below:
Strongly
1
2
3
4
5
agree
12a.
Vismon will improve collaboration
and communication between scientists and
disagree
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
manager
12b.
Vismon will improve collaboration
and communication among managers
12c.
Vismon will improve collaboration
and communication between managers and
other stakeholders
Please expand on your answer with a more detailed explanation, if possible:
13. What aspects of Vismon did you find most useful?
Strongly
APPENDIX A. QUESTIONNAIRE
14. What aspects of Vismon did you find confusing?
71
APPENDIX A. QUESTIONNAIRE
72
15. What aspects of Vismon did you find least useful?
16. What tasks are harder or impossible to perform, compared with previous tools that you
have used?
17. What features are missing from Vismon?
APPENDIX A. QUESTIONNAIRE
73
Appendix B
Vismon Versions
Version
Release Date
Notes
Vismon 1.0
Sep 2009
Demonstrated in Alaska in Oct 2009
Vismon 1.0.2
Feb 2010
Demonstrated in Nanaimo in Feb 2010
Vismon 2.0
May 2011
Demonstrated in Vancouver in May 2011
Vismon 2.4.1
Dec 2011
Submitted to EuroVis Conference in Dec 2011
Vismon 2.5
Jan 2012
Demonstrated and played with in Alaska in Apr 2012
Vismon 2.5.1
Aug 2012
Current version
74