Math 2215 - Calculus 1 Exam #6 - 2016.11.30 Solutions d 1 sin−1 (x) = √ dx 1 − x2 d 1 cot−1 (x) = − dx 1 + x2 d 1 sinh−1 (x) = √ dx 1 + x2 d 1 coth−1 (x) = dx 1 − x2 Z 1. Compute the following integral: d 1 cos−1 (x) = − √ dx 1 − x2 d 1 √ sec−1 (x) = dx |x| x2 − 1 d 1 cosh−1 (x) = √ 2 dx x −1 d 1 −1 sech (x) = − √ dx x 1 − x2 d 1 tan−1 (x) = dx 1 + x2 d 1 csc−1 (x) = − √ dx |x| x2 − 1 d 1 tanh−1 (x) = dx 1 − x2 d 1 csch−1 (x) = − √ dx |x| x2 + 1 sin(ln(2x)) dx x 1 We perform a u-substitution: u = ln(2x), and du = dx. x Z Z sin(ln(2x)) dx = sin(u) du x = − cos(u) + C = − cos(ln(2x)) + C 2. Compute the following derivative: d sin(x2 )cos(x)+x dx First we set y = sin(x2 )cos(x)+x , and thus ln(y) = (cos(x) + x) ln(sin(x2 )), We can now implicitly differentiate: d d ln(y) = (cos(x) + x) ln(sin(x2 )) dx dx y0 cos(x2 )2x = (− sin(x) + 1) ln(sin(x2 )) + (cos(x) + x) y sin(x2 ) Solving for y 0 gives cos(x2 )2x y 0 = (− sin(x) + 1) ln(sin(x2 )) + (cos(x) + x) y sin(x2 ) cos(x2 )2x = (− sin(x) + 1) ln(sin(x2 )) + (cos(x) + x) sin(x2 )cos(x)+x sin(x2 ) 3. Derive the formula for d tan−1 (x) by the method of implicit differentiation. dx Setting y = tan−1 (x) gives tan(y) = x. We then implicitly differentiate: d d tan(y) = x dx dx 2 0 sec (y)y = 1 Solving for y 0 gives y0 = 1 sec2 (y) = cos2 (y) = cos2 tan−1 (x) 1 2 Setting θ = tan−1 (x), and thus tan(θ) = x. Drawing a triangle gives opposite side x, adjacent side 1 and hypotenuse √ 1 1 + x2 . Thus cos(θ) = √ and we finally end up with 1 + x2 d 1 tan−1 (x) = dx 1 + x2 4. Verify algebraically that cosh2 (x) − sinh2 (x) = 1. First, we rewrite sinh(x) and cosh(x) in terms of their exponentials: x 2 x 2 e + e−x e − e−x − =1 2 2 And then we multiply it all out: e2x + 2 + e−2x e2x − 2 + e−2x 2+2 − = =1 4 4 4 Z 5. Compute the following integral: 3x tanh(x2 ) dx 3 We perform a u-substitution: u = x2 , and du = 2x dx, and thus 3x dx = du. 2 Z Z 3 2 3x tanh(x ) dx = tanh(u) du 2 Z 3 sinh(u) = du 2 cosh(u) 3 = ln (|cosh(u)|) + C 2 3 = ln cosh(x2 ) + C 2 3 = ln cosh(x2 ) + C 2 On the last line above, since cosh(z) ≥ 1 for all z, the absolute value can be removed. (5x − 1)2 (3x + 2)5 d ln . 6. Compute the following derivative: dx (4x − 7)6 (3x − 2)7 First we simplify our function using properties of logarithms: (5x − 1)2 (3x + 2)5 ln = 2 ln(5x − 1) + 5 ln(3x + 2) − 6 ln(4x − 7) − 7 ln(3x − 2) (4x − 7)6 (3x − 2)7 What we now have is easy to differentiate: (5x − 1)2 (3x + 2)5 d d ln [2 ln(5x − 1) + 5 ln(3x + 2) − 6 ln(4x − 7) − 7 ln(3x − 2)] = dx (4x − 7)6 (3x − 2)7 dx 5 3 4 3 =2 +5 −6 −7 5x − 1 3x + 2 4x − 7 3x − 2 Z 9x √ 7. Compute the following integral: dx 2 x 1 − x4 9 We perform a u-substitution: u = x2 , and du = 2x dx, and thus 9x dx = du. 2 Z Z 9x 9 1 √ √ dx = du 2 u 1 − u2 x2 x4 − 1 9 = − sech−1 (u) + C 2 9 = − sech−1 (x2 ) + C 2 3 d log7 23x − 45x + 1 . dx d 1 d log7 23x − 45x + 1 = ln 23x − 45x + 1 dx ln(7) dx d 23x − 45x + 1 1 dx = ln(7) 23x − 45x + 1 1 ln(2)23x · 3 − ln(4)45x · 5 = ln(7) 23x − 45x + 1 3 2 9. If f (x) = x + 3x + 4x − 1, verify that f (x) is invertible by showing that f 0 (x) > 0 for all x. Then compute d −1 f (x) at x = 7. dx 8. Compute the following derivative: First, f 0 (x) = 3x2 + 6x + 4, and computing the discriminant gives d = 36 − 48 = −12 < 0, thus there are no roots to the derivative and thus f 0 (x) > 0 which means the function is always increasing. Thus, f (x) is invertible. To compute the derivative of the inverse at x = 7, we need to find f −1 (7). By plugging simple small numbers into f (x), we see that f (1) = 7, thus f −1 (7) = 1. So now we have that 1 d −1 = 0 −1 f (x) dx f (f (7)) x=7 1 f 0 (1) 1 = 13 =
© Copyright 2026 Paperzz