THE“LAWOFSYLLOGISM”PROJECT Overviewoftheproject: Thisproject,whichwillbeamajorportionoftheGeometrypartofRIMASatExhibitionsin December,containssixmainparts,describedinmoredetailonthenextpage.Itwillbe presentedintheformofanaccordionbook.(Ifyou’venevermadeone,youcancheckoutthis template:http://www.booklyn.org/education/isaccordion.pdf). Themainpartsintheprojectareto: 1. Writeanintroduction. 2. Writeaseriesofpostulates(if-thenstatements)likein“GeraldtheGnu.” 3. Illustrateyourpostulateswithalegibleandwell-structuredEulerdiagram. 4. Createtheoremsbasedonyourpostulates.TheEulerdiagramshouldhelptovisualize thevalidityofthetheorems. 5. Writealogicalproofusingdeductivereasoning,startingfromapremise(known informationsuchas“Geraldisagnu”)andusingyourpostulatesandtheoremstodraw conclusionsusingatleast5differentpostulates. 6. Writeapersonalreflectionhighlightingthekeylearningpointsoftheassignment. BackgroundinformationontheLawofSyllogism: Inmathematics,thetransitivepropertyisusedtomakedeductionsofthestyle: ifa=bandb=c,thena=c. Forexample,inthefigure,wearetoldthat∠𝐵is congruentwith∠𝐴andalsowith∠𝐶. Usingthetransitiveproperty,wecanthenconclude that ∠𝐴and∠𝐶arealsocongruent. Insimplifiedmathematicallanguage,wewould write: ∠𝐴 ≅ ∠𝐵and∠𝐵 ≅ ∠𝐶!∠𝐴 ≅ ∠𝐶 Thelawofsyllogism,alsocalledreasoningbytransitivity,isalineofdeductivereasoning similartothetransitiveproperty.Itfollowsthispattern: Postulate1: Ifathenb. Postulate2: Ifbthenc. Byusingthelawofsyllogism,wecanthenprove: Theorem: Ifathenc. Example: Postulate1: IfyouliveinGnuJersey,thenyouareaquadruped. Postulate2: Ifyouareaquadruped,thenyouhavefourlegs. Theorem1-2: IfyouliveinGnuJersey,thenyouhavefourlegs. Proof:Let’ssayourpremisestatesthatGeraldlivesinGnuJersey.WeknowfromTheorem1-2 thatifyouliveinGnuJersey,thenyouhavefourlegs.ThereforeGeraldhasfourlegs. Detailedrequirements: Part1:Writeanintroduction Inlessthanonepage,brieflydescribethegoalsoftheprojectandgivesomebackground informationforthereader.Someonewhohasn’ttakentheclassshouldbeabletofollowwhat youaredoing(youmaywanttoincludedefinitionsofthevocabularyyouwillbeusing,for example). Part2:Writeaseriesofconditionalstatementsor“postulates”. Writeatleast9differentconditionalstatements(thatyouwillbeorganizinginanEuler diagraminPart3)ofwhich: o atleast1shouldbewrittenwiththeconclusionlocatedbeforethehypothesis o atleast1shouldbewrittenwithoutusingtheword“if” o atleast1shouldbewrittenincontrapositiveform o atleast1shouldhavea2-parthypothesis(“if____and____”or“if____or____”) o atleast1inverseorconverseofanotherpostulateshouldbepresent o atleast1shouldbeunusableinyoursyllogism(trickystatement!)becauseusingit wouldmakeyouguiltyofthe“converse”orthe“inverse”error o atleast1shouldhaveanegatedhypothesisand/orconclusion o Thecontentofseveralofthestatementsshouldhaveaconnectionwithyourschool life(ideallysomethingyoulearnedinschool,forexampleinscience). o Thestatementsshouldbefunorinterestingtoread.Grasptheattentionofyour reader,andbecreative! Part3:Organizeallyourconditionalstatementsinawell-structuredEulerdiagram Eachhypothesisandeachconclusionfromyourconditionalstatementsshouldberepresented withacircleorloopinyourEulerdiagram.Thesamephrase,ifitappearsinseveralconditional statements,shouldonlyberepresentedonce. MakesureyourEulerdiagram: o islogicallycorrectandillustratestheconditionsandpossibilitiesexpressedinyour postulates(intersectionsbetweenloopswhenapplicable,etc.) o isneatandlegible,anditsstructureiseasytofollow o containsakeyclearlyshowingthephraserepresentedineachloop o wheneverpossible(anditwon’talwaysbe),theloopsshouldrepresentanaffirmative set(what“is”,asopposedtowhat“isnot”). Part4:Createtheoremsusingthelawofsyllogism Usingatleast5ofyourpostulatesandthelawofsyllogism,derivesometheoremsthatarebased onyourchainedpostulates.Onetheoremthatuses5postulatesismorecomplexandinteresting than5theoremsthatuse2postulateseach.Organizeyourdeductionsinawaythatiseasyto followbyanonwell-informedreader. Part5:Writeatleastonelogicalproofusingdeductivereasoning Startingfromatleast1premise(thestatementtakenastrue,suchas“GeraldlivesinGnu Jersey”),usedeductivereasoningandthetheoremsyoucreatedtoprovesomeconclusions.The goalisnottofindmanyconclusions,butideallytofindatleastoneconclusionthatisbasedona complexlogicalproof. Part6:Writeareflection Thisreflectionshouldsummarizeyourthoughtprocessandhighlightrelevantlearning pointsandtrickypartsinthedeductivereasoning.Thisiswhereyoutellthereaderhowhard youworkedandwhereyoushowoffalloftheknowledgethatyouacquired.Bethoughtfuland philosophical,becomeanAncientGreek!(Youmaywanttowearatogaforexhibitionstoo!) Organizeyourreflectionintoseveralparagraphs,eachcommentingonadifferentaspectofthe project.Someexamplesinclude: o CommentonthemakingoftheEulerdiagram:whataresomeoftheobstaclesyou encounteredandovercame?Howarehypothesesandconclusionsillustrated?Whatisthe meaningofintersections?Whyaresomesetsseparatedfromeachother? o Commentonthekeypointsofthelogicalproof:mentiontheconverse/inverseerrorsyou avoided,discussanyotherdifficultiesyouencountered. o Commentonyourcontent:whatdidyouthinkwasinteresting/funaboutyour statements?Howdidyougoaboutwritingthepostulates?Didyouhavetochangethem much?Howdidthisassignmenthelpyoulearnmore? o Overalllearning:whatdidyoulearnthroughoutthisproject?Howisisapplicabletoareas ofknowledgeotherthanmath? Structureandformatoftheaccordionbooklet Theprojectshouldbepresentedinanaccordionbooklet,whichmakesitprettyandeasily displayableduringexhibitions.(Seehttp://www.booklyn.org/education/isaccordion.pdf.) Structure: o Titlepage,withallpertinentinformation(name,date,course,titleofproject,…). o Indexpage. o Thesixmainpartsoftheproject o Youmayuseextrapagesasneededforextrainformation,suchasaglossary,etc. Presentationandcommunication Youraccordionbookletshouldbeneatandorganized,visuallypleasing,andcreative.The aestheticsshouldillustratethecontentwell;usecolorsandimagery.Allthewrittentextmustbe typedinafontlargeenoughforexhibitions(atleast14pt). Thecommunicationshouldbeeffective,sothatsomeonewhohasnottakenthisclassshouldbe abletofollowwell. Categories Feedback&Performancelevel 1.Introduction o Theaimoftheprojectisclearlydescribed. o Anon-informedreaderisgiventhebackgroundneededto followthecontentoftheproject. o Technicalterminologyisexplainedandusedadequately. Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning Exceeds Meets Developing Beginning 2.Postulates o Thevarietyintypesofconditionalstatementsmeetsthe requirements(seeprojectdescription). o Thestatementsareclearlywrittenandunambiguous. o Thepostulatesarecreative/interestingand/orshowa connectiontoatopicyouhavestudiedinschool. o Thegrammarisappropriate:useofpronouns,useofconnecting wordssuchas“if”,“when”,“all”,and“then”. 3.Eulerdiagram o Eachhypothesis/conclusioninthepostulatesisrepresented. o Theconcentricitiesandintersectionsbetweenloopscorrectly reflectthecontentofallpostulatestogether(boththeirexplicit andimplicitcontent). o Thediagramiseasytoread,unambiguous,andakeyis included. 4.Deductionoftheoremsusinglawofsyllogism o Correctdeductivereasoningisusedtoderivetheorems. o Thestructureofthelawofsyllogismiswellshown(seefirst pageofprojectdescription). o Thelevelofcomplexityisappropriate,withatleast5postulates usedtoderivetheorems. 5.Logicalproofusingdeductivereasoning o Theconclusionsreachedarerelevantandlogicallycorrect. o Theformatofthelogicalproofisclearlystructured: 1. Startingpoint(givenpremise) 2. Theorem(relatingpremiseandconclusion) 3. Conclusion(endpointreachedbyconnectingpremisewith theorem) 6.Reflection o Summarizesthekeypointsinthethoughtprocess. o Highlightsthecriticalthinking,questionsthatarose,anderrors thatweredetected/avoided. o Isthoughtfulandreasonable,andcommentsonthelearning pointsandapplicabilityofthistypeofreasoning. Presentation&Communication o o o o Acleartitlepageandindexarepresent. Theaccordionbookletiswellmadeandvisuallypleasing. Theaestheticsandvisualsusedenhancethecontent. Thewritingiseffective,withfewornospellingand grammaticalerrors.
© Copyright 2026 Paperzz