Consider the right triangle pictured at right. (1) Find sin . ______ (2

PRACTICE
Consider the right triangle pictured at right.
(1) Find sin πœƒ. ________
(2) Find cos πœƒ. ________
c
(3) Find tan πœƒ. ________
a
Θ
b
(4) Find
. ________
(5) What do you observe
about your answer to #4? ______________________________________
PRACTICE
Using the tangent ratio established in the previous problem and the values from the unit
circle, determine the exact value of each expression.
(7) tan(150) _______
(8) tan(180) _______
(9) tan(300) _______
(10) tan
(11) tan(240) _______
(12) tan
(13) tan(360) _______
(6) tan
PRACTICE
_______
_______
_______
(14) tan
_______
(15) On the unit circle, in which quadrants is tangent positive? ________________
How do you know? _______________________________________________________________
SEC
CSC
COT
(β€œSECANT”)
(β€œCOSECANT”)
(β€œCOTANGENT”)
PRACTICE
(16) sec
Use the functions defined above to find the exact value of each expression.
________
(17) sec(135) ________
(18) sec(2πœ‹) ________
(19) sec(210) ________
(20) sec
(21) sec(300) ________
(22) csc
(23) csc(315) ________
(24) csc(πœ‹) ________
(26) csc(60) ________
(27) csc
(28) cot(240) ________
(29) cot
(30) cot(45) ________
(31) cot
(32) cot(180) ________
(25) csc
________
________
________
________
________
(33) cot
________
________
PRACTICE
Determine which values of theta (in degrees) yield undefined values of each function below.
Then prove your responses in the space provided.
(34) sec πœƒ is undefined when πœƒ=___________
(35) csc πœƒ is undefined when πœƒ=___________
DEGREES
DEGREES
PROOF:
PROOF:
(36) tan πœƒ is undefined when πœƒ=___________
(37) cot πœƒ is undefined when πœƒ=___________
DEGREES
DEGREES
PROOF:
PROOF:
PRACTICE
(38) Which of the following expressions is not undefined?
a) sec(πœ‹)
b) csc(2πœ‹)
c) tan
d) cot(πœ‹)
PROOF:
PRACTICE
(39) Which of these expressions is equivalent to tan
a) 0
b) 1
?
c) βˆ…
d) β€”1
c) √3
d) βˆ’βˆš3
PROOF:
PRACTICE
(40) What is cos
a) 0
+ sin(240)?
b) 1
PROOF:
PRACTICE
(41) Use substitution to prove that tan(πœƒ) cot(πœƒ) sec(πœƒ) cos(πœƒ) = 1.
PROOF:
PRACTICE
(42) Use substitution to prove that tan(πœƒ) sec(πœƒ) sin(πœƒ) = tan πœƒ.
PROOF:
REVIEW
Determine whether each statement is true or false. Circle T for true or F for false.
(43) sin
Ο€
3
> cos(150°)
T
(44) cos(2Ο€) β‰₯ sin(0°)
F
PROOF:
REVIEW
Consider the steps in the incorrect
solution process shown at right.
(46) What is the correct solution? _______
(47)
(49)
REVIEW
REVIEW
F
PROOF:
(45) In which step is the first error made? _______
REVIEW
T
STEP 1:
log (π‘₯ ) βˆ’ log (π‘₯) = 1
STEP 2:
log
STEP 3:
π‘₯ =1
STEP 4:
√π‘₯ = √1 STEP 5:
π‘₯=1
=1
Simplify each expression.
÷
_________
_________
(51) Solve the system:
π‘₯ βˆ’ 2𝑦 + 3𝑧 = 14
π‘₯ + 3𝑦 + 2𝑧 = βˆ’1
2π‘₯ βˆ’ 4𝑦 βˆ’ 3𝑧 = 1
(48)
βˆ™
(50)
+
_________
_________
_____________
Solve each equation.
(52) 3√3π‘₯ + 4 βˆ’ 2 = 13
(53) βˆ’3(π‘₯ + 2) + 7 = βˆ’20 ______ ______
_______
(54) π‘₯ βˆ’ 3π‘₯ = 10 ______ ______
(55) 3π‘₯ βˆ’ 6π‘₯ βˆ’ 1 = 0 _____________
(56) βˆ’3|π‘₯ βˆ’ 3| + 1 = βˆ’20 ______ ______
(57) 6(π‘₯ βˆ’ 1) + 2 = 50 _______
REVIEW
(58) Which value is
not equivalent to sin(
2Ο€
)
3
?
11Ο€
)
6
a) cos(
7Ο€
6
b) cos( )
Ο€
3
c) sin( )
Ο€
6
d) cos( )