The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread and pollen extracts, on free-flying honey bee colonies Richard James Bridgett, William Daniel John Kirk, Falko Pieter Drijfhout To cite this version: Richard James Bridgett, William Daniel John Kirk, Falko Pieter Drijfhout. The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread and pollen extracts, on free-flying honey bee colonies. Apidologie, Springer Verlag, 2015, 46 (3), pp.315-325. . HAL Id: hal-01284443 https://hal.archives-ouvertes.fr/hal-01284443 Submitted on 7 Mar 2016 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Apidologie (2015) 46:315–325 * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0324-z Original article The use of a within-hive replication bioassay method to investigate the phagostimulatory effects of pollen, bee bread and pollen extracts, on free-flying honey bee colonies Richard James BRIDGETT1 , William Daniel John KIRK2 , Falko Pieter DRIJFHOUT1 1 Chemical Ecology Group, School of Physical and Geographical Sciences, Keele University, Staffordshire, UK 2 School of Life Sciences, Keele University, Staffordshire, UK Received 24 June 2014 – Revised 21 August 2014 – Accepted 29 September 2014 Abstract – A method for conducting multiple-choice bioassays, incorporating within-hive replication, is described and demonstrated here. This method has been used to study the influence of phagostimulants in pollens on food uptake within honey bee colonies. Experiments using bee-collected trapped pollens and a sample of stored bee bread suggest that there is little or no difference in the preference of bees towards fresh pollen or bee bread. Further work using solvent extracts of pollen showed that phagostimulants are easily extractable in sufficient quantities to increase the consumption of artificial diet in field-based colonies, despite alternative natural forage being available. Data indicate that the addition of polar solvent extracts of pollen increases diet consumption more than less polar extracts. Isolating and identifying phagostimulants could contribute towards production of a range of more palatable artificial diets than those currently available. Apis mellifera / phagostimulant / diet / feeding / forage 1. INTRODUCTION Numbers of honey bee colonies (Apis mellifera ) have fallen sharply over recent years across Europe and North America (Van Engelsdorp et al. 2008, 2010; Aston 2010; Carreck and Neumann 2010; Potts et al. 2010; van der Zee et al. 2012). One way in which beekeepers may attempt to stimulate colony population growth is to offer high-protein artificial or supplemental diets to colonies. Commercial diets are available, but at times, these can be poorly consumed by bees compared to pollen (DeGrandiHoffman et al. 2010; Saffari et al. 2010a, b). Although bees generally prefer pollen to a pollen substitute, the addition of small amounts of Corresponding author: R. Bridgett, [email protected] Manuscript editor: Peter Rosenkranz natural pollen improves the uptake of artificial or supplemental diets within the hive, thereby contributing to better overall colony health during times of sparse pollen (Herbert et al. 1980; Standifer 1980; Manning et al. 2007). However, adding pollen to diets has risks associated with it, such as transmission of pathogens between colonies or the addition of pollens contaminated with toxic substances (Herbert et al. 1980; Schmidt et al. 1987; Saffari et al. 2010b). Such risks can be minimised by subjecting pollen to a prefeeding sterilisation process, such as the irradiation or heat treatments described by Williams et al. (2013), although this is time-consuming and may be unwanted expense for beekeepers. A recently developed commercial diet has been reported to be as palatable as pollen to bees (Saffari et al. 2010a, b). Unfortunately, the reason for the increased acceptability of this diet has not been identified, and diet palatability here was assessed partly using no-choice feeding trials. More confidence could be placed in this result if 316 R.J. Bridgett et al. colonies were offered artificial diet and pollen in choice trials; further research into increasing the palatability of artificial diets is required. Pollen palatability is not solely linked to the protein content of pollens (Schmidt 1984). Sunflower (Helianthus annuus ) pollen has a protein content of only 15 % (Pernal and Currie 2000), and studies into colony longevity have shown that although colonies can perform poorly when fed this nutritionally deficient pollen alone, bees find sunflower pollen highly palatable (Schmidt et al. 1995). Pollens also contain extractable naturally occurring feeding stimulants (phagostimulants) (Doull 1973; Schmidt 1985; Schmidt et al. 1987; Dobson and Bergstrom 2000; Schmidt and Hanna 2006). Previous work has suggested that the lipid-based adhesive substance pollenkitt (in addition to other functions) may be responsible for making pollen attractive to pollinators (Pacini and Hesse 2005), whilst another study shows that a particular long-chain fatty acid (trans , cis , cis ,-2,9,12 octadecatrienoic acid) acts as a strong attractant towards foraging bees (Hopkins et al. 1969). Unfortunately, no other examples of studies confirming the action of this fatty acid have been found, and it may be unwise to perpetuate assertions from historical studies that have not been reconfirmed. Therefore, despite these assertions, the chemical nature of phagostimulants has more recently been reported as remaining unknown (Schmidt and Hanna 2006). Isolating and identifying additional phagostimulants could contribute towards the production of a range of more palatable artificial diets. Using these could mitigate against the risks associated with adding natural pollen to diets, thereby allowing beekeepers to strengthen their colonies more safely. To achieve this, more understanding of their chemical nature and origin is required. Foraging bees do not consume the pollen that they return to the hive. It is off-loaded to other colony members that facilitate its processing. Foraged pollen is packed into comb cells, covered with honey, and undergoes a chemical conversion into bee bread prior to consumption (Vasquez and Olofsson 2009). The conversion processes include bacterial lactic acid fermentation but are not fully understood (Gilliam et al. 1989; Vasquez and Olofsson 2009). The resultant bee bread has a lower pH than pollen, helping to prevent detrimental microbial growth and spoilage (Loper et al. 1980; Herbert and Shimanuki 1978). Bee bread may also be of greater nutritional value, as lactic acid bacteria could enhance the availability of vitamins B7, B11 and B12, vitamin B12 not being naturally available from plant products (Vasquez and Olofsson 2009). Additionally, it is partially pre-digested, with some authors speculating that the end product may be more palatable to bees than fresh pollen (Loper et al. 1980). The presence of compounds identified as attractants to foraging bees in pollens (Hopkins et al. 1969) does not necessarily mean that the same compounds function as phagostimulants for consumption within the hive. There are documented examples of foraged pollens being poorly consumed once returned to the hive and, of certain pollens, being consumed despite exhibiting some level of toxicity towards bees (Schmidt et al. 1995). Previous phagostimulant studies have shown that increased consumption of artificial diets can be achieved if solvent extracts of pollens are added. Studies indicate that both polar and nonpolar solvent extracts of pollen can provide increased stimulation (Robinson and Nation 1968; Doull and Standifer 1970; Doull 1974b; Schmidt 1985; Schmidt and Hanna 2006). What is not clear, however, is whether compounds extracted by polar or non-polar solvents increase diet consumption more than the other or, given that bees do not consume freshly foraged pollen (Herbert and Shimanuki 1978), whether there may be a more suitable pollen material to use than freshly trapped pollen (corbicular pollen pellets) in attempting to isolate phagostimulants. If bee bread is more palatable than fresh pollen, this may indicate that additional phagostimulants are present following the conversion process. If so, using bee bread in studies aimed at identifying phagostimulants would be more appropriate. The relative palatability of different diets to colonies can be assessed more rigorously by offering multiple diets to colonies, alongside control diets. It would be of additional benefit if methods existed that enabled the gathering of sufficient Phagostimulatory effects of pollen data to perform appropriate statistical analysis, without the need for large numbers of experimental colonies. Being able to perform within-hive replication would allow enough replicates to perform statistical analyses, but with a decreased number of colonies. Six experiments using freeflying field colonies are communicated here. Experiments 1–3 focussed on ensuring that the method was suitable to use in conducting multiple-choice bioassays incorporating withinhive replication. Experiments 4–6 used this bioassay method to test the following: (1) whether or not there was a significant difference between the phagostimulatory effects of a sample of bee bread and bee-collected trapped pollen (experiments 4a and 4b), (2) whether extractable phagostimulants from pollens could increase the uptake of artificial diet in the presence of alternative natural forage (experiment 5) and (3) whether polar or non-polar solvent extracts of pollens provide greater feeding stimulation to pollen-consuming bees (experiment 6). 2. MATERIALS AND METHODS Honey bee (A. mellifera ) colonies used within these studies were free-flying and located in a semi-rural environment between open farmland and urban development within the UK. They were housed in modified 46×46-cm British national hives. These consisted of one brood box and either one or two supers, each holding ten frames. Colonies were of approximately equal strength, with bees on at least eight frames within the brood chamber. Freshly foraged pollen was trapped using a hive entrance pollen trap throughout 2012 and 2013 and stored at −40 °C until use. All bioassays utilised an artificial diet consisting of (by mass) 65 % commercially available soya flour (NBTY Europe Ltd), 20 % commercially available vegetable fat (TREX, Edible oils Ltd) and 15 % icing sugar (beet sugar, Silver Spoon, UK) as either a control or a substrate diet to which additions could be added for activity testing as treatments. Small amounts of cool tap water were added to diets to facilitate their binding into a dough-like texture. This formulation is an adaption of a publicised recipe by the Australian Government’s Rural Industries Research and Development Corporation (Somerville 2005). Diets were prepared as a single bulk diet before being split and administered to 317 colonies in patty form within small 7 mm deep, 3.5 cm by 3.5 cm, weighing boats (Fisher Scientific, UK). Patty surface area can influence consumption, with larger surface area patties being consumed more quickly (Avni et al. 2009). Using weighing boats to deliver patties in allowed standardisation of individual patty surface area to 12.25 cm2 each, therefore eliminating this as a potential problem. Colonies were double queen excluded (Herzog type) with patties placed, upturned, in the bee space created between the queen excluders, above the brood nest. Patties were positioned regularly in a grid pattern to ensure even distribution of treatments across the colony, therefore minimising any positional bias. Patties were placed approximately 4 cm from each other; with no patty positioned above an area of the brood chamber not populated by bees. Diet consumption was measured by monitoring mass loss over time, with bee preference inferred from this. Trials were conducted over a period of 4 days, unless complete consumption of a patty was observed, at which point trials were halted so as not to let the change in available diets (alteration of choice) affect the outcome. 2.1. Bioassay method development Performing within-hive replication leads to increased variation in the consumption of any given diet, due to spatial variation in the placement of patties relative to the bulk of the brood nest. To test whether the bioassay method is appropriate and can effectively distinguish between diets of differing palatability, despite this spatial variance, two experiments were conducted. 2.1.1. Experiment 1—bioassay of identical palatable diets only To ensure that spatial variation in patty placement and consumption does not produce a false positive result, four identical palatable diets were offered to colonies. These were formulated by replacing 10 % (by mass) of the described diet formulation with trapped pollen; 55 % of the whole remained as soya flour, with the amounts of vegetable fat and sugar unchanged at 20 and 15 %, respectively. Trapped pollen pellets were lightly broken down using a pestle and mortar to separate grains prior to addition to the diet. This aided mixing and enhanced distribution throughout the diets. The four diets were arbitrarily designated replicate A, B, 318 R.J. Bridgett et al. C and D, respectively. Each was split into 16 individual patties weighing 9.5±0.5 g each and offered to four colonies. Four patties of each diet were administered to each colony in a regular arrangement (16 patties in total), and their mass loss over 4 days was recorded. Data were then statistically analysed to test whether there was any significant difference in the consumption of the four identical diets. 2.1.2. Experiment 2—bioassay of control versus treatment diets To ensure that increased spatial variation does not prevent the detection of a difference in diet palatability overall, a bioassay with two control diets (without pollen) of the formulation described at the beginning of this section (controls A and B) and two treatment diets (treatments C and D) was performed. Treatment diets were prepared as described for experiment 1, incorporating 10 % trapped pollen. These four diets were then offered to colonies in the same manner as the previous experiment, with two control (eight patties) and two treatment diets (eight patties) per colony. Consumption data were statistically analysed to confirm that the two diet types could be distinguished from each other. 2.1.3. Experiment 3—passive moisture loss simulation A third experiment aimed at approximating the greatest degree of mass loss due to the passive drying out, (moisture loss) of diets in colonies over the test period was performed. A diet of control formulation was prepared as before. This was split into 32 individual patties of 9.5±0.5 g that were placed within an incubator. The incubator was kept at 34 °C to simulate colony temperature, and mass loss of the individual patties was recorded at 24-h intervals over a period of 10 days. 2.2. Palatability testing 2.2.1. Experiments 4a and 4b—the phagostimulatory effects of bee bread and fresh pollen To assess the relative palatability of fresh pollen and bee bread, two identical bioassays (experiments 4a and 4b) were performed consecutively. Within these, treatment diets containing 10 % bee bread and 10 % fresh pollen and a control diet were offered to colonies. This comparison requires that both pollen forms contain broadly the same pollen species. Attempts to perform this comparison may be confounded if this is not the case. For this experiment, trapped pollen was collected on 8 May and 24 May, 2012, and bee bread was removed from a frame on 24 May 2012. Pollen and bee bread were stored at −40 °C until use. Samples of the most common colour observed by eye from both the trapped pollen and bee bread samples were mounted and examined microscopically according to the method described by Sawyer (1981). Pollens were identified with the aid of a reference set of mounted pollen grains within the School of Life Sciences at Keele University. Under natural conditions, it is almost impossible to ensure that bee bread samples contain identical pollens to trapped samples, but sampling of both was done in the spring, when bee bread in colonies from the previous season would likely have been used up, to maximise the chance of pollen overlap. Diets were prepared as before and split into individual patties weighing 8.5±0.5 g each at placement. Four colonies were used within these experiments, with 16 replicates of each diet (four control, four trapped pollen treatment and four bee bread treatment per colony) used in each experiment. 2.2.2. Experiment 5—phagostimulant effect on free-flying colonies This experiment assessed whether the addition of solvent extracts containing phagostimulants could increase the consumption of artificial diet in free-flying field colonies, in the presence of alternative natural forage. A series of ultrasonic-assisted solvent extractions, within an increasing polarity gradient, using n hexane, ethyl acetate and methanol (HPLC-grade solvents, Fisher Scientific), were performed on samples of mixed-species trapped pollens. Extractions were performed in series on the same pollen sample. Extraction with n -hexane was followed by extraction with ethyl acetate and then methanol. These solvents were used to ensure that compounds of differing polarities were all efficiently extracted from the pollens. Seven millilitres of extraction solvent were added per 1 g of pollen to be extracted within a 50-mL centrifuge tube. This was then vortexed for 1 min before being placed in an ultrasonic bath for a further 30 min. The temperature of the water bath was not allowed to Phagostimulatory effects of pollen exceed 45 °C. Following this, extracts were centrifuged as required to remove pollen solid from the solvent, before the supernatants were removed for further use. Extracts were pooled, and the solvent was evaporated as far as possible. The resultant slurry was then added to a diet of the formulation described previously to give a treatment diet containing pollen extract. The remaining pollen, post-extraction, was then added to another diet, forming a second (extracted pollen) treatment diet. A third diet of the previous formulation alone provided a control to test against these treatments. Treatment diet patties were prepared before being left for 48 h to facilitate complete solvent evaporation. The control diet, the treatment diet containing the solvent extract and the treatment diet containing the post-extraction pollen were then offered to colonies. Three colonies were used, with five replicates of each of these diets placed in each. Individual patties weighed 8.5±0.5 g at placement. The experiment was halted after 3 days. 2.2.3. Experiment 6—the effect of solvent extract polarity on artificial diet consumption To compare the effect that solvent extracts (varying in polarity) of pollens have on diet consumption, another series of ultrasonic-assisted solvent extractions were performed on two samples of mixed-species trapped pollens. The described extraction procedure of experiment 5 was repeated. As well as ensuring efficient compound extraction, it is expected that utilising these solvents also facilitates some crude segregation (based on polarity) of extracted compounds between the extracts. Again, extractions were performed in series, with all three solvent extractions performed on both pollen samples. The solvents were evaporated almost to dryness, leaving two n -hexane, two ethyl acetate and two methanol extracts to be added to diets as required. One n -hexane, one ethyl acetate and one methanol extract were pooled and added to an artificial diet of the formulation given previously to use as a control. In the same way, three additional treatment diets were formulated, but each treatment diet only had one solvent extract (n- hexane, or ethyl acetate, or methanol) added. All four diets were split into patties before again being left for 48 h to facilitate complete solvent evaporation. They were again distributed across the four brood chambers in a regular manner, with 16 replicates (four per colony) of each of the diets offered in total. 319 Patties weighed 8.5±0.5 g at placement. This experiment was halted after day 3. 2.3. Statistical analysis Previous studies have highlighted that feeding bees will not consume bee bread which is located more than 7 cm from the brood; stores located further than this are discovered only by chance (Doull 1974a; van der Steen 2007). Each patty is considered an independent observation within this method. Data were log10 (x ) transformed to homogenise the variance and normalise the distribution, before being analysed by ANOVA within Minitab 16 (Minitab Inc., USA). ANOVAs of experiments 1, 2, 3, 5 and 6 were conducted with colony considered as a block. The results of experiments 4a and 4b, carried out to assess the relative phagostimulatory effects of pollen and bee bread, were combined after confirming the absence of a treatment × experiment interaction. This allowed statistical analysis to be conducted with 32 replicates, and experiments 4a and 4b are hereafter referred to as experiment 4. In experiment 4, colony and experiment were considered as blocks to remove the between-colony and betweenexperiment variation. The regular distribution of different diets minimises the effect of spatial variation in consumption from the density of brood below. See Figure 1 for an illustration of a typical arrangement of Figure 1. Diagram showing an example of regular patty placement across a brood chamber. Different letters correspond to different replicate diets used within experiment 1. Individual patties were positioned 4 cm away from neighbouring patties. 320 R.J. Bridgett et al. patties across a brood chamber. Multiple comparisons of individual treatments used Tukey’s test. 3. RESULTS 3.1. Experiment 1—bioassay of identical palatable diets only There was no significant effect of diet (F 3,57 = 0.00, P =1.00) (Figure 2), confirming that the method was not producing false positives. 3.2. Experiment 2—bioassay of control versus treatment diets Data from a colony that swarmed were excluded from the analysis, leaving 12 replicates of each diet type. There was a significant effect of diet on c o n s u m p t i o n (F 3 , 4 2 = 1 3 5 . 3 6 P < 0 . 0 0 1 ) (Figure 3). There was a significant difference Figure 3. Back-transformed mean (±SEM) consumption (g per patty) of the two control and two palatable 10 % pollen diets. Trial duration was 4 days, and 12 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P <0.05). between the mean consumption of control A compared to treatment C and treatment D (both P <0.001), but there was no significant difference between the consumption of control A and control B (P =0.99). Likewise, there was a significant difference between the mean consumption of control B and treatment C and treatment D (both <0.001). There was no difference in the mean consumption of treatment C and treatment D (P =1.00). 3.3. Experiment 3—passive moisture loss simulation Figure 2. Back-transformed mean (±SEM) consumption (g per patty) of four identical palatable 10 % pollen treatment diets. Trial duration was 4 days, and 16 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P <0.05). The mean cumulative mass loss of diets over a 10-day period is shown in Figure 4. The mean decrease in mass due to passive moisture loss alone was 0.855±0.01 and 0.971±0.01 g after 3 and 4 days, respectively. This equates to 10 % of the mean initial mass. Phagostimulatory effects of pollen 321 Figure 4. Cumulative mean mass loss (±SEM) per control patty over the 10-day period within the incubator (n =32). There was a significant difference between the mean consumption of control diet and trapped pollen diet (P <0.001) and control diet and bee bread diet (P <0.001). However, there was no significant difference between the consumption of trapped pollen diet and bee bread diet (P = 0.12). The trapped pollen samples contained predominantly pollens from species within the Rosaceae, with lesser amounts from the Asteraceae and Liliaceae. There was good overlap with the bee bread samples, with the most abundant grains observed here also Rosaceae. However, there were fewer unidentified pollens in the bee bread samples. At the time of collection, species flowering within foraging distance of the colonies included Rosaceae (hawthorn, cherry, apple, pear, rowan), Asteraceae (dandelion) and Liliaceae (bluebell). 3.4. Experiment 4—the phagostimulatory effects of bee bread and fresh pollen 3.5. Experiment 5—phagostimulant effect on free-flying colonies There was a significant effect of diet on consumption (F 2,89 =116.36, P <0.001) (Figure 5). There was again a significant effect of diet on consumption (F 2,40 =28.33, P <0.001) (Figure 6). There was a significant difference between the Figure 5. Back-transformed mean (±SEM) consumption (g per patty) of the control, 10 % pollen and 10 % bee bread diets. Trial duration was 4 days, and 32 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P <0.05). Figure 6. Back-transformed mean (±SEM) consumption (g per patty) of the control, pollen extract and extracted pollen diets. Trial duration was 3 days, and 15 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P <0.05). 322 R.J. Bridgett et al. consumption of all three test diets: control and pollen extract diet (P <0.001), control and extracted pollen treatment (P <0.001), and pollen extract treatment and extracted pollen diet (P =0.01). 3.6. Experiment 6—the influence of varying solvent polarity pollen extracts on artificial diet consumption There was a significant effect of diet on consumption (F 3,56 =4.71, P =0.01) (Figure 7). There was a significant difference between the mean consumption of the pooled extract control diet and the diet containing hexane extract alone (P =0.01). There was no significant difference in the mean consumption of the control diet and the diet containing ethyl acetate extract only (P = 0.07) or the diet containing methanol extract only (P =0.89). There was also no significant difference in the mean consumption of the diet containing the hexane extract only and the diet containing the ethyl acetate extract only (P =0.85) or the diet containing the methanol extract only (P =0.06). Figure 7. Back-transformed mean (±SEM) consumption (g per patty) of the combined pollen extract (control), hexane extract, ethyl acetate and methanol extract diets. Trial duration was 3 days, and 16 replicate patties of each diet were used. Consumption of diets that share the same letter did not significantly differ (P <0.05). There was no significant difference in the consumption of the diet containing ethyl acetate extract only and the diet containing methanol extract only (P =0.30). 4. DISCUSSION Experiments 1 and 2 showed that regular distribution of treatments above the brood within each hive adequately reduced any bias from spatial variation of the brood below. The method did not produce false positives, and it correctly distinguished between palatable and less palatable diets. Data from experiment 3 suggest that after 3 or 4 days, mass loss of up to approximately 1 g (10 %) may be expected, due to passive moisture loss alone. This data should be treated with a degree of caution though, as although approximate colony temperature could be replicated, there was no facility to replicate colony humidity. Increased colony humidity is almost certainly going to influence the rate of moisture loss of patties placed within. However, it is unlikely that it would increase the rate of moisture loss above that observed here, and mass loss of greater than 10 % of patties is therefore likely due to consumption by bees. The experiment assessing the phagostimulatory effects of bee bread and fresh pollen (experiment 4) showed that bees exhibited no significant preference for diets containing either freshly foraged pollen or a sample of bee bread. In this instance, these results do not support previous suggestions that bees may find bee bread more palatable (Loper et al. 1980). The addition of 10 % by mass of pollen or bee bread significantly increased diet uptake. As there was no indication of an increase in phagostimulant abundance due to the pollen conversion process, it seems acceptable to use freshly trapped pollen pellets in work aimed at identifying phagostimulants; trapped pollen is easier to gather and manipulate than bee bread, and no preference towards bee bread was observed here. The lack of a preference for either diet may also reveal additional information relating to the chemical nature of phagostimulants in pollens. Considering the function of phagostimulants may be important when devising identification Phagostimulatory effects of pollen methods. Volatiles are easily analysed using gas chromatography, but less volatile, more polar, compounds are likely to require the use of alternative analytical methods in their identification. If phagostimulants are volatile, functioning via olfactory stimulation, it might be expected that their presence in bee bread would be diminished due to time spent within the conversion process and evaporation at colony temperature. This would likely result in a significant difference between the consumption levels of trapped pollen and bee bread. These data suggest that consumption was broadly similar, possibly indicating that phagostimulants are more likely detected in the taste of a food source (functioning as a gustatory stimulant) once bees have commenced feeding. This hypothesis is perhaps also supported by data highlighting that extremely non-polar compounds (therefore likely to include volatiles) in certain pollen extracts seem to offer no phagostimulatory effect (Schmidt 1985). The experiment assessing the strength of extractable phagostimulants on free-flying colonies (experiment 5) indicates that stimulants are easily extractable from pollens in sufficient quantities to increase uptake of an artificial diet, even in the presence of alternative natural forage during summer. The consumption of the pollen extract diet was approximately five times greater than the control, while the extracted pollen diet was consumed significantly more than the control, but less than the pollen extract diet. This indicates that complete extraction of the phagostimulants in this manner is not achieved. The increased consumption of the diet containing extracted pollen over the control diet reveals either that some phagostimulants are not extractable from pollen via this method or, more likely, that increased volumes of solvent would be needed to achieve 100 % extraction. The control diet within the final experiment consisted of all three solvent extracts combined. In this instance, the phagostimulatory effects of the less polar hexane extract were significantly less than all three solvent extracts combined. However, neither the ethyl acetate nor methanol extract individually provided significantly less stimulation than the positive control. The observed mean consumption values themselves 323 may suggest a trend in the phagostimulatory activity of extracts of n -hexane extract < ethyl acetate extract < methanol extract < combined extracts. No other examples of multiple-choice feeding trials directly comparing the activity of different polarity solvent extracts have been found, but these data appear to indicate that the more active phagostimulants reside in more polar solvent extracts. While these data support previous data in suggesting that the greatest stimulation may result from the summative effects of polar and non-polar compounds (Schmidt and Hanna 2006), potentially there are specific, more polar compounds that can provide significant stimulation themselves. Future research into the phagostimulatory activity provided by fractions of polar extracts would be highly beneficial. However, achieving isolation and identification of polar compounds acting as phagostimulants may present significant challenges. These supplemental feeding trials join a substantial list of previous nutritional studies, summarised by Brodschneider and Crailsheim (2010). The consumption rates (g/day) of the supplemental diets within these most recent studies vary but are comparable to some of those previously observed. The colonies used within these studies were free-flying field colonies, with no restrictions placed upon them. Although it is perhaps preferable to conduct such experiments using large numbers of colonies, this within-hive replication method offers a viable alternative, should financial or infrastructural constraints prevent the use of more colonies. ACKNOWLEDGMENTS This research was supported by the Perry Foundation and the British Beekeepers Association (BBKA). We thank David Buckley for the loan of his colonies and practical beekeeping support, and David Aston and Pam Hunter of the BBKATechnical Committee for their specialist advice. Méthode par essai biologique avec réplications à l'intérieur de la ruche, pour examiner les effets phagostimulants du pollen, du pain d'abeille et des extraits de pollen sur des colonies d'abeilles en vol libre 324 R.J. Bridgett et al. Apis mellifera / régime alimentaire / nourrissage / approvisionnement Hopkins, C., Jevans, A., Boch, R. (1969) Occurrence of octadeca-trans-2, cis-9, cis-12-trienoic acid in pollen attractive to the honey bee. Can. J. Biochem. 47 (4), 433–436 Ein Biotest zur Untersuchung von phagostimulatorischen Effekten von Pollen, Bienenbrot und Pollenextrakten in frei fliegenden Bienenvölkern. Loper, G., Standifer, L., Thompson, M., Gilliam, M. (1980) Biochemistry and Microbiology of bee-collected almond (Prunus dulcis ) pollen and bee bread. Apidologie 11 (1), 63–73 Apis mellifera / Phagostimulantien / Diäten / Fütterung / Sammeln Manning, R., Rutkay, A., Eaton, L., Dell, B. (2007) Lipidenhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L. ). Aust. J. Entomol. 46 (3), 251–257 REFERENCES Aston, D. (2010) Honey bee winter loss survey for England, 2007–8. J. Apic. Res. 49 (1), 111–112 Avni, D., Dag, A., Shafir, S. (2009) The effect of surface area of pollen patties fed to honey bee (Apis mellifera ) colonies on their consumption, brood production and honey yields. J. Apic. Res. 48 (1), 23–28 Brodschneider, R., Crailsheim, K. (2010) Nutrition and health in honey bees. Apidologie 41 (3), 278–294 Carreck, N., Neumann, P. (2010) Honey bee colony losses. J. Apic. Res. 49 (1), 1–6 DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M. (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56 (9), 1184–1191 Dobson, H., Bergstrom, G. (2000) The ecology and evolution of pollen odors. Plant Syst. Evol. 222 (1–4), 63–87 Pacini, E., Hesse, M. (2005) Pollenkitt—its composition, forms and functions. Flora 200 (5), 399–415 Pernal, S., Currie, R. (2000) Pollen quality of fresh and 1year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31 (3), 387–409 Potts, S., Roberts, S., Dean, R., Marris, G., Brown, M., Jones, R., Neumann, P., Settele, J. (2010) Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49 (1), 15–22 Robinson, F., Nation, J. (1968) Substances that attract caged honeybee colonies to consume pollen supplements and substitutes. J. Apic. Res. 7 (2), 83–88 Saffari, A., Kevan, P., Atkinson, J. (2010a) Consumption of three dry pollen substitutes in commercial apiaries. J. Apic. Sci. 54 (1), 5–12 Saffari, A., Kevan, P., Atkinson, J. (2010b) Palatability and consumption of patty-formulated pollen and pollen substitutes and their effects on honeybee colony performance. J. Apic. Sci. 54 (2), 63–71 Schmidt, J. (1984) Feeding preferences of Apis mellifera L. (Hymenoptera: Apidae): Individual versus mixed pollen species. J. Kansas Entomol. Soc. 57 (2), 323–327 Doull, K. (1973) Relationships between pollen, broodrearing and consumption of pollen supplements by honeybees. Apidologie 4 (4), 285–293 Schmidt, J. (1985) Phagostimulants in pollen. J. Apic. Res. 24 (2), 107–114 Doull, K. (1974a) Effect of distance on the attraction of pollen to honeybees in the hive. J. Apic. Res. 13 (1), 27–32 Schmidt, J., Hanna, A. (2006) Chemical nature of phagostimulants in pollen attractive to honeybees. J. Insect Behav. 19 (4), 521–532 D o u l l , K . ( 1 9 7 4 b ) E ff ec t s o f a t t r a c t a n t s a n d phagostimulants in pollen supplement on the feeding behaviour of honeybees in the hive. J. Apic. Res. 13 (1), 47–54 Schmidt, J., Thoenes, S., Levin, M. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Am. 80 (2), 176–183 Doull, K., Standifer, L. (1970) Feeding responses of hoheybees in the hive. J. Apic. Res. 9 (3), 129–132 Schmidt, L., Schmidt, J., Rao, H., Wang, W., Xu, L. (1995) Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88 (6), 1591–1595 Gilliam, M., Prest, D., Lorenz, B. (1989) Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20 (1), 53–68 Herbert, E., Shimanuki, H. (1978) Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9 (1), 33–40 Herbert, E., Shimanuki, H., Shasha, B. (1980) Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starchencapsulated pollen extracts. J. Apic. Res. 19 (2), 115–118 Somerville, D. (2005) Fat bees skinny bees—a manual on honey bee nutrition for beekeepers. Rural Industries Research and Development Corporation, Barton Standifer, L., (1980) Honey bee nutrition and supplemental feeding: in US Department of Agriculture Handbook, 335 39–45 Van der Steen, J. (2007) Effect of a home-made pollen substitute on honey bee colony development. J. Apic. Res. 46 (2), 114–119 Phagostimulatory effects of pollen Van Engelsdorp, D., Hayes, J., Underwood, R., Pettis (2008) A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 3 (12), e4071 Van Engelsdorp, D., Hayes, J., Underwood, R., Pettis (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 49 (1), 7–14 Vasquez, A., Olofsson, T. (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48 (3), 189–195 325 Va n d e r Z e e , R . , P i s a , L . , A n d o n o v, S . , Brodschneider, R., Charriere, J., et al. (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J. Apic. Res. 51 (1), 100–114 Williams, G., Alaux, C., Costa, C., Csaki, T., Doublet, V. (2013) Standard methods for maintaining Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52 (1), 1–36
© Copyright 2026 Paperzz