GEOPHYSICAL RESEARCH LETTERS, VOL.19,NO.16,PAGES 1707-1710, AUGUST 21,1992 THERMAL BUOYANCY ON VENUS: UNDERTHRUSTING VS SUBDUCTION JeffreyD. Bun andJamesW. Head Department of Geological Sciences, BrownUniversity Abstract In aneffortto definetheconditions distinguish- Modelsfor the formationof suchmountainbeltsandassoci- ingunderthrusting andsubduction intheVenus environment, atedfeatures mustexplaincompressional deformation, crustal wehavemodeledthethermalandbuoyancy consequences of thickening, andmeltproduction. thesubduction endmember.Predictionsof the thermalevolutionof a slabsubducting at a fixed angleinto theVenusian WhileVenuslacksclearevidence of Earth-like plate tectonics, features resembling subduction zoneshavebeen mantle areusedto find slabdensities basedon slabcompositionandchanges of temperature, pressure, andphase.The sustainability of subduction is assessed by considering the effects of slabbuoyancyandmantleflow on the subduction identified. Thetrough belowUorsar Rupesanditsassociated risetothenorthresemble theflexural trough andoutboard rise of terrestrial subduct/on zones[SolomonandHead,1990]. Sandwell andSchubert [1992]identifysimilartrough andrise angle. Mantleflowinduced by slabmotionapplies torques on theslab,whichare comparedto buoyancytorques.Flow torques tendtodecrease theangleof subduction. Buoyancy torques alsoactto decrease thesubduction anglewhentheslab ispositively buoyant. Thebasalt-eclogite phasetransition dominates thetransformation of positivelybuoyantslabsto negative buoyancy. Slabsthathavedescended to depths less thanabout275 km remainpositivelybuoyant.Beyond275 km slabs become negatively buoyant. We predictthatthecombinationof flow andbuoyancytorqueswill tendto forceinitially suMucted slabsto assumean underthrusting position,leading tocrustal thickening,deformation,melting,andvolcanism. Thismayprovidea modelexplainingtheassociation of compressional mountainbeltsandtessera blockswith apparent flexural rises,foredeeps, andvoluminous volcanicdeposits. Onlyspecial circumstances appearcapableof promotingthe conditions for negativeslabbuoyancy.Thesemightinclude onewhere an underthrust slab becomes attached to or included in a densiftedcrustal root created in a zone of crustal thicken- ing.Thesubsequent delamination andsinkingof therootmay thenlead to the subduction of the slab. features formingtheouterboundaries of somecoronae,and propose theirformation thoughthedownwardflexureand possible subduct/on of thesurrounding lithosphere underthe radiallyspreading centralcoronamass,with theflexuralload supplied byeithertheoverriding plateor thesubducted slab. Furtherexamples includearcuate trenches observed in eastern Aphrodite TerraonVenusandinterpreted by McKenzieet al. [1992]tobesubduction zonesonthebasisof theirsimilarity to subduction zones on Earth. Whiletheroleof platetectonic processes appears minorin theoverallevolution of theVenusian lithosphere, underthrustingandsubduction potentially contribute to thecreationof manyobservedfeatures.To theextentthat the surfacetectonic consequences of thesetwo processes woulddiffer,with un- derthrusting leading primarily tocrustal thickening andpossiblemeltproduction, whiletheresultsof subduction maynot resemble thosefoundonEarth,thefactorsgoverning thedominanceof oneprocess overtheotherarethereforeimportant. In orderto evaluatetheconditions distinguishing underthrustingandsubducfion, we havemodelledthe thermaland buoyancyconsequences of thesubductionendmember.This studyconsiders thefateof a slabfrom thetime it startsto subduct, butbypassing thequestion of subduction initiation. Introduction Enhanced surface temperatures anda thinnerlithosphere onVenus relativetoEarthhavebeencitedascontributing to increased lithospheric buoyancy. Thiswouldlimit[Phillips andMalin,1982],orprevent[Anderson, 1981]subduction on Venus, andfavortheconsa uction ofthickened crustthrough underthrusting. Underthrusting maycontribute totheformation ofanumber offeatures onVenus. Forexample, Freyja Montes, aneast-west trending linearmountain bekin northern ishtar Terra, liessouth ofahighplateau ofcomplexly deform- Thermalchanges in slabssubducting intoa mantlehavinga rangeof initialgeotherms areusedtopredictdensitychanges and,thus,slabbuoyancy.Thisthenformspartof anargument,utilizinga modelfor subduct/on-induced manfieflow, wherebytheangleof slabdiphelpsdifferentiatebetween underthrusting andsubduction. Mantleflow appliestorquesto theslabwhich,in combination with torquesdueto slab buoyancy, actto changetheangleof slabdip. edtern/n,Itzpapalotl Tessera, thatcontains evidence of exten- sive volcanic activity [BunandHead,1990].Itzpapalofi is bounded tothenorth byUorsar Rupes, a steep scarp marking adement of2 to3 kmelevation toavolcanic plains-filled foredeep. Further north areanoutboard riseandthenorth polar plains ofVenus. Freyja Montes isinterpreted asanorogenic belt [(haanpier etal.,1986]andtheregion a zoneofconvergence andunderthrusting of thenorthpolarplainsbeneath ishtar Terra, withconsequent crustal thickening [Head, 1990]. Copyright 1992 bytheAmerican Geophysical Union. Subduction Model In themodel(Figure1), slabshavinga thickness setby 90%of thebasaltsolidussubduct at a fixedangleintothe manfie.Geotherms proposed for Venusrangefrom 5øC/lma [SandwellandSchubert,1992]to 25øC/!an[Solomonand Head,1990].Theinitialmodelgeotherms, matchingsurface thermalgradients of 10øC/km,15øC/•n, and25øC/lma [Hess andHead, 1989],werecalculatedusingtheinstantaneous coolingof a semi-infinite halfspace,andcovermostof the proposed range.Themodelpenttitscoolingof themantlewith time,allowingtheevolutionof initial highgeotherms toward Paper number 92GL01702 thelowerendof therange.A basalticmantleandslabis 0094-8534/92/92GL_01702503.00 assumed for thepurpose of thethermalevolutioncalculations 1707 1708 BurtandHead:ThermalBuoyancy onVenus depth 0cm) ¾crust temp Parmentier,1977; Parmentierand Hess, 1992]. We do not (Oc) meanto implythatcrustformsin a ridge-typespreading center.Densitychangesincludethosedueto phasetransitions. The sampleshownin Figure3 is for a 25 km crustanda 65O ßY- - •lithosphereJ/A depleted mantle t transmon 1250 10øC/kminitial surfacegeotherm.The lithosphereincludes layersof depleted andundepleted mantlematerial. undepleted mantieI Results 300•, I enstatite/forsterite plus 1450 400 transition stishovite _ Fig. 1. Model sumcture for a 10øC/kmgeothermanda 25 km thick basaltic crust. (basaltandperidotitematerialproperties differinsignificantly in termsof heat conduction).Slabsheatvia conduction,radio- activity,phasechanges,andadiabaticcompression. Phase changes involvingtheconversion of basaltto eclogiteat depths of 60 to 160km andthenenstatiteto forsterire plusstishovite between 260and360km generate 0.13x10 'sergs/cm3-s and 0.36x10'sergs/cmLs respectively [MinearandToksoz,1970]. Theassumed slabradiogenic heatproduction is2.63x10" ergs/gm-s [TurcotteandSchubert,1982]whileradioactivity in themantleis considered negligibleandignored.Adiabatic compression adds0.5øC/km.A dynamicmantlecould significantly affectslabtemperatures. However,sincesubductingterrestrialslabsaregenerallyin compression, mantle motionpresumably doesnotkeeppacewiththatof theslab.If a similarsituationoccurson Venus,thethermalevolutionmay morecloselyresemblethecasefor an immobilemantlethanfor one in which the mantle moves with the slab. Therefore, for thepurpose of thisinitialtreatment, we neglecttheeffectsof a dynamicmantlein thethermalevolutioncalculations. Results of thethermalevolutiontaketheformof tempera- taredistributions in theslabandmantle.The principaleffect produced is slab-induced mantlecooling.Figure2 shows typicalresultsof thedensitymodelingcomputations, corresponding to thecasepresented in Figure1 for a 10øC/km geotherm, 25 km crust,and5 km/Masubduction rate.Density contoursdelineatethe slaband its crustallayer. The crustis distinctlylowerin densitythanits surroundings abovetheI I0 km depthassumed for thebasalt-eclogite phasechange. Below thephasechangethecrustalmaterialis of greaterdensity than themantle.The depletedmantleportionof the slabis less clearlydelineated andis boundedby thethinundepleted mantle layerincludedin thelithosphere. The undepleted mantleportionof the slabis denserthanthe surrounding mantlebecause of its lower temperature. The net slabdensitiesin theregionabovethe basalt- eclogitephasetransition arelowerthantheirmantlesurroundingsfor everygeotherm, subduction rate,andcrustalthickness.Abovethe 110 km depth,crustaldensitiesarelowerthan thoseof themantleoutsidethe slab.The mantleportionsofthe slabdiffer slightlyin densitywith mantleoutsidetheslab. Above110km depththecrustalportionis muchlessdense thanthemantleslablayers.Belowthatdepththereverse is true.Belowthebasalt-eclogite phasechangenet slabdensities alwaysexceedthosein theneighboring mantle. We follow the slabthermalevolutionusinga finite differencetechnique[MinearandToksoz,1970].The model regionmeasures approximately 800km horizontally by400 km deep.Convergence ratesrangefrom5 to 100mm/yrand processing endsat thepointwhereslabtipsreacha 300km depth,implyingtimeintervalsof 10 to 100Ma. Slabdensitychanges derivefromthethermalresults through calculation of thethermal expansion (av=3x104 /øK [Stacey, 1977])andtheeffects of pressure (b=lx10'•/kb [TurcotteandSchubert,1982]) on an initialdensitydistributionsetfor zeropressureandtemperature. While thecoefficientof thermalexpansionchangeswith temperature and pressure ( thevalueusedappliesto shallowdepths,butav decreases to 2x10's/ øKby thebaseof themodelregion [Stacey,1977]),theerrorintroduced by theuseof a constam valueis on the orderof 1%. The assumed initial density structure[OxburghandParmentier,1977]includesa 10 or 25 km basaltic crust(p=3.0gm/cma); a corresponding 25 or65 km thickdepleted mantlezone(p=3.295gnUcm'); andan underlying undepleted mantle(p=3.36grrffcm•). Thecrustal thicknesses wereselected to illustratetheeffectsof changing the crustalthickness,andrepresenta rangeproposedfor Venus[Zuber, 1987; Grimm andSolomon,1988], although the exactaveragethickness is unknown.The initialdensity structure is basedupontheassumption thatbasalticcrustis derivedby thepartialmeltingof themantle.Thiscreates a lowdensitydepletedmantlelayerbelowthecrust[Oxburghand Discussion Qualitatively,subduction is likely to be enhanced bynegativeandhinderedbypositiveslabbuoyancy. For all geotherms positivenetbuoyancy persists abovethebasalt-eclogite phase change. Full lengthslabswerenegatively buoyantin allcases. We used a model for slab motion-induced mantle flow to evaluate theeffectsof buoyancy onsubduction [Turcotte and Schubert, 1982].Theflowapplies a torqueto thebodyofthe slab(Figure3). Mantledynamics couldcontribute to the depth Ocm) density (gm/cm') x4•$•:•il 3.5 100 --':.,'&;• 3.4 3.3 •:i•, '••"'••••;•- "•••--•--••••-••••••. ,z•',•--•• • 400 0 3.1 2.7 200 400 600 800 Fig.2.Finaldensity distribution for10øC• initialgeotherm, 25kmbasaltic crust,and5 km/Masubuction rate.Dia? shows contours of density in grn/cm 3,0.1gm/cm • spacing. ButtandHead: Thermal Buoyancy onVenus 1709 I Overriding plate $,x• • •odu-• IOip •,/_,.<,•" [,• ........... 1.8e+21 U 1.5e+21 mantle ) • y .,,;• • o ' • .• • • • • •• • • Induced mantler flow 1.2e+2I q u 9.0e+20 6.0e+20 3.0e+20 body force O. Fig.3.Diagramof mantleflowinduce, clby slabmodon(from I 5. l.O. 1.5. 20. T•rcotteand Schubert,1982). 25. : 30. I 35. I 40. I 45. ! 5;0. ! 55. - I 60. • 65. '70 subclucfion angle torques bearingontheslab,however,thenatureof mantle dynamics onVenusis unknown. Mantleflow couldbepartof Fig.4. Torques imposed ontheslabbyinduced mantleflow fora rangeof subducfion angles. Torques arein unitsof Nm. alargeconvective systemindependent of slabmotion.Because oftheuncertainty involvedin modellingmantleflow, we assmethesimplestcaseof flow dueto slabmotion.Induced flowdepends on assuming a rigidslab.Slabheatingwill diminish thatrigidity,anddecrease thecalculated flowtorques. Buoyancy bodyforcesalsoresolveintoa torqueonthe slab, andbothtorquesare takento acton the slababoutits junction withthesurface. Table1 listsbuoyancy torques for longslabbuoyancy torques arenegative andlarge,exceeding flowtorques at angles over10degrees. If slabssomehow subductbeyond theneutral buoyancy depth,thenegative net foursubducfion rates,both crustalthicknesses,and shallow andfulllengthslabs.Figure4 plotsflow torquesversussubducfion anglefor a 100km/Masubducfion rate.Flowtorques arepositive andsmall(relativeto buoyancy torques) for subducfion angles overabout15degrees, becoming largefor small angles. Positivetorquestendto decrease thesubducfion angle. Fortheshortslabsdip anglestendto decrease dueto both thebuoyancy andflow torques. No matterwhatinitial angle a slabwouldtakeinto a mantleundertheseconditions, buoyancy couldhelpdrivesubducfion. Buoyancy torques for allbuttheshallowest dipangles arenegative andgreater than themantle flowtorques, resulting inincreased slabdip. Forcrustal thicknesses outside of themodelled range, somebuoyancy effectsmaydiffer.For crustthinnerthan10 km,thepositivebuoyancy resulting fromthelow crustaland depletedmantledensitieswouldbe decreased.The increaseof density duetotheconversion of basalt toeclogite wouldalso besmaller. Thus,slabshavingthincrustallayerswouldfollow thesamebuoyancytrendasthosemodelledhere,butwith a smallernetbuoyancy difference. If thecrustwereabout100 kmthickthelithospheric slabmaybecomprised entirely of crustanddepleted mantle,or evenentirelycrust,depending on thegeotherm. Thenetpositive or negative buoyancy of such slabs, aboveorbelowthebasalt-eclogite transition, respectively,wouldbemoreextreme thanforthinnercrustal layers. thebuoyancy andmantleflowwouldcombine toprevent subducfion andunderthrusting wouldresult.Further,sincethe These resultsindicate that for all casesconsideredhere of crustal portion of theslabwouldbepositively buoyant, though themantle partof theslabisnegatively buoyant, perhaps deassumed Venusgeotherm a lithospheric slabwhosesubduction has been initiated will be forced to underthrustthe overridlamination couldbeexpected. In thiscasecrustal slices may underthrust and imbricatewhile the rest of the slabcould sink. Forallcases of subducfion rateandgeotherm the400km ing lithosphere. Also,sincethecrustalmaterialin a shallow slabis positively buoyant, whiletherestof theslabmaybe TABLE 1' Torquesdueto slabbuoyancy. 10kmcrust ' 25 kmCrUst buoyancytorque(Nm) buoyancytorque(Nm) 25 25 25 25 subd. rate (km/Ma) 100 50 25 5 400 km slab -1.0x10 21 -7.1x102ø -5.6x10 2ø -3.6x102ø 110 lcmslab 1.5x102ø 1.9x102ø 2.1x10 2ø 2.5x102ø 400 !cmslab -2.5x10 21 -2.2x102z -2.0x10 2z -1.8x102• 1!0 km slab 2.8x10 2ø 3.2x102ø 3.4x10 2ø 3.8x10 •9 15 15 15 15 100 50 25 5 -2.6x10 21 -2.0xlO 21 -1.7xlO 21 -9.8x10 2ø -1.5xlO 19 3.9x10 •9 7.1xlO •9 1.6xlO2ø -3.8x10 2• -3.1xlO 21 -2.8x10 21 -2.1xlO 21 4.9x10 •9 1.OxlO2ø 1.3xlO2ø 2.2x10 2ø lO lO lO lO lOO 50 25 5 -3.8x10 2• -3.1x10 21 -2.8x10 21 -2.4x10 21 1.2x102ø 1.4x102ø 1.5x102ø 1.6x102ø -3.7x10 2• -3.1x10 21 -2.5x10 2• -2.3x10 21 9.1x10 •9 1.1x102ø 2.8x10 2ø 1.3x10TM geotherm _(øC/krn) 1710 BurtandHead:ThermalBuoyancy onVenus References STEEP THERMAL GRADIENT Anderson, D.L., Platetectonics on Venus,Geoph¾s. Re•. Gravitationa L•tt.. 8, 309-311, 1981. Burt, J.D., andJ.W. Head, Venus:Tectonicandvolcanic Collapse consequences of subduction andunderthrusting, • andPlanetaryScienceXXI, 149-150, 1990. COLD Conduction WARMER Crumpier, L.S., J.W.Head,andD.B. Campbell,Orogenic belts on Venus, Geology. 14. 1031- !034, 1986. SHALLOW • Grimm, R.E., and S.C. Solomon,Viscousrelaxationof impactcraterreliefonVenus:Constraints oncrustal THERMAL 1• Delamination(?) thicknessandthermalgradient,J. Ge0phy$.Res.,93, GRADIENT [ Fig.5. Possible resultsof crustalthickening including melting of thecrustal rootand,alternatively, delamination afterroot hasdeepened through thebasalt-eclogite phasetransition (from VorderBrueggeandHead, 1991). negativelybuoyantor neutral,somesortof crustaldetachment may bepossible.Thesebothcouldthenleadto crustalthicken- ing,meltingandvolcanism, andpossibly provideonemodel to explaintheassociation of compressional mountainbeltsand blocksof highstanding tessera, with apparent flexuralrises, foredeeps, andlargevolumesof volcanicdeposits. Furtherwork is requiredto constraintherateat whicha slabmayriseto assume anunderthrusting positionafter initiallysubducting. Nevertheless, we expectthatwheresubduction isinitiatedit will soonevolveintounderthrusting. The flexuralsignature shownby thelithosphere atFreyjaMontes [SolomonandHead, 1990] and aroundcoronaesuchas ArtemisandLatona[Sandwelland Schubert,1992] should thusbedueto theloadingprovidedby theoverriding lithosphereandnotto a negativelybuoyantslab. Exceptin thecaseof anunderthrusting/subduction eventof shortduration,perhapsto be expectedarounda corona,the tendencyto convertsubduction into underthrusting shouldlead to the creationof zonesof thickened,deformedcrust.As thickening continues, andthecrustalrootis isostatically forced to deeperlevelsin theuppermanfie,heatingof crustalmaterial couldtriggertheformationof magmasderivedby crustal remelting(Figure5). In the anhydrousmantleof Venussuch meltsmightbe SiO2-poortrachytesandphonolites or ferrobasaks[Hessand Head, 1990]. These could extrudeasflood 11,911-11,929, 1988. Head, J.W., Formationof mountainbeltson Venus:Evidence for large-scale convergence, underthrusting, andcrustal imbrication in FreyjaMontes,IshtarTerra,Geology,1• 99-102, 1990. Hess,P.C. andHead,J.W., (1990),Derivationof primary magnaas andmeltingof crustalmaterialson Venus:some preliminarypetrogenetic observations, Earth.Moon,and• Planets.50/51. p. 57-80. Hess,P.C., andJ.W. Head,Derivationof primarymagmas andmeltingof crustalmaterialson Venus:some preliminaryconsiderations, Abstractsof the28th InternationalGeological Congress.2-55, 1989. McKenzie,D., P.G. Fred,C, Johnson, B. Parsons, G.H. Pettengi!l,D. Sandwell,S. Saunders,andS.C. Solomon, Features on Venusgenerated by plateboundaryprocesses, J. Geoohvs.Res. in press,1992. Minear,I.W.• andM.N. Toksoz, Thermal regimeof a downgoingslabandthenew globaltectonics,J. Geoph¾•. Res.. 75. no.8, 1397-1419, 1970. Oxburgh,E.R., andE.M. Parmentier,Compositional and densitystratification in oceaniclithosphere - causes and consequences, J. •eol. Soc.Lond.. 133, 343-355, 1977. Parmentier, E.M., ancfP.C.Hess,Chemicaldifferentiation of a convecting planetary interior:Consequences for one-plate planetssuchasVenus,LunarandPlanetaryScience XXIII. 1037-1038, 1992. Phillips,R.J.,andM.C. Malin, The interiorof Venusand tectonicimplications, in ..Venus. Hunten,D.M., et al.eds., U. AZ Press, Tucson, 159-214, 1983. Sandwe!l,D.T., andG. Schubert,Is the Venusianlithosphere subducting?, LungrandPlanetary_ Science XXIII. 1209, 1992. Solomon, S.C., andJ.W.Head,Lithospheric flexurebeneath theFreyjaMontesforedeep,Venus:constraints on lithospheric thermalgradientandheatflow,• Res. L•tm, 17, no.9, 1393-1396, 1990. volcanics.The volcanicsobservedatopItzpapalofiTessera maybe oneexampleof suchmaterials. If meltingdoesnot occur,becauseof a low geotherm,the rootmaydeepento thelevelof thebasalteclogitephasetransition (Figure5). This densification of thedeepest portionof the thickenedcrustmay leadto its detachmentanddescentintothe mantle.Sucha delamination wouldclearlycreatestrongtectoniceffectsastheremainingcrustreequilibrates isostatically. If an underthrust lithosphericslabsuturesto thecrustalrootit couldbe carriedalongwhenthatrootdensitiesanddetaches. This scenariomay thenleadto self-sustaining subduction as slab-pullprovidesthedrivingforce. Stacey,F.D., A thermalmodelof theEarth,Phys,Earth p!.anet.Interiors,15, 341-348, 1977. Turcotte,D.L., andG. Schubert, Geodynamics: .Applications uAckn.0wledgrnents. The authorsgratefullyacknowledge thefinancialsupportof theNASA undergrantNAGW-1873 to JWH. The paperbenefitedfrom discussions with Marc Parmentierandthe commentsof two anonymous reviewers. 02912. of Continuum Physics ,q)Geological Problems. J.Wiley& Sons,New York, 450 pp., 1982. VorderBruegge,R.W., andJ.W. Head, FortunaTessera, Venus:Evidence of horizontal convergence andcrustal thickening, Geophys. Res.Lett.. 16. no.7, 699-702, 1989. Zuber,M.T., Constraints onthelithospheric structure of Venus from mechanicalmodels and tectonic surfacefea- tures,Pr0½,LunarPlanet.Sci.Conf.17th,Part2., 1987. J.D.BurrandJ.W.Head,Department of Geological Sciences, Box 1846,BrownUniversity, Providence, RI (ReceivedMay 12, 1992; accepted June25, 1992.)
© Copyright 2026 Paperzz