Symmetry energy and pure neutron systems Stefano Gandolfi Los Alamos National Laboratory (LANL) Neutron Skins of Nuclei 17-27 May 2016, Mainz Institute for Theoretical Physics www.computingnuclei.org Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 1 / 31 Neutron stars Neutron star is a wonderful natural laboratory Atmosphere: atomic and plasma physics Crust: physics of superfluids (neutrons, vortex), solid state physics (nuclei) Inner crust: deformed nuclei, pasta phase Outer core: nuclear matter Inner core: hyperons? quark matter? π or K condensates? D. Page Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 2 / 31 Homogeneous neutron matter Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 3 / 31 Outline The model and the method Neutron drops: energies and radii, correlations radii-skin and radii-L Equation of state of neutron matter, three-neutron force and symmetry energy Neutron star structure and symmetry energy Conclusions Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 4 / 31 Nuclear Hamiltonian Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI). H=− A X ~2 X 2 X ∇i + vij + Vijk 2m i=1 i<j i<j<k vij NN fitted on scattering data. Sum of operators: X p=1,8 vij = Oij v p (rij ) , Oijp = (1, ~σi · ~σj , Sij , ~Lij · ~Sij ) × (1, ~τi · ~τj ) NN interaction - Argonne AV8’. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 5 / 31 Phase shifts, AV8’ 0 60 120 Argonne V8’ SAID 1 S0 1 Argonne V8’ SAID 3 S1 100 P1 Argonne V8’ SAID 40 20 0 δ (deg) δ (deg) δ (deg) 80 60 40 -20 20 -20 -40 0 0 100 200 300 400 Elab (MeV) 500 -20 0 600 100 200 300 400 Elab (MeV) 500 -40 0 600 0 P0 20 P1 -40 0 Argonne V8’ SAID 100 200 300 400 Elab (MeV) 500 -30 -50 0 600 3 D1 Argonne V8’ SAID 50 500 600 3 P2 10 0 100 200 300 400 Elab (MeV) 500 -10 0 600 100 200 Elab (MeV) 300 400 8 60 -10 300 400 Elab (MeV) 20 -20 -40 0 200 Argonne V8’ SAID δ (deg) δ (deg) δ (deg) -10 -20 Argonne V8’ SAID 3 0 100 30 3 Argonne V8’ SAID 3 ε1 D2 6 -20 δ (deg) δ (deg) δ (deg) 40 30 4 20 -30 Argonne V8’ SAID 2 10 -40 0 100 200 300 400 Elab (MeV) 500 600 0 0 100 200 300 400 Elab (MeV) 500 600 0 0 100 200 300 400 Elab (MeV) 500 600 Difference AV80 -AV18 less than 0.2 MeV per nucleon up to A=12. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 6 / 31 Scattering data and neutron matter Two neutrons have k≈ p Elab m/2 , → kF that correspond to kF → ρ ≈ (Elab m/2)3/2 /2π 2 . Elab =150 MeV corresponds to about 0.12 fm−3 . Elab =350 MeV to 0.44 fm−3 . Argonne potentials useful to study dense matter above ρ0 =0.16 fm−3 Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 7 / 31 Three-body forces Urbana–Illinois Vijk models processes like π π π π π ∆ ∆ π π + π π π ∆ ∆ short-range correlations (spin/isospin independent). Urbana UIX: Fujita-Miyazawa plus short-range. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 8 / 31 Quantum Monte Carlo Projection in imaginary-time t: H ψ(~r1 . . .~rN ) = E ψ(~r1 . . .~rN ) ψ(t) = e −(H−ET )t ψ(0) Ground-state extracted in the limit of t → ∞. Propagation performed by Z ψ(R, t) = hR|ψ(t)i = dR 0 G (R, R 0 , t)ψ(R 0 , 0) dR 0 → dR1 dR2 . . . , G (R, R 0 , t) → G (R1 , R2 , δt) G (R2 , R3 , δt) . . . Importance sampling: G (R, R 0 , δt) → G (R, R 0 , δt) ΨI (R 0 )/ΨI (R) Constrained-path approximation to control the sign problem. Unconstrained calculation possible in several cases (exact). Ground–state obtained in a non-perturbative way. Systematic uncertainties within 1-2 %. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 9 / 31 Light nuclei spectrum computed with GFMC -20 -30 -40 0+ 1+ 2+ 3+ 1+ 2+ 0+ 4He 6 He 7/2− 5/2− 5/2− 7/2− 1/2− 3/2− 6Li 2+ 0+ 8He Energy (MeV) 7Li -50 -60 -70 Argonne v18 with UIX or Illinois-7 GFMC Calculations 4+ 0+ 2+ 2+ 1+ 3+ 1+ 2+ 0+ 1+ 4+ 3+ 1+ 2+ 4+ 8Li 2+ 0+ 8Be 7/2+ 5/2+ 7/2− 7/2− 3/2− 3/2+ 5/2+ 1/2− 5/2− 1/2+ 3/2− 9Be 1 June 2011 4+ 2+ 3+ 2+ 3+ 1+ 1+ 3+ 4+ 2+ 3+ 2+ 1+ 1+ 3+ 10B -80 AV18 -90 AV18 +UIX AV18 +IL7 Expt. 0+ 12C -100 Carlson, et al., RMP (2015) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 10 / 31 Neutron matter and the ”puzzle” of the three-body force 20 AV8’+UIX AV8’+IL7 AV8’ Energy per Neutron [MeV] 18 16 14 12 10 8 6 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -3 ρ [fm ] Maris, et al., PRC (2013) Note: AV8’+UIX and (almost) AV8’ are stiff enough to support observed neutron stars, but AV8’+IL7 too soft. → How to reconcile with nuclei??? Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 11 / 31 Neutron matter and the ”puzzle” of the three-body force Hagen, et al., Nature Physics (2016) Similar trend: very low simmetry energies, soft EOS, probably leading too small radii in neutron stars. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 12 / 31 Neutron drops What are, and why to study neutron drops? They model inhomogeneous neutron matter. Ab-initio→DFT Neutrons are confined by an external potential: H=− A X X ~2 X 2 X Vijk + Vext (ri ) ∇i + vij + 2m i=1 i<j i<j<k i Vext tuned to change boundary conditions and densities. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 13 / 31 Neutron drops, harmonic oscillator well External well: harmonic oscillator with ~ω=5, 10 MeV. Interaction: AV8’+UIX 1.1 10 MeV E / ωN 4/3 1 0.9 0.8 AFDMC GFMC SLY4 SKM* SKP BSK17 ETF ξ=0.5, 1 0.7 1.1 5 MeV E / ωN 4/3 1 0.9 0.8 0.7 0 10 20 30 40 50 60 N Gandolfi, Carlson, Pieper, PRL (2011) Skyrme systematically overbind neutron drops. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 14 / 31 Neutron drops Ab-initio calculations meant as ”experimental data”. Interaction: AV8’+UIX AFDMC (AV8’+UIX) HFB (UNEDF0) HFB (UNEDF1) 8 h̄ω =10MeV Etot/N 4/3 (MeV) 10 6 h̄ω =5MeV 4 0 10 20 30 40 50 60 N M. Kortelainen, et al., PRC (2012). Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 15 / 31 Neutron drops Comparison with other functionals. QMC: AV8’+UIX, AV8’, AV8’+IL7 (from Maris, et al., PRC 2013) 1.05 QMC 1.00 E/h̄ωN 4/3 0.95 NL3 PK1 DD-ME2 PKDD PC-PK1 DD-PC1 h̄ω = 10 MeV 0.90 0.85 0.80 0.75 0.70 0.65 0 10 20 30 40 50 Neutron Number N Zhao, Gandolfi, arXiv:1604.01490 Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 16 / 31 Neutron drops - radii Note: tune Vext or N to have central density about 0.16(2) fm−3 . For example, this is given by putting 20 neutrons in an external trap with ~ω=10 MeV: 0.2 _ AFDMC, N=20, hω=10 MeV, AV8’+UIX -3 ρ(r) (fm ) 0.16 0.12 0.08 0.04 0 0 Rms radius: √ 1 2 3 r (fm) 4 5 6 < r 2 > = 3.14(1) fm Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 17 / 31 Correlation between neutron drops radii and the skin thickness of and 48 Ca: 0.40 ∆rnp (208 Pb) (fm) 0.05 NL2 1 -ME DD 2 -ME DD SII 99 TW 0.10 * SKM 6 SLY 5 SLy SKP k6 MS SIIISk3 M 0.15 4 SLy 0.20 K1 PC-P 1 D PC-F PKD 0.25 r = 0.95 0.00 Pb NL1 Linear fit Relativistic DFTs Nonrelativistic DFTs 1 -PC DD SKMP SV 0.30 3* 3 NLN L PK1 SKI5 H NL-S 0.35 208 (a) 0.30 6 SLY 4 SLy P SK 0.15 5 SLy 0.20 k6 MS I SII3 k MS ∆rnp (48 Ca) (fm) Linear fit Relativistic DFTs Nonrelativistic DFTs NL2 NL1 K1 PC-P 1 * PC-F D NL3L3 PKD N PK1 SKI5 H NL-S 1 -ME DD 2 -ME DDII 1 S KMP -PC S DD TW99 SV * SKM 0.25 0.10 0.05 0.00 2.7 r = 0.97 2.8 2.9 3.0 3.1 3.2 3.3 (b) 3.4 3.5 R(N = 20, h̄ω = 10 MeV) (fm) Zhao, Gandolfi, arXiv:1604.01490 Green points: antiprotonic atoms, pion photoproduction, electric dipole polarizability Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 18 / 31 Neutron drops Radii: AFDMC calculations with various Hamiltonians, compared to what might be extracted from experiments: 3.2 AV8′ +UIX N2 LO(D2,E1) AV8′ N2 LO(1.0) N2 LO(1.2) Radii (fm) 3.0 AV8′ +UIX JISP16 2.8 N = 20 h̄ω = 10 MeV 2.6 2.4 2.2 208 Pb Antiprotonic atom 208 Pb π photoproduction 208 Pb E1 polarizability 48 N = 14 h̄ω = 10 MeV N =8 h̄ω = 15 MeV Ca E1 polarizability 2.0 Zhao, Gandolfi, arXiv:1604.01490 Note, N = 14 has central density of about 0.12 fm−3 , N=8 we don’t know yet... Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 19 / 31 Neutron drops Radius of 20 neutrons in a ~ω = 10 MeV harmonic trap as a function of L (from the EOS) 3.5 Linear fit DFT QMC 3.4 Radii (fm) 3.3 3.2 3.1 3.0 2.9 r = 0.93 2.8 2.7 0 20 40 60 80 100 120 140 L (MeV) Zhao, Gandolfi, arXiv:1604.01490 Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 20 / 31 Neutron matter equation of state Why to study neutron matter at nuclear densities? EOS of neutron matter gives the symmetry energy and its slope. Assume that NN is very good - fit scattering data with very high precision. Three-neutron force (T = 3/2) very weak in light nuclei, while T = 1/2 is the dominant part. No direct T = 3/2 experiments. Why to study symmetry energy? Theory Esym, L Neutron stars Stefano Gandolfi (LANL) Experiments Symmetry energy and pure neutron systems 21 / 31 What is the Symmetry energy? symmetric nuclear matter pure neutron matter Symmetry energy E0 = -16 MeV Nuclear saturation 0 ρ0 = 0.16 fm -3 Assumption from experiments: ESNM (ρ0 ) = −16MeV , ρ0 = 0.16fm−3 , Esym = EPNM (ρ0 ) + 16 At ρ0 we access Esym by studying PNM. Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 22 / 31 Neutron matter We consider different forms of three-neutron interaction by only requiring a particular value of Esym at saturation. Energy per Neutron (MeV) 120 100 different 3N different 3N: 80 V2π + αVR V2π + αVRµ (several µ) 60 40 Esym = 33.7 MeV V2π + αṼR V3π + αVR 20 0 0 0.1 0.2 0.3 0.4 0.5 -3 Neutron Density (fm ) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 23 / 31 Neutron matter Equation of state of neutron matter using Argonne forces: Energy per Neutron (MeV) 100 80 Esym = 35.1 MeV (AV8’+UIX) Esym = 33.7 MeV Esym = 32 MeV Esym = 30.5 MeV (AV8’) 60 40 20 0 0 0.1 0.2 0.3 0.4 0.5 -3 Neutron Density (fm ) Gandolfi, Carlson, Reddy, PRC (2012) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 24 / 31 Neutron matter and symmetry energy From the EOS, we can fit the symmetry energy around ρ0 using Esym (ρ) = Esym + L ρ − 0.16 + ··· 3 0.16 70 AV8’+UIX 65 L (MeV) 60 55 Esym=33.7 MeV 50 45 Esym=32.0 MeV 40 35 AV8’ 30 30 31 32 33 34 35 36 Esym (MeV) Gandolfi et al., EPJ (2014) Tsang et al., PRC (2012) Very weak dependence to the model of 3N force for a given Esym . Knowing Esym or L useful to constrain 3N! (within this model...) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 25 / 31 Neutron matter and neutron star structure TOV equations: G [m(r ) + 4πr 3 P/c 2 ][ + P/c 2 ] dP =− , dr r [r − 2Gm(r )/c 2 ] dm(r ) = 4πr 2 , dr J. Lattimer Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 26 / 31 Neutron star structure EOS used to solve the TOV equations. 3 2 2.5 sa Cau lity: .9 (G R>2 M/c ) error associated with Esym 1.97(4) MO• M (MO• ) 2 ρ0 =3 al ntr ρ ce 32 1.5 1.4 MO• ρ =l 2 0 a ρ centr 1 33.7 0.5 35.1 0 8 Esym= 30.5 MeV (NN) 9 10 11 12 13 14 15 16 R (km) Gandolfi, Carlson, Reddy, PRC (2012). Accurate measurement of Esym put a constraint to the radius of neutron stars, OR observation of M and R would constrain Esym ! Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 27 / 31 Neutron stars 2.5 2.5 0.0012 4U 1608-52 2.5 0.0016 EXO 1745-248 4U 1820-30 0.0016 0.0014 0.001 2 2 2 0.0014 0.0012 0.0012 0.0006 0.001 1.5 0.0008 1 1 M (M ) 1.5 M (M ) M (M ) 0.0008 1.5 0.001 0.0008 1 0.0006 0.0006 0.0004 0.0004 0.5 0.5 2 4 6 8 10 12 14 16 18 0.0002 0 0 0 2 4 6 8 R (km) 10 12 14 16 18 0 0 2.4 0.0006 1.4 1.8 0.5 1.8 1.6 0.4 1.4 0.3 1.4 1.2 1 0.0002 1 0.1 1 R (km) 18 0 0 0.25 0.2 16 18 1.6 1.2 14 16 0.4 2 0.0004 12 14 2.2 2 1.2 10 12 0.3 M (M ) 0.0008 1.6 10 2.4 0.6 0.001 1.8 8 0.35 2 8 6 ×10-3 0.45 0.7 ω Cen 2.2 0.0012 6 4 R (km) ×10-3 0.8 0.0014 M13 2.2 0.8 2 R (km) 2.4 M (M ) 0.0002 0 M (M ) 0 0 0.0004 0.5 0.0002 0.8 6 8 10 12 14 16 18 0 0.8 0.2 0.15 0.1 X7 6 8 R (km) 0.05 10 12 14 16 18 0 R (km) Steiner, Lattimer, Brown, ApJ (2010) Neutron star observations can be used to ’measure’ the EOS and constrain Esym and L. (Systematic uncertainties still under debate...) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 28 / 31 Neutron star matter Neutron star matter model: α β ρ ρ ENSM = a +b , ρ0 ρ0 ρ < ρt (form suggested by QMC simulations), and a high density model for ρ > ρt i) two polytropes ii) polytrope+quark matter model Neutron star radius sensitive to the EOS at nuclear densities! Direct way to extract Esym and L from neutron stars observations: Esym = a + b + 16 , Stefano Gandolfi (LANL) L = 3(aα + bβ) Symmetry energy and pure neutron systems 29 / 31 Neutron star matter really matters! 2.5 Quarks, no corr. unc. Esym= 33.7 MeV 8 Fiducial M (Msolar) Probability distribution No corr. unc. 6 Esym=32 MeV 2 Quarks Polytropes Quark matter 1.5 1 Pb (p,p) 4 0.5 Masses 0 8 HIC 2 9 12 13 14 15 32 < Esym < 34 MeV , 43 < L < 52 MeV IAS 40 11 R (km) PDR 20 10 60 80 100 L (MeV) Steiner, Gandolfi, PRL (2012). Uncertainties on observations not included! Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 30 / 31 Summary Neutron drops provide an “artificial” useful system to calibrate density functionals Radii of neutron drops correlated to the skin thickness of nuclei and to L Three-neutron force is the bridge between Esym and neutron star structure. Neutron star observations becoming competitive with experiments. For the future: use more dense neutron drops to predict L at different densities? Acknowledgments: Joe Carlson (LANL) Pengwei Zhao, Steve Pieper (ANL) Sanjay Reddy (INT) Andrew Steiner (UT/ORNL) Stefano Gandolfi (LANL) Symmetry energy and pure neutron systems 31 / 31
© Copyright 2026 Paperzz