第 30 卷第 5 期 光 子 学 报 V o l. 30 No . 5 2001 年 5 月 ACT A PHOT ONICA SINICA M ay 2001 QUANTUM STATISTIC PROPERTIES OF SUPERPOSITION OF THE EXCITED TWO-MODE * SQUEEZED VACUUM STATES H uang Chunqing 1, Jiang Junqin 2 1 D ep artment of P hy sics, Foshan U niver sity , F os han 528000, China 2 D ep artment of Phy sics, Guang dong I nstitute of Education, Guangz hou 510303, China Abstract T he superposition st ate fro m t he excited t w o -mode squeezed v acuum stat es is co nstr ucted , and it s noncl assical pro pert ies are st udied . Under cer tain co ndit ions , as t he phase diff er ence changes , the mean phot on num ber o f t he superposit ion st at e ex hibit s o scillat ing phenomenon of collapses and rev iv als in a manner sim ilar t o t hat of Rabi oscillatio n, sub -Poissonian phot on st at ist ical character and phase squeezing of t he f ield in t he superposit ion st at es are st ronger t han ones in the single ex cit ed t w o -mo de squeezed vacuum stat e . Keywords Superposit ion of t he ex cit ed t w o -mo de squeezed v acuum st at es ; P hot o n number oscillating ; Phase squeezing ; Sub-P oissonian phot on st at ist ical charact er 0 Introduction It is w ell -know t hat t he t wo -mode squeezed vacuum st at e ( T M SVS ) is a highly correlat ed nonclassical st at e. T M SVS has been real ized in t he labo rato ry 1 and w as used as an entangled Einstein-P odolsky -Rosen st at e in a t elepo rt ation 2 exper im ent . But the pho to n st at ist ics is alw ay s super -P oissonian in t he T MSVS . Recent ly w e hav e int ro duced t he ex cit ed t wo -mode squeezed m m 〉( nam ely , pho to n-added vacuum st ate a b 3 t w o -mode squeezed vacuum st ate ) via repeat ed applicat ion of t he pho to n creat ion oper at or on t he T M SVS , and st udied it s nonclassical pro perties, our r esult s sho w t hat fo r t he excited t w omode squeezed vacuum st ate, t he phase squeezing ex ist s and t he st atist ics is sub-P oissonian under cert ain condit ions. T he super position stat es ( Schro¨ ding er cat st at es) can exhibit int erest ing nonclassical pro per ties, and have recent ly been w idely st udied. Janszky , Buzek and Schleich st udied the superposit ion st at es f rom t he sing le-mode coherent st at es; Chai applied t his met ho d t o t he t w o -m ode * 4 case , const ruct ed the superpo sit io n st at es fro m t he tw o -m ode coherent st at es , and discussed t heir nonclassical proper ties such as t he t w o mo de squeezing , t he violat ion of t he Cauchy Schw art z inequalit y and t he sub -Poissonian pho5 t on st at ist ics ; L u and Guo st udied t he noncl assical propert ies of superposit io n st at es f rom t he excited single -mo de coherent st at es . In t his paper , w e apply t his method t o t he excited tw o -mode case , const ruct t he superposi〉 fr om t he ex cit ed t w o -m ode t io n st at es m m 〉 , and investisqueezed v acuum st ates a b gat e t heir nonclassical pro pert ies, oscillat io ns of t he mean phot on number , the phase squeezing and t he sub-P oissonian phot on stat ist ical charact er of t he field. 1 Construction of the superposition states In this number -st at e representat ion , t he 6 T MSVS can be ex pr essed as T he pr oject suppor ted by Guangdong Pr ov incial N at ur al Science F oundation ( 990212) of China R eceived dat e: 2000-11-07 光 子 学 报 30 卷 524 〉 = S 0a, 0b 〉 ∞ = 1 (- i )n , 〉 coshr n = 0 e t anhr n n ( 1) w here * S= ex p( ab- a b ) ( 2) i here a and b are annihilat ion oper at o rs, = r e is a complex squeeze param et er. T he ex cit ed t w o-mo de squeezed vacuum 3 st at e is defined by m m ; m, m〉 = A ma b 〉 ∞ Am i n = coshr ( - e t anhr ) n= 0 ・[ ( m + n) ! / n! ] m+ n, m + n〉 ( 3) Now , w e co nst ruct t he superposit ion st at es fr om t he ex cit ed t w o-mo de squeezed vacuum st at es i * 〉 = B m ( ; m, m 〉 + e ; m, m 〉 ) F ig . 1 N a v er sus for = / 2, r = 0. 5, m= 0, 1, 3 ∞ Cm n ( m + n) ! ( - t anhr ) co shr n = 0 n! in i( - n ) ・( e + e ) m+ n , m+ n 〉 ( 4) ; , w here is a relativ e phase bet w een m m〉 * ; m , m 〉, the phase dif f erence bet w een ; and * , 〉 ; m , m 〉is = 2 , w hen = 0 t he m m and 〉reduces t o ; m , m 〉 . C m is no rmalizast at e tio n const ant = ∞ - 2 2 C m = ( 2/ cosh r ) ( t anhr ) 2n n= 0 ・( n! ) - 2 2 [ ( m+ n) ! ] [ 1+ co s( 2n - ) ] ( 5) 2 Nonclassical properties of the superposition states First , w e calculat e t he mean pho to n num ber N. Fr om Eq . ( 4) , the pro babilit y o f f inding m + n phot ons in t he f iel d mode a( b ) is ∞ 2Cm2 [ ( m+ n) ! ] 2 m + n = ( t anhr ) 2n P 2 co sh r n = 0 ( n! ) 2 ・[ 1+ co s( 2n - ) ] ( 6) T he m ean phot on num ber N a( = N b ) is given by ∞ N = 〈 a a〉 = a P m+ n ( m+ n) ( 7) n= 0 In Fig . 1, t he mean pho to n num ber N a is show n as a f unct ion of f or = / 2, r= 0. 5, m = 0, 1, 3. In Fig . 2, t he mean pho to n num ber N a is show n as a f unct ion of f or = / 2, r= 1. 5, m = 3. F or t he l ar ger r , as changes, t he mean F ig . 2 N a v ersus for = / 2, r = 1. 5, m = 3 phot on number N a ex hibit s o scill at ing pheno meno n o f collapses and revivals in a m anner similar t o t hat of Rabi o scil lation. Next , w e st udied the phase squeezing de7 fined by Lo udon and Knight . T he t w o -m ode quadrat ure operat or s are ginen by X 1 = ( a+ a + b+ b ) / 8 ( 8) X 2 = ( a- a + b- b ) / i 8 T he phase squeezing is said t o ex ist w henev er X 2j < 1/ 4( j = 1, 2) . Fo r t he st ate 〉 , w e can easily pr ove t hat 〈 a〉= 〈 b〉= 〈a 〉 = 〈b 〉= 〈 a2 〉= 〈 b2 〉 = 〈a 2 〉= 〈 b 2〉= 〈ab 〉= 〈 b a〉= 0, 〈a b 〉= 〈b a 〉= 〈 ab〉= 〈 ba〉 , such t hat 2 2 2 - 〈 X 1= 〈 X 1〉 X 1〉 - 1 - 1 - 1 = 4 + 2 〈 a a〉 + 2 〈 ab〉 ∞ 2 2 N a C m 1 2n+ 1 [ ( m + n) ! ] = 4+ 2 2 ( t anhr ) 2 cosh r n = 0 ( n! ) ( n+ m + 1) 2 × [ cos + cos( 2n + - ) ] ( 9) n+ 1 2 In F ig . 3, X 1 is show n as a f unct io n o f f or = 0. 9 , r = 0. 5, m = 1. As can be seen, under 〉excert ain co ndit ions , t he field in t he st ate hibit s st ro ng er phase squeezing t han t he f ield in t he st ate ; m , m 〉( corresponding to = 0) . 5 期 Huang Chunqing , et al. Q uantum statist ic pr oper ties of superposit ion o f the excited tw o -mo de squeezed v acuum stat es F ig . 3 X 21 ver sus fo r = 0. 9 , r = 0. 5, m = 1 Finally, w e discuss t he st at ist ical pr opert ies of phot ons in t he field m ode a( b) by calculat ing t he M andel Qa ( Q b = Q a) paramet er , w hich is de8 fined by 2 2 ( a a) 2 〉 - 〈a a 〉 ] /〈 ( 10) Qa = [ 〈 a a〉 w here ∞ 2 〈 ( a a) 〉 = P m + n ( m+ n) 2 ( 11) n= 0 T he phot on st at ist ics is sub-P oissonian w henev er Qa < 1. In F ig. 4, Qa is sho w n as a funct ion of f or = 0. 9 , r = 0. 5, m= 0, 1, 6. As can be seen, under cert ain condit ions, t he sub-Poissonian phot on st at ist ical char act er o f t he f iel d in t he st ate 〉 is also st rong er t han o ne in t he st at e ; m , m〉 Fig . 4 Q a ver sus 525 fo r = 0. 9 , r = 0. 5, m= 0, 1, 6 ( corr esponding t o = 0) . 3 Conclusion We have const ruct ed t he super position st at es f rom t he ex cit ed t w o -mode squeezed vacuum st at es , and have st udied t heir nonclassical pr opert ies. Our results show t hat under cert ain co nditions, t he mean phot on number of t he superposit ion st ate exhibit s o scil lating pheno menon of coll apses and revivals in a manner sim ilar to that of Rabi oscillat ion, sub-P oissonian phot on stat ist ical char act er and phase squeezing of the field in t he superpo sit ion st at es are st ro ng er t han o nes in the single ex cit ed t w omo de squeezed vacuum st at e. References 1 Slusher R E, Hollber g L W, Yur ke B, M er tz J C , V alley J F. Obser vation of squeezed states g enerated by four -wa ve mix ing in a n o pt ical cav ity . P hys Rev Let t, 1985, 55( 9) : 2409~2412 2 Furusaw a A , S r ensen J L , Br aunstein S L , Fuchs C A , K imble H J , P olzik E S . U nco nditional quant um telepo r tatio n . Science, 1998, 282( 6) : 706~709 3 Jiang Junqin, Huang Chunqing and L u Hong . N onclassical pr oper ties of the ex cited two -mo de squeezed vacuum stat e. A cta P hoto nica Sinica ( China) , 2000, 29( 11) : 989~992 4 Chai Chinlin . T w o -mode nonclassical st ate via superpositio ns of t wo -mo de co her ent states . P hys Rev A , 1992, 46 ( 11) : 7187~7191 5 L u Hong , G uo Guangcan. N o nclassical pr operties o f states gener ated by the superposit ion o f ex cit ed coher ent st ates. A cta P hysica Sinica ( China ) , 1999, 48( 9) : 1644~1649 6 L u Hong . Pho ton statistics of photo n -added and photo n ~ subtr act ed tw o -mo de squeezed v acuum state . Chinese P hys L ett , 1999, 16( 9) : 646~647 7 L o udon R , K night P L . Squeezed lig ht. J M o d O pt, 1987, 34( 6/ 7) : 709~759 8 M andel L . Sub -Po issonian pho to n stat istics in r eso nance fluo r escence. O pt Let t , 1979, 4( 1) : 205~208 光 子 学 报 30 卷 526 叠加激发双模压缩真空态的量子统计特性 黄纯青 ( 佛山大学物理系, 佛山 528000) 江俊勤 ( 广东教育学院物理系, 广州 510303) 收稿日期: 2000-11-07 摘 要 从激发双模压缩真空态 a m b m 〉 出发构造了叠加态 〉 , 研究了 〉 的量子统计特 性 . 结果表明: 在一定的条件下, 随着相位差的变化, 叠加态 〉的平均光子数出现类似于 m m 〉 相比, 在叠加态 〉 Rabi 振荡的崩塌与复原现象, 而且与单个激发双模压缩真空态 a b 中光场的相位压缩和亚泊松光子统计特性都得到了加强 . 关键词 叠加激发双模压缩真空态; 光子数振荡; 相位压缩; 亚泊松光子统计特性 Huang Chunqing w as born in 1963. He g raduated f rom Delpart ment of Physics , South China Norm al U niversit y , guang zhou , China and r eceived a M . Edu. degr ee in 1991, Now he is a visit ing scholar in Depar tm ent of P hy sics, Zhongshan U niversity , Guangzhou, China. He has published more t han t en papers in t he academ ic journals at ho me and abr oad. H is m ajor resear ch is in phy sics o f part icle and quant um o pt ics .
© Copyright 2026 Paperzz