W11D1Conjugate Root Theorem Warm Up 1. Given that the roots of a polynomial are x=3, 6, -5 what is the polynomial? x3 − 4x2 − 27x + 90 2. Multiply (3+4i)(3-4i) 25 √ √ 3. Multiply (9- 2)(9+ 2) 79 Lesson 29 Complex Roots of Polynomials and Graphs Add a column for them to sketch in notes. Will do that on Wednesday. 1. 2. 3. 4. 5. F unction x3 − x2 − 2x −2x4 + 2x2 −2x3 + 8x2 + 10x x5 + x3 + 8x2 + 8 x6 − 10 ∗ x2 + 9 N umberof roots 3 3 3 1 4 N umberof Extrema 2 3 2 2 3 Sketch Degree = n Number of roots = n Number of min and max (extrema) = n-1 n includes imaginary roots n includes roots with a multiplicity greater than 1 MULTIPLICITY is having the same root appear more than once. It happens when the factor has an exponent. On the graph it looks like the function barely touching the x axis at that value. Graph the parabola y=x2 − 6x + 9 = (x-3)(x-3) Roots; x=3, x=3 When you solve for the roots you only get one on the graph, but it is still a 2nd degree polynomial. EX 1: Find all the roots of f (x) = x3 − 14x2 + 69x − 116 given (x-4) is a factor x2 − 10x + 29 x−4 3 x − 14x2 + 69x − 116 − x3 + 4x2 − 10x2 + 69x 10x2 − 40x 29x − 116 − 29x + 116 0 1 4 1 x = 4, 5±2i − 14 69 − 116 4 − 40 116 − 10 29 0 EX 2: Find all roots of f (x) = x3 − 4x2 + 2x + 4 given that x=2 is a root x2 − 2x − 2 x−2 x3 − 4x2 + 2x + 4 − x3 + 2x2 − 2x2 + 2x 2x2 − 4x − 2x + 4 2x − 4 0 1 −4 2 4 2 −4 −4 −2 −2 0 2 1 x2 − 2x − 2 = 0 (x − 2)2 √ =2+1 x=2± 3 x = 2, 1 ± √ 3 Can you make an observation about the roots? EX 1: has roots that are complex conjugates. EX 2: has roots that are irrational conjugates (radical) Conj. Root Theorem: If you know one complex or irrational root of a polynomial, and all coefficients are real and rational, the conjugate is also a root. Think of warm up - multiply them and get a real number. EX 5: Find all roots of f (x) = x4 − 3x3 + 6x2 + 2x − 60 given that 1+3i is a root. What are the factors? What is another root? 1-3i (x − (1 − 3i))(x − (1 + 3i)) (1) (x − 1 + 3i))(x − 1 − 3i)) (2) Make a 3 by 3 box OR group the terms (3) ((x − 1) + 3i)((x − 1) − 3i) (4) Difference of squares (5) (x − 1)2 − (3i)2 (6) 2 x − 2x + 1 + 9 (7) 2 x − 2x + 10 (8) Then long division to find other roots. Can’t use synthetic unless it is degree = 1. x2 2 x − 2x + 10 4 −x −6 3 x − 3x + 6x2 + 2x − 60 − x4 + 2x3 − 10x2 − x3 − 4x2 + 2x x3 − 2x2 + 10x − 6x2 + 12x − 60 6x2 − 12x + 60 0 x2 − x − 6 = 0 (x − 3)(x + 2) = 0 x = 3, −2 x = 1 ± 3i, 3, -2 EX 6: Find all roots of f (x) = x4 − 6x3 + 30x2 + 24x − 136 given that 3+5i is a root (x − 3 + 5i)(x − 3 − 5i) (x − 3)2 − (5i)2 x2 − 6x + 9 − 25i2 x2 − 6x + 34 x2 2 x − 6x + 34 4 3 −4 2 x − 6x + 30x + 24x − 136 − x4 + 6x3 − 34x2 − 4x2 + 24x − 136 4x2 − 24x + 136 0 x=3±5i, ± 2 EX 7: One of the roots of f (x) = x3 − 5x2 + 23x − 51 is 1+4i. Find the other roots. (x − 1 + 4i)(x − 1 − 4i) (x − 1)2 − (4i)2 x2 − 2x + 1 − 16i2 x2 − 2x + 17 x −3 2 x − 2x + 17 3 2 x − 5x + 23x − 51 − x3 + 2x2 − 17x − 3x2 + 6x − 51 3x2 − 6x + 51 0 x = 3, 1+4i, 1-4i EX 8: Write the equation of the polynomial with roots 3 + f (x) = (x − 3 + √ 5)(x − 3 − √ 5, 3 and -1 √ 5)(x − 3)(x + 1) 2 f (x) = (x − 6x + 9 − 5)(x2 − 2x − 3) f (x) = (x2 − 6x + 4)(x2 − 2x − 3) f (x) = x4 − 8x3 + 13x2 + 26x − 12 Assume the leading coefficient is 1; you don’t need to solve for ”a” value in these problems (but you could right)? Exit Pass 1. Find the roots of the polynomial f(x) = 3x3 − 29x2 + 92x + 34 given that 5+3i is one of the roots. 3x + 1 2 x − 10x + 34 3 2 3x − 29x + 92x + 34 − 3x3 + 30x2 − 102x x2 − 10x + 34 − x2 + 10x − 34 0 x = 5 ± 3i, − 13 Extra Problems 6. Find all roots of f (x) = x3 − 4x2 + 6x − 4 given that 1- i is a root x2 − 2x + 2 x−2 x3 − 4x2 + 6x − 4 − x3 + 2x2 − 2x2 + 6x 2x2 − 4x 2x − 4 − 2x + 4 0 x = 2, 1+i, 1- i 7. Find all roots of f (x) = x4 − 6x3 + 30x2 + 24x − 60 given that 1+3i is a root x2 − 4x + 12 x2 − 2x + 10 x4 − 6x3 + 30x2 + 24x − 60 − x4 + 2x3 − 10x2 − 4x3 + 20x2 + 24x 4x3 − 8x2 + 40x 12x2 + 64x − 60 − 12x2 + 24x − 120 88x − 180 x = 1 ± 3i, 3, -2 8. Find all roots of f (x) = z 3 + 6z 2 + 61z + 106 given that -2+7i is a root x 2 x + 4x + 53 3 +2 2 x + 6x + 61x + 106 − x3 − 4x2 − 53x 2x2 + 8x + 106 − 2x2 − 8x − 106 0 Exit Pass Start HW - it is sort of long 9. Find all roots of x3 − 3x2 − 25x − 21 given that x+1 is a factor x2 − 4x − 21 x+1 3 x − 3x2 − 25x − 21 − x3 − x2 − 4x2 − 25x 4x2 + 4x − 21x − 21 21x + 21 0 x = -1, 7,3 10. Find all roots of x3 − 5x2 + 2x + 8 given that x+1 is a factor x2 − 6x + 8 x+1 3 x − 5x2 + 2x + 8 − x3 − x2 − 6x2 + 2x 6x2 + 6x 8x + 8 − 8x − 8 0 x = -1, 4, 2 11. Find all complex numbers of the form z = a + bi , where a and b are real numbers such that z z’ = 25 and a + b = 7 where z’ is the complex conjugate of z 2x2 + 3 x2 − 4 2x4 − 5x2 − 12 − 2x4 + 8x2 3x2 − 12 − 3x2 + 12 0 Graphs for W11D3 with the Chart 5 4 3 2 1 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 −7 −8 −9 5 4 3 2 1 1 2 3 4 5 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 −7 −8 −9 Figure 1: x3 − x2 − 2x 1 2 3 4 5 3 4 5 − 2x4 + 2x2 15 13 11 9 7 5 3 1 −4 −3 −2 −1−1 −3 −5 1 2 3 19 17 15 13 11 9 7 5 4 3 1 −1 −5 −4 −3 −2 −1 Figure 2: x6 − 10 ∗ x2 + 9 1 2 x5 + x3 + 8 ∗ x2 + 8 46 41 36 31 26 21 16 11 6 1 −5 −4 −3 −2 −1 −4 −9 1 2 3 4 5 6 7 Figure 3: −2x3 + 8x2 + 10x 1. 2. f (x) = x3 − x2 − 2x 4 f (x) = −2x + 2x 5 3 x(x − 2)(x + 1) 3 roots, 2 extrema 2 − 2x (x − 1)(x + 1) 4 roots, 3 extrema 2 3. f (x) = x + x + 8x + 8 5 roots, 4 extrema Imaginary Roots Roots are x=-2, x= ± i 4. f (x) = −2x4 + 2x2 x = 0, 2, −1 2 2 x = 0, ±1 3 −∞ −∞ (x + 1)(x + 8) 2x2 (1 − x2 ) 4 roots, 3 extrema −∞ ∞ −∞ ∞ −∞ −∞ ∞ −∞ Multiplicity of Roots! Roots are x=0, x=0, x=1, x=-1 5. f (x) = −2x3 + 8x2 + 10x 3 roots, 2 extrema x = 3, x = 4 − 2x(x + 1)(x − 5) 2 x − 7x + 12 6. What polynomial has the roots 7. What 3rd degree polynomial has the roots 8. What 4th degree polynomial has the roots x=4, x=-9, x=0 and opens downward with a stretch factor of 4? x3 − 7x + 2 x = −2, x = −1, x = 3 x(x − 4)(x + 9) = −4x(x − 4)(x + 9)any factor can have multiplicity = −4x3 − 20x2 + 144x 9. What 3rd degree polynomial has the roots x = 0, x = 2, x = −1 CHALLENGE What 3rd degree polynomial has the rootsx = 3, x = 2 ± √ √ (x − 3)(x − 2 + 11)(x − 2 − 11) √ √ (x − 3)([x − 2] + 11)([x − 2] − 11) √ (x − 3)((x − 2)2 − ( 11)2 ) 10. √ x3 − x2 − 2x 11 (x − 3)(x2 − 4x + 4 − 11) = (x − 3)(x2 − 4x − 7) = x3 − 7x2 + 5x + 21 In groups W8D3 Polynomial Graphs Worksheet Exit Pass 1. Find the roots of the function f(x) = 2x4 + 4x2 − 48x x=4, -6, 0 2. Write the equation of the function that has roots at x = ±3, x=-7 x3 + 7x2 − 9x − 63 1. Given that x= 3 is a root find all other roots of 5x3 + 14x2 − 3x x = 3, 0, 51
© Copyright 2025 Paperzz