Solid Oxide Fuel Cells: gy, and Applications pp Science,, Technology, S David Dvorak Ph D P E S. David Dvorak, Ph.D, P.E. 20 June 2008 Summer School on ‘Materials for the Hydrogen Economy’ Reykjavik, Iceland Outline • • • • • • • Characteristics and Basic Operation Multifuel Capability Cell Designs Materials l Performance Applications High Temperature Electrolysis High Temperature Electrolysis 2 Characteristics of SOFC Systems • • • • • • • • Multifuel capability with minimal gas cleanup capability with minimal gas cleanup High quality exhaust heat Good reaction kinetics Good reaction kinetics High power density Slow startup / response time Slow startup / response time Materials issues Thermal cycling issues Thermal cycling issues Sealing issues 3 SOFC: Basic Operation Anode Reaction: H2 + O + O2‐ → H2O + 2e O + 2e‐ O Overall Reaction: ll R ti H2 + ½ O2 → H2O Cathode Reaction: ½ O2 + 2e + 2e‐ → O2‐ 4 Multifuel Capability • Hydrocarbon Reforming – CnHm + nH2O → ((n + m/2)H / ) 2 + nCO • Coal Gasification – C + H2O → H2 + CO • Biomass Gasification: – (C6H10O5)n + 7nH2O → 6nCO2 + 12nH2 • Carbon Deposition: – Methane Pyrolysis Methane Pyrolysis – Boudouard disproportination – Reverse Gasification CH4 + H + H2O → C + 2H C + 2H2 2CO → C + CO2 CO + H2 → C + H2O 5 Anode Reactions: Hydrocarbon y Fuels • Steam Reformation of Methane: – CH4 + H2O → 3H2 +CO ΔHo = 206 kJ/mole • W Water Gas Shift: t G Shift – CO + H2O → H2 + CO2 • Oxidation Reactions: – Hydrogen y g – Carbon Monoxide ΔHo = ‐36 kJ/mole H2 + O2‐ → H2O + 2e‐ CO + O2‐ → CO2 + 2e‐ 6 Enthalpy and Entropy For Hydrogen Oxidation H2 + ½O2 → H2O ΔH( T) = ∑ ΔH ( T) − ∑ ΔS( T) = ΔH f ( T ) = ΔH 0f + ∫ c p ( T )dT Reactants T0 T ∑ S( T ) − ∑ S( T ) Products S(T) = S + ∫ 0 Reactan ts cp ( T ) T0 -200 0 -220 -50 Entrop py (J/mol-K) Enthalpy (kJ/mol) ΔHf ( T) f Products T -240 -260 T dT -100 -150 -280 -200 -300 300 400 500 600 Temperature (K) 700 800 300 400 500 600 700 800 Temperature (K) 7 Gibbs Free Energy and Thermodynamic Potential (E) as functions of temperature H2 + ½O2 → H2O ΔG E=− 2F ΔG = ΔH - TΔS 1.30 -200 Revers sible Cell Voltag ge Gibbs F Free Energy (kJ J/mol) -190 -210 -220 -230 1.25 1.20 1.15 1.10 1.05 1.00 -240 300 400 500 600 Temperature (K) 700 800 300 400 500 600 700 800 Temperature (K) 8 0 14 1.4 ‐50 1.2 ‐100 100 Gibbs 1 ‐150 Enthalpy 0.8 E ‐200 200 0.6 ‐250 0.4 ‐300 0.2 ‐350 0 300 400 500 600 700 800 Potential (Volt) Energy (kJ/mol) SOFC Thermodynamics y 900 1000 1100 1200 Temperature (K) 9 Temperature Effects • An increase in temperature – reduces the thermodynamic potential – Improves electrode kinetics – Increases ionic conductivity of electrolyte Kordesch & Simader, Fuel Cells and Their Applications, VCH, 1996 10 Cell Designs • Tubular Design – Lower Power Density L P D it – Easier to seal • Planar Design – Higher Power Density Hi h P D it – Harder to Seal 11 Planar Cell Configurations g • Electrolyte Supported Cells (ESC) – Thick electrolyte (120μm) – 800oC ‐1000oC ANODE ELECTROLYTE CATHODE • Anode Supported Cells (ASC) Anode Supported Cells (ASC) – Anode 0.6mm thick – 600oC ‐900oC – Thin electrolyte (higher ionic Thin electrolyte (higher ionic conductivity at lower temperatures • Porous Metal Substrate Cells (PMSC) – Corrosion Corrosion resistant ferretic resistant ferretic stainless steel stainless steel (0.5 to 1 mm) – 600oC ‐700oC – Thin Electrolyte (3YSZ) ( 2 – Thin Electrolyte (3YSZ) ( 2 – 4 μm) 4 μm) ANODE ELECTROLYTE CATHODE ANODE ELECTROLYTE CATHODE SUBSTRATE 12 Tubular Cell Development p Siemens Power Group • Circular to flattened tubes(HPD5) • Corrugated Delta9 cell (500mA/cm g ( / 2) 13 SOFC Stack Performance 0.44 A/cm2 @ 0.69V 0.3 W/cm2 14 SOFC materials • Severe Severe material environment material environment – Chemical stability – Mechanical Stability Mechanical Stability – Microstructural Stability • Electrolyte • Anode • Cathode • Interconnect 15 SEM Image: Electrolyte Supported Cell Cathode → Electrolyte → Anode → • Anode Nickel Oxide / YSZ Cermet • Electrolyte 8YSZ (8% Yttria Stabilized Zirconia) • Cathode: Lanthanum Strontium Manganite (LSM) L 0.6Sr La S 0.4MnO M O3 16 SEM Image: Anode Supported Cell • • • • • Anode support structure (Ni / 8YSZ cermet) 600μm Anode functional layer (Ni / 8YSZ) 10μm Electrolyte (8YSZ) 5μm Electrolyte (8YSZ) 5μm YDC Intermediate Layer (Ce0.8Y0.2O1.9) 3μm : – Prevents the formation of low‐conducting phase at YSZ/LSCF interface LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode 25μm Reference: www.ecn.nl 17 SOFC Applications pp • SOFC Technology is scaleable over a wide range of power requirements requirements: – Portable Power (20W – 1.5kW) – Auxiliary Power (5kW – Auxiliary Power (5kW 10kW) – Combined Heat and Power (CHP) (2kW – 10kW) – Stationary Power (25kW – Stationary Power (25kW – 250kW) • SOFC SOFC Systems are applicable where there is a need for: Systems are applicable where there is a need for: – Fuel Flexibility – High quality waste heat High quality waste heat 18 SOFC Applications: Portable Power • 250 Watt Battery Charger, 250 Watt Battery Charger – Kerosene fuel – Tubular cell design T b l ll d i – 15,2 x 25,4 x 30,5 cm www.mesoscopic.com, www.toto.co.jp 19 SOFC Applications: pp Auxiliary y Power • In the US, idling trucks consume about one billion gallons of fuel annually of fuel annually • SOFC APU systems providing heat and electrical power could cut fuel used while idling by 85% DELPHI 5 kW APU • CPOX Reformer f • Cathode Air HEX Stack • 30 cells (two per APU) • 9 kg, 2.5 liters www.greencarcongress.com 20 SOFC Applications: Combined Heat and Power • Partnership Partnership between Dantherm, Htceramix between Dantherm, Htceramix • System designed around 1kW integrated SOFC module (HotBox™) ( ) www.leblogenergie.com 21 SOFC Co-Generation: Example • 109 kW Electricity • 69 kW of hot water for district heatingg • Operated on natural gas in Netherlands and Germany for 20.000 hours www.powergeneration.siemens.com 22 SOFC / Gas Turbine Hybrid: S t System S Schematic h ti • Produces steam and power 23 Thermodynamic Efficiency Carnot Cycle Efficiency Reversible Thermodynamic Efficiency ε carnot TL = 1− TH 100 90 80 Efficiency [%] E ε thermo ΔG = ΔH 70 60 50 40 Max Efficiency (LHV) Max. 30 Carnot Limit 20 10 0 0 200 400 600 800 1000 Temperature [degC] 24 Efficiency y of SOFC/GT Hybrid y Systems y 25 SOFC / Gas Turbine Hybrid: Example 220 kW Proof of Concept Demonstrator • 200 kW from SOFC stack • 20 kw from microturbine • Operated at the National Fuel Cell Research Center, Irvine CA for 3500 hours with 53% electrical efficiency Irvine, CA, for 3500 hours with 53% electrical efficiency www.powergeneration.siemens.com 26 Future Gen, integrated Hydrogen, Power Production, and dC Carbon b S Sequestration t ti R Research h IInitiative iti ti • Goals (2020) – Design , construct, and operate a 275 MW power plant that produces electricity and hydrogen with near zero emissions – Produce electricity at only 10% more than non‐ sequestered power plant – Produce hydrogen at $0.48/kg • Key features: – Coal gasification produces syngas (H2, CO, CO2, H2O, . . .) – Hydrogen separated out of syngas, compressed – Depleted syngas D l t d used as fuel for SOFC / GT Hybrid system d f l f SOFC / GT H b id t – Use of ion conducting ceramics for H2, O2 separation 27 FutureGen Simplified Process Flow Diagram Williams, et. Al. J. Power Sources 159 (2006) 1241 ‐ 1247 28 High-Temperature g p Electrolysis y (SOEC) ( ) Electron Flow _ e Hydrogen Oxygen H2 O2 O2H2 O Oxygen Ions Water Cathode Cathode Reaction: H2O + 2e‐ → H2 + O2‐ Electrolyte Anode Overall Reaction: Overall Reaction: Anode Reaction: O2‐ → ½ O2 + 2e‐ H2O → H2 + ½ O2 29 Electrolyzer and Fuel Cell Performance 2.5 Cell Voltage C e 2.0 1.5 Electrolyser Cell Fuel Cell 1.0 0.5 0.0 0 1 2 3 4 Current Density [A/cm2] 30 Energy Demand for Water and Steam Electrolysis • Energy needed to electrolyze water: ∆H = ∆G + T ∆S • At high temperatures, the addition of heat (T∆S) reduced the electricity needed (∆G) for electrolysis Mingyi, et. Al., J. Pwr. Sources 2008 31 Conventional Water Electrolysis: Energy Flow Diagrams Donitz, et. Al., Int. J. Hydrogen Energy 13 (5) 283 – 287, 1988 32 High Temperature Water Electrolysis: E Energy Fl Flow Di Diagrams • “Hot Elly” autothermal operation • “Hot Elly” with additonal high‐temperature heat 33 High g Temperature p Electrolysis y • At 800 – 1000oC the electrical energy required to split water is reduced lit t i d d by about 25% b b t 25% • In addition to thermodynamic effectgs, improved electrode kinetics red ce req ired oltages electrode kinetics reduce required voltages • System complexity and materials issues remain serious challenges serious challenges. 34
© Copyright 2026 Paperzz