Math 2040 Test 2. Fall 2015 1. The graph of y = f (x) is shown above. where xy 3 + 1 = x4 + y 4 . (a) For what value(s) x does f (x) fail to be continuous? 13. Use logarithmic differentiation to find the derivative of the function f (x) = xtan x . (b) For what value(s) x is f 0 (x) = 0? 14. Match the function on the top row with its derivative on the bottom. (c) For what value(s) x is f 0 (x) undefined? Questions 2–9: compute the derivative of the function; simplify your answer. 2. f (x) = 3. f (x) = √ √ x+ 1 − 13 x xex 1 1 1 1 A 1 1 1 1 1 3 5 4. f (x) = ln((1 + x ) ) 5. f (x) = ln(sec x + tan x) 6. f (x) = (2x + 1)3 (x − 3)−2 2 B 1 1 1 1 7. 8. f (x) = sin x 1 + cos2 x f (x) = x sin x + cos x √ 9. C 3 10. Find the equation of the tangent line to the curve y = 2ex + sin x where x = 0. 11. Evaluate the limit (don’t just write an answer–show your work): sin(3x) . x→0 4x lim 12. Use implicit differentiation to find dy/dx 1 1 x f (x) = x+1 1 1 4 1 1 1 5 D 1 E 7. solutions 1. a) x = −4, 2, 3 −4, −2, 2, 3 b) x = 5 c) x = (1 + cos2 x) cos x − sin x · 2 cos x(− sin x) (1 + cos2 x)2 cos x + cos3 x + 2 sin2 x cos x = (1 + cos2 x)2 cos x(1 + cos2 x + sin2 x + sin2 x) = (1 + cos2 x)2 cos x(2 + sin2 x) = (1 + cos2 x)2 f 0 (x) = 2. 1 f 0 (x) = x−1/2 − x−2 2 1 1 = √ − 2 2 x x 8. 3. 1 f 0 (x) = x1/2 ex + x−1/2 ex 2 ex 1/2 = (2x + x−1/2 ) 2 ex 2x + 1 = 2 x1/2 f 0 (x) = x cos x + sin x − sin x = x cos x 9. (x + 1)(1/2)x−1/2 − x1/2 (x + 1)2 (x + 1)(1/2) − x = (x + 1)2 x1/2 x + 1 − 2x = 2(x + 1)2 x1/2 1−x √ = 2(x + 1)2 x f 0 (x) = 4. f (x) = 5 ln(1 + x3 ) so f 0 (x) = 5 · 1 15x2 2 · 3x = . 1 + x3 1 + x3 10. 5. 1 f (x) = (sec x tan x + sec2 x) sec x + tan x sec x(tan x + sec x) = sec x + tan x = sec x y 0 = 2ex + cos x 0 so the slope is m = y 0 (0) = 2e0 + cos(0) = 3. Since y(0) = 2e0 + sin(0) = 2, a point on the tangent line is (0, 2). The equation of the tangent line is y = 3x + 2. 6. f 0 (x) = (2x + 1)3 [−2(x − 3)−3 ] + (x − 3)−2 [3(2x + 1)2 · 2] = = = = −2(2x + 1)3 6(2x + 1)2 + (x − 3)3 (x − 3)2 2(2x + 1)2 −(2x + 1) +3 (x − 3)2 x03 2(2x + 1)2 −2x − 1 + 3x − 9 (x − 3)2 x−3 2 2(2x + 1) (x − 10) (x − 3)2 11. sin(3x) sin(3x) 3 3 = lim · = . x→0 x→0 4x 3x 4 4 lim 12. x · 3y 2 y 0 + y 3 = 4x3 + 4y 3 y 0 3xy 2 y 0 − 4y 3 y 0 = 4x3 − y 3 y= 4x3 − y 3 3xy 2 − 4y 3 13. y = xtan x ln y = ln xtan x ln y = tan x ln x 1 0 tan x y = + ln x · sec2 x y x tan x 2 y= + ln x · sec x xtan x x 14. 1 7→ B, 2 7→ E, 3 7→ A, 4 7→ C, 5 7→ D.
© Copyright 2026 Paperzz