Why the first digit of the values of (Jeffreys) physical quantities tends to be 1 or 2 ? Albert Tarantola Preamble Needs@"Histograms`"D SeedRandom@0D First run with 64 points (to checks if everything is OK) Let us select 64 as the number of values, to start with. n = 64; We generate 64 values with constant probability density in the range (-100,+100) : x = Table@Random@Real, 8-100, +100<D, 8n<D 8-93.6293, 28.0416, 44.8605, 16.1768, 86.2303, 27.3468, 85.6849, -90.212, 40.4607, -14.9532, 38.7222, -96.2569, 48.3508, 60.7061, -37.4265, 94.712, 93.1128, 93.9266, 59.0126, 86.9209, 35.4998, 10.3493, -94.8879, 61.389, 29.1291, 82.3077, -39.7484, -54.7878, 42.8988, -45.0391, -25.4333, -64.5758, -97.5619, 69.914, 35.8446, -68.3189, -45.9128, -90.7921, -26.729, -63.0309, -39.0256, -84.7187, 14.2584, -49.9518, 25.4746, 4.93198, 9.14623, -11.3408, 96.3455, 22.6243, -51.1054, -56.5529, -46.5533, -32.3366, 74.3279, -91.9771, -48.9913, -2.25059, -61.5167, 76.3418, 96.9215, -11.4585, 65.2123, 39.3727< 2 BenfordLaw.nb The histogram of the 64 values is totally unremarkable: Histogram@x, HistogramCategories Ø 4D 15 10 5 -50 0 50 100 We now take the exponential of these values (remark the first digit is more frequently an "one" or a "two" than a "eight" or a "nine"): X = Exp@xD 92.17432 µ 10-41 , 1.50775 µ 1012 , 3.03857 µ 1019 , 1.0605 µ 107 , 2.8141 µ 1037 , 7.52621 µ 1011 , 1.63116 µ 1037 , 6.62843 µ 10-40 , 3.73141 µ 1017 , 3.20563 µ 10-7 , 6.5587 µ 1016 , 1.57096 µ 10-42 , 9.96534 µ 1020 , 2.31391 µ 1026 , 5.57056 µ 10-17 , 1.35796 µ 1041 , 2.74402 µ 1040 , 6.19154 µ 1040 , 4.25461 µ 1025 , 5.61376 µ 1037 , 2.61438 µ 1015 , 31 235.8, 6.1763 µ 10-42 , 4.5804 µ 1026 , 4.47298 µ 1012 , 5.56892 µ 1035 , 5.46396 µ 10-18 , 1.60674 µ 10-24 , 4.27272 µ 1018 , 2.75262 µ 10-20 , 9.00452 µ 10-12 , 9.0175 µ 10-29 , 4.25974 µ 10-43 , 2.30824 µ 1030 , 3.69055 µ 1015 , 2.13536 µ 10-30 , 1.14905 µ 10-20 , 3.71096 µ 10-40 , 2.46459 µ 10-12 , 4.22701 µ 10-28 , 1.12564 µ 10-17 , 1.61115 µ 10-37 , 1.55716 µ 106 , 2.02408 µ 10-22 , 1.15739 µ 1011 , 138.654, 9378.99, 0.0000118788, 6.95556 µ 1041 , 6.69281 µ 109 , 6.38557 µ 10-23 , 2.75029 µ 10-25 , 6.05591 µ 10-21 , 9.04512 µ 10-15 , 1.90628 µ 1032 , 1.1346 µ 10-40 , 5.28868 µ 10-22 , 0.105337, 1.92153 µ 10-27 , 1.4283 µ 1033 , 1.23725 µ 1042 , 0.0000105596, 2.09581 µ 1028 , 1.25701 µ 1017 = BenfordLaw.nb To isolate the first digit, we evaluate the mantissa of the numbers XX = MantissaExponent@XD Y = Table@XX@@i, 1DD, 8i, 1, n<D 880.217432, -40<, 80.150775, 13<, 80.303857, 20<, 80.10605, 8<, 80.28141, 38<, 80.752621, 12<, 80.163116, 38<, 80.662843, -39<, 80.373141, 18<, 80.320563, -6<, 80.65587, 17<, 80.157096, -41<, 80.996534, 21<, 80.231391, 27<, 80.557056, -16<, 80.135796, 42<, 80.274402, 41<, 80.619154, 41<, 80.425461, 26<, 80.561376, 38<, 80.261438, 16<, 80.312358, 5<, 80.61763, -41<, 80.45804, 27<, 80.447298, 13<, 80.556892, 36<, 80.546396, -17<, 80.160674, -23<, 80.427272, 19<, 80.275262, -19<, 80.900452, -11<, 80.90175, -28<, 80.425974, -42<, 80.230824, 31<, 80.369055, 16<, 80.213536, -29<, 80.114905, -19<, 80.371096, -39<, 80.246459, -11<, 80.422701, -27<, 80.112564, -16<, 80.161115, -36<, 80.155716, 7<, 80.202408, -21<, 80.115739, 12<, 80.138654, 3<, 80.937899, 4<, 80.118788, -4<, 80.695556, 42<, 80.669281, 10<, 80.638557, -22<, 80.275029, -24<, 80.605591, -20<, 80.904512, -14<, 80.190628, 33<, 80.11346, -39<, 80.528868, -21<, 80.105337, 0<, 80.192153, -26<, 80.14283, 34<, 80.123725, 43<, 80.105596, -4<, 80.209581, 29<, 80.125701, 18<< 80.217432, 0.373141, 0.274402, 0.447298, 0.425974, 0.112564, 0.695556, 0.528868, 0.150775, 0.320563, 0.619154, 0.556892, 0.230824, 0.161115, 0.669281, 0.105337, 0.303857, 0.10605, 0.28141, 0.752621, 0.163116, 0.662843, 0.65587, 0.157096, 0.996534, 0.231391, 0.557056, 0.135796, 0.425461, 0.561376, 0.261438, 0.312358, 0.61763, 0.45804, 0.546396, 0.160674, 0.427272, 0.275262, 0.900452, 0.90175, 0.369055, 0.213536, 0.114905, 0.371096, 0.246459, 0.422701, 0.155716, 0.202408, 0.115739, 0.138654, 0.937899, 0.118788, 0.638557, 0.275029, 0.605591, 0.904512, 0.190628, 0.11346, 0.192153, 0.14283, 0.123725, 0.105596, 0.209581, 0.125701< We multiply ther mantissa by 10 and take the integer part: YY = 10 Y Z = IntegerPart@YYD 82.17432, 1.50775, 3.03857, 1.0605, 2.8141, 7.52621, 1.63116, 6.62843, 3.73141, 3.20563, 6.5587, 1.57096, 9.96534, 2.31391, 5.57056, 1.35796, 2.74402, 6.19154, 4.25461, 5.61376, 2.61438, 3.12358, 6.1763, 4.5804, 4.47298, 5.56892, 5.46396, 1.60674, 4.27272, 2.75262, 9.00452, 9.0175, 4.25974, 2.30824, 3.69055, 2.13536, 1.14905, 3.71096, 2.46459, 4.22701, 1.12564, 1.61115, 1.55716, 2.02408, 1.15739, 1.38654, 9.37899, 1.18788, 6.95556, 6.69281, 6.38557, 2.75029, 6.05591, 9.04512, 1.90628, 1.1346, 5.28868, 1.05337, 1.92153, 1.4283, 1.23725, 1.05596, 2.09581, 1.25701< 82, 1, 3, 1, 2, 7, 1, 6, 3, 3, 6, 1, 9, 2, 5, 1, 2, 6, 4, 5, 2, 3, 6, 4, 4, 5, 5, 1, 4, 2, 9, 9, 4, 2, 3, 2, 1, 3, 2, 4, 1, 1, 1, 2, 1, 1, 9, 1, 6, 6, 6, 2, 6, 9, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1< 3 4 BenfordLaw.nb And we can now make the histogram of the first digit of the quantities X = Exp[x] : Histogram@Z, HistogramCategories Ø 80.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5<D 20 15 10 5 2 4 6 8 Second run with 24000 points n = 24 000; x = Table@Random@Real, 8-100, +100<D, 8n<D; Histogram@x, HistogramCategories Ø 20D 1200 1000 800 600 400 200 -50 0 50 100 BenfordLaw.nb X = Exp@xD; XX = MantissaExponent@XD; Y = Table@XX@@i, 1DD, 8i, 1, n<D; YY = 10 Y; Z = IntegerPart@YYD; H1 = Histogram@Z, HistogramCategories Ø 80.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5<D 7000 6000 5000 4000 3000 2000 1000 2 4 6 8 This is the Benford law! Here we have built it mathematically. But we find it everywhere in Nature -> Nature works somehow this way. In fact, let us compare this experimental histogram with the Benford law. The Benford law is: Benford@k_D = Log@10, Hk + 1L ê kD; Its plot is: H2 = ListPlot@n Table@Benford@kD, 8k, 1, 9<D, PlotRange Ø 80, 7300<D 7000 6000 5000 4000 3000 2000 1000 0 2 4 6 8 5 6 BenfordLaw.nb We can plot together the experimental histogram and the Benford law (an almost perfect agreement): Show@8H1, H2<D 7000 6000 5000 4000 3000 2000 1000 2 4 6 8
© Copyright 2026 Paperzz