Achieving stable, site-‐selec1ve conjuga1on to THIOMAB™ an1bodies Jack Sadowsky Genentech, Inc. World ADC 2015 San Diego, California ADCs: much more than drug plus anEbody Connec1on Trigger Drug Linker • Target antigen • Cleavable vs. non-cleavable • Mechanism of action • Antigen copy number • Cleavage mechanism • Standalone potency • Nonspecific uptake • Hydrophobicity/-philicity • Cell permeability • Fc receptor binding • Stability • MDR/PGP sensitivity Therapeutic index Need stability in circulaEon, but release in target cell for high efficacy 1 2 ADC 3 Stable in circulation 4 5a 5b Release in target cell Sievers, et al., 2013 Two flavors of cleavable linkers thiosuccinimide peptide O O S N O O H N N H O O O N H HN O NH 2 disulfide S S Drug N H N Drug O O N N O O O Thiosuccinimides can become deconjugated in vivo thiosuccinimide mAb O R N S O maleimide Deconjugation O R N mAb-SH + O HS-albumin Interchain Cys conjugate Average DAR ~3-4 SH HS HS HS HS SH SH SH THIOMAB™ approach to stabilizing thiosuccinimides thiosuccinimide mAb O Deconjugation R N S maleimide O O R N + mAb-SH O HS-albumin THIOMAB™-drug conjugate engineered Cys S S Average DAR 1.9-2.0 Thiosuccinimide stability and efficacy are linked and site-‐dependent thiosuccinimide hydrolyzed mAb S O R N H COOH Hydrolysis In vivo stability mAb S O R N O maleimide Deconjugation O R N + mAb-SH O In vivo efficacy Shen, et al., 2012 Linker structure also impacts hydrolysis kineEcs thiosuccinimide O mAb Hydrolysis R N S hydrolyzed mAb S O O R N H COOH % Hydrolysis (HC A118C) R= O 60 N H 50 Drug 40 30 H N 20 O 10 0 0 100 200 300 400 500 Time (hours) Drug Electron-‐withdrawing groups speed up thiosuccinimide hydrolysis thiosuccinimide mAb S O R N hydrolyzed Hydrolysis O mAb S O R N H COOH % Hydrolysis (HC A118C) R= NO 2 NO 2 NO 2 VC-PAB-MMAE O Time (h) Conditions: PBS, 37 C Nitrophenyl succinimide is stable in vivo and gives greater efficacy • Conjugated to αCD22 Fc S400C mutant (most unstable in vivo with mc-vc-PAB-MMAE) O O H N N O O O2N H N N H O N H N N N O N H O O O O OH O nitrophenyl-mal-VC-PAB-MMAE HN O O O NH 2 In vivo stability • Fully hydrolyzed post-conjugation In vivo efficacy (CD22 model) 1200 nitrophenyl/S400C mc/V205C 80 Tumor volume (mm3) Normalized Avg DAR 100 60 40 mc/S400C 20 0 mc/S400C (αHer2) mc/S400C Vehicle 1000 800 mc/V205C 600 400 nitrophenyl/S400C 200 0 2 4 Day 6 8 0 Dose: 1 mg/kg 0 5 10 Day 15 20 From pepEde to disulfide linkers peptide O S N O O H N N H thiosuccinimide O O O O N H N H N Drug O O HN O S NH 2 S N N Drug disulfide Disulfide release mechanism distinct from peptide linkers… …may offer improved therapeutic index O O O From pepEde to disulfide linkers peptide O S N O O H N N H thiosuccinimide O O O O N H N H N Drug O O N N O O HN O S NH 2 S Drug disulfide For disulfides, mechanism for instability and release are the same… …stability and release are coupled O Decoupling stability and release in disulfide linkers Lysine (heterogeneous) O R3 R4 S N H S Drug Drug lysosomal degradation NH 2 O HOOC S S Drug Drug Stability in circulation conferred by Ab and R groups S Drug Drug R1 R 2 Stability is retained in catabolite Stability in circulation conferred by R groups R3 R4 S N H R1 R 2 THIOMAB™(site-specific) R3 R4 lysosomal degradation NH 2 HOOC R3 R4 S S Drug Drug Stability conferred by Ab is removed We can find sites that stabilize disulfides O THIOMAB™ O NH OMe OH O S S N O O N O DM1 In#vivo#stability# OMe 1200 Site 1 V205C Tumor volume (mm3) a)# Normalized Avg DAR a)# a)# O Cl CD22#model#(dose:#90#ug/m2)# 1000 Vehicle 800 V205C 600 400 200 Site 1 0 Day In#vivo#efficacy# 0 5 10 15 Day 20 25 Disulfide linkers that release amines Disulfide linker releases a thiol… O O O NH O OMe O S N O O O OMe mAb catabolism OH S NH glutathione OH O HS N N O O N O O Cl O Cl OMe OMe DM1 (microtubule disruption) …self-immolative linker releases amines self-immolation immolative spacer O HS S O S HO H O N N mAb catabolism O O O N N O O H glutathione HO H O N N O O O O O N H N O O SG3231 15 Disulfide linkers that release amines Disulfide linker releases a thiol… O O O NH O OMe O S N O O O OMe mAb catabolism OH S NH glutathione OH O HS N N O O N O O Cl O Cl OMe OMe DM1 (microtubule disruption) …self-immolative linker releases amines self-immolation immolative spacer CO2 S S O S HO H O N N mAb catabolism O O O O O N N O SG3231 H glutathione N H N O O O O O N H N O SG2057 (DNA damage agent)16 Achieving site-‐dependent stability and efficacy with SG3231 S O S THIOMAB™ HO H O N N O O O O N N O O SG3231 In#vivo#stability# In#vivo#efficacy# Tmab SG3231, Mouse Efficacy Study 120 Normalized Avg DAR Average DAR, Normalized 80 Site#1# 60 Tumor volume (mm3) 2000 100 V205C# 20 Her2#model#(dose:#150#ug/m2)# Vehicle 1600 V205C# G2 LC K149C G3 LC V205C 1200 G4 LC S121C G5 HC A118C G7 HC V211C 40 H 800 Site#1# 400 0 00 1 250 3 4100 5 6150 7 Time (Hour) Day 8200 9 10250 0 0 10 20 Day 30 Stability with DM1 and SG3231 even on Site 1 is not opEmal a)# a)# O NH OMe OH O S S N O O O a)# Normalized Avg DAR O In#vivo#stability# N O Cl OMe DM1 DM1/Site 1 S O S HO H O N N O O O O O SG3231 N H N O Normalized Avg DAR a)# b)# b)# b)# SG3231/Site 1 Day Increasing hindrance next to disulfide to improve stability and/or release O O O NH O NH OMe OMe OH Ab O S S N OH Reduction O O HS O N O N O O Cl OMe OMe R Ab Reduction S O S HO H O N N N O O Cl DM1 O O O O O O N N O SG3231 H R' PBD O -S O Immolation N H N O CO2 S O O O O N H N O ConjugaEon challenges with THIOMAB™-‐disulfide conjugates S- S- may S S PBD N O S S N O O PDS leaving group LC/MS (Fab portion) may S SS S SS O O S S S S N PBD O Avg DAR 1.4 N Avg DAR 1.2 SH SH 20 Improving conjugaEon regioselecEvity through leaving group opEmizaEon may S S R' N PBD R X DAR N S S X O O X= O 1.4 %LG X= N 24 N O2N DAR %LG 1.2 31 1.5 15 1.9 2 N N NO 2 5-nitro-PDS 1.9 4 NO 2 5-nitro-PDS 21 Increasing sterics next to disulfide improves stability in vivo… O O DM3 OMe OH O N S S O NH O O S O S HO H N O Cl N N OMe SG3451 O O O O O O DM3 DM1 Day H N O a)# SG3451 Normalized Avg DAR a)# Normalized Avg DAR a)# a)# N SG3231 Day …and efficacy O O DM3 OMe OH O N S S NH O S O HO H N O O S O Cl SG3451 O N N OMe O O O O N N O Efficacy in CD22 model Vehicle 1000 DM1 800 600 400 200 O Efficacy in Her2 model 2000 Tumor volume (mm3) Tumor volume (mm3) 1200 1600 Vehicle SG3231 1 3 6 mpk 1200 800 SG3451 1 mpk 400 DM3 0 0 5 10 15 Day 20 25 0 H 0 5 10 15 Day 20 25 What about dimethyl disulfides? O O NH OMe OH O S O2N N S O O N X O N may S S S O O Cl OMe DAR = 0.1 0% LG S O2N N O S HO H O N N O O O O O N H N O X S S S PBD O O DAR = 0.4 71% LG 24 Reversing reacEon roles to achieve dimethyl disulfide conjugaEon nucleophile electrophile X Ab S- S δ+ S O2N may O electrophile nucleophile -S Ab δ+S S N N may O NO 2 LC/MS (Fab portion) may S S S O Avg DAR 1.9 SH Reversing reacEon roles to achieve dimethyl disulfide conjugaEon nucleophile electrophile X S- Ab S δ+ S electrophile may nucleophile Ab δ+S S O may -S O N N thiols This O2Napproach does not work for immolating NO 2 CO2 O O HS LC/MS (Fab portion) HO N H N O S O O O O N H N O N H N O O O O N H N O O may S S S O Avg DAR 1.9 SH Exploring novel leaving groups for hindered immolaEng disulfides O O H N N O S S X O X= N NO 2 OH N H O O O O N N N N MMAE H O O S S X O DAR %LG X= DAR %LG 0.6 51 LG1 0.7 14 0 96 LG2 1.9 0 NO 2 N * N NO 2 0 100 (SNAr) NO 2 S S S MMAE O O LG1 1.5 0 SH Summary • Selecting appropriate conjugation site and linker modifications in THIOMAB™-drug conjugates can be used in combination to achieve both high stability and potency in vivo - Improving thiosuccinimide stability through EWG - Decoupling stability and release in disulfide conjugates • Conjugation challenges with disulfides can be overcome through reversing reaction roles of antibody and drug (nonimmolating thiols) or improvement of leaving group electronics (immolating thiols) ConjugaEon lab at Genentech ADC conjugation lab Hans Erickson Dick Vandlen Craig Blanchette Jack Sadowsky Byoung-Chul Lee Chris Nelson Martine Darwish Rachana Ohri Breanna Vollmar Pragya Adhikari Neelie Zacharias WUXI Aaptec (Jiawei Lu) and Mr. ADC Acknowledgements Chemistry: Thomas Pillow, Pete Dragovich, Zhonghua Pei, John Flygare, Leanna Staben, Vishal Verma, Jinhua Chen, Jingtian Chen, Yihui Chen, Youbing Gao, Changrong He, Jiahui Lu, John Wai, Jing Wang, Tao Wang, Yanli Wang, Qinglu Yang, Hui Yao, Zijin Xu, JuanJuan Xue, Hao Zhou (WUXI Aaptec) Antibody format: Jagath Junutula, Sunil Bhakta Biology: Jyoti Asundi, Carter Fields, Jun Guo, Ginny Li, Weiguang Mao, Gail Phillips, Andy Polson, Paul Polakis, Bing Zheng DMPK: Donglu Zhang Biochem. & Cell. Pharm.: Phillip Chu, Josefa Chuh, Leanne Goon, Kathy Kozak, Jenny Li, Yichin Liu, Aimee O Donohue, John Tran, Siao Ping Tsai BioAnalytical Sciences: Carl Ng, Ola Saad, Dian Su, Keyang Xu Translational Oncology: Beth Blackwood, Geoff Del Rosario, MaryAnn Go, Rebecca Rowntree, Susan Spencer, Shang-Fan Yu Legal: Alex Andrus Nerviano, Spirogen and University of Auckland
© Copyright 2026 Paperzz