PRACTICE Consider the right triangle pictured at right. (1) Find sin π. ________ (2) Find cos π. ________ c (3) Find tan π. ________ a Ξ b (4) Find . ________ (5) What do you observe about your answer to #4? ______________________________________ PRACTICE Using the tangent ratio established in the previous problem and the values from the unit circle, determine the exact value of each expression. (7) tan(150) _______ (8) tan(180) _______ (9) tan(300) _______ (10) tan (11) tan(240) _______ (12) tan (13) tan(360) _______ (6) tan PRACTICE _______ _______ _______ (14) tan _______ (15) On the unit circle, in which quadrants is tangent positive? ________________ How do you know? _______________________________________________________________ SEC CSC COT (βSECANTβ) (βCOSECANTβ) (βCOTANGENTβ) PRACTICE (16) sec Use the functions defined above to find the exact value of each expression. ________ (17) sec(135) ________ (18) sec(2π) ________ (19) sec(210) ________ (20) sec (21) sec(300) ________ (22) csc (23) csc(315) ________ (24) csc(π) ________ (26) csc(60) ________ (27) csc (28) cot(240) ________ (29) cot (30) cot(45) ________ (31) cot (32) cot(180) ________ (25) csc ________ ________ ________ ________ ________ (33) cot ________ ________ PRACTICE Determine which values of theta (in degrees) yield undefined values of each function below. Then prove your responses in the space provided. (34) sec π is undefined when π=___________ (35) csc π is undefined when π=___________ DEGREES DEGREES PROOF: PROOF: (36) tan π is undefined when π=___________ (37) cot π is undefined when π=___________ DEGREES DEGREES PROOF: PROOF: PRACTICE (38) Which of the following expressions is not undefined? a) sec(π) b) csc(2π) c) tan d) cot(π) PROOF: PRACTICE (39) Which of these expressions is equivalent to tan a) 0 b) 1 ? c) β d) β1 c) β3 d) ββ3 PROOF: PRACTICE (40) What is cos a) 0 + sin(240)? b) 1 PROOF: PRACTICE (41) Use substitution to prove that tan(π) cot(π) sec(π) cos(π) = 1. PROOF: PRACTICE (42) Use substitution to prove that tan(π) sec(π) sin(π) = tan π. PROOF: REVIEW Determine whether each statement is true or false. Circle T for true or F for false. (43) sin Ο 3 > cos(150°) T (44) cos(2Ο) β₯ sin(0°) F PROOF: REVIEW Consider the steps in the incorrect solution process shown at right. (46) What is the correct solution? _______ (47) (49) REVIEW REVIEW F PROOF: (45) In which step is the first error made? _______ REVIEW T STEP 1: log (π₯ ) β log (π₯) = 1 STEP 2: log STEP 3: π₯ =1 STEP 4: βπ₯ = β1 STEP 5: π₯=1 =1 Simplify each expression. ÷ _________ _________ (51) Solve the system: π₯ β 2π¦ + 3π§ = 14 π₯ + 3π¦ + 2π§ = β1 2π₯ β 4π¦ β 3π§ = 1 (48) β (50) + _________ _________ _____________ Solve each equation. (52) 3β3π₯ + 4 β 2 = 13 (53) β3(π₯ + 2) + 7 = β20 ______ ______ _______ (54) π₯ β 3π₯ = 10 ______ ______ (55) 3π₯ β 6π₯ β 1 = 0 _____________ (56) β3|π₯ β 3| + 1 = β20 ______ ______ (57) 6(π₯ β 1) + 2 = 50 _______ REVIEW (58) Which value is not equivalent to sin( 2Ο ) 3 ? 11Ο ) 6 a) cos( 7Ο 6 b) cos( ) Ο 3 c) sin( ) Ο 6 d) cos( )
© Copyright 2026 Paperzz