Stepstowards food webmanagement on farms CENTRALE LANOBOUWCATALOGUS 0000 0807 2635 Promotoren: Prof.Dr.Ir.E.A.Goewie Hoogleraar indeMaatschappelijke AspectenvandeBiologische Landbouw Prof.Dr.Ir.A.H.C.vanBruggen HoogleraarindeBiologische Bedrijfssystemen Co-Promotor: Dr.W. Joenje Universitair Hoofddocent, leerstoelgroep Gewas-enOnkruidecologie Samenstelling Promotiecommissie: Prof.Dr.Ir.P.C. Struik (Wageningen Universiteit) Prof.Dr.Ir.L.Brussaard (Wageningen Universiteit) Dr.G.R.deSnoo(Centrum voorMilieukunde,Universiteit Leiden) Prof.Dr. T.Tscharntke (Georg-August Universitat, Gottingen) >,i^y .'.'•'..'- .' Steps towards food web management on farms FransW. Smeding Proefschrift terverkrijging vandegraadvandoctor opgezagvanderector magnificus vanWageningen Universiteit, Prof.Dr.Ir. L.Speelman inhetopenbaarteverdedigen opwoensdag6juni2001 desnamiddagsomhalftweeindeAula 1 > IC Smeding,F.W.,2001 Stepstowards food webmanagement on farms Ph.D.Thesis,WageningenUniversity, -Withreferences-, Withsummary inEnglishand Dutch ISBN 90-5808-414-0 Subject headings:agroecosystem,farming system,biodiversity, food web,predator, organic farming,pestmanagement, ecological infrastructure, field margin,Diptera, Carabidae, Aranae,Skylark,Alaudaarvensis M/UatfZol.M^a Stellingen 1. Biologische landbouwbedrijven hebbenvoororganismen,hogerindevoedselketen,een groteredraagkrachtvoorinstandhoudingvandebiodiversiteit danconventionele landbouwbedrijven. Ditproefschrift. Vergrotingvanhetvoedselaanbod aandebasisvanhetvoedselweb, iseenvoorwaardeom detopdaarvantevergroten,hoewelterugkoppelingen,diediteffect tegenwerken ookte verwachten zijn.Ditproefschrift. 3. Extrazorgvanboerenvoordeecologischeinfrastructuur, ondermeerdoorgerichtbeheer vanslotenenslootkanten,heeft eensterkpositiefefFect opdebiodiversiteit vanhet platteland.Ditproefschrift. Deontrafeling vanhet menselijk genoomisbelangrijk,omdatditonderzoekde verondersteldebepalenderolvangenen inlevendesystemen relativeert. StephenJay GouldinNRCHcmdelsbladdd 20maart2001. 5. Deoorspronkelijke ideeenvandebiologischelandbouwzijndoorwetenschapperseerst als'subjectief afgedaan, maarwordengestaagontdekt alsbruikbaar en'objectief . Ecologischonderzoekmoetuitgaanvanniet-begrepenwaarnemingeninhetveldenmoet deuitbreiding vandetheoriedaaraandienstbaar maken,inplaatsvandezevooropte stellen. 7. WageningenUniversiteit stootstudentenafdoorretorischevragenentechnisch vernuft, enzoustudenten aantrekken doorhettonenvantwijfel enzorgoveractueleproblemen in delandbouw. 8. Hetopsteedsjongere leeftijd aanspreken vanrationelevermogensvankinderen leidttot vervreemdingvandelevendeomgevingenasociaalgedrag. Stellingenbij hetproefschrift vanFransW. Smeding,Stepstowardsfood webmanagementon farms, 6juni 2000 Tomyfather andmother whonurturedmyinterestandlove ofnatureandthecountryside andinmemoryof PeterA.vanderWerff (1949-1996) whogreatlyencouragedmeinthiswork Preface "Ourattention isdrawnbyablackbird screaming.ItisJanuary 28th and Iamwritingthis thesis.Ilook throughthebedroom windowwithmywife and four-year-old sonandwewatch a sparrow hawkwith ablackbird inhisclaws.And Iguessthathisvictim is"vlek"("spot"in English),the female blackbird with onewhite feather ontopof eachshoulder, that lives aroundourhouse.Impulsively Irandownstairs,throughthefront doorinanattempttorescue theblackbird;butthesparrowhawk flies awaycarrying,ofcourse,itsprey". That evening Ifelt abit confused aboutthisevent.Howcould abiologist studying food webs, interfere with thehunt ofanimpressivebird ofprey?Perhaps ithelpedmetorealisemore profoundly thattrophic interactions arenot figures buthavetodowithlife and death.ThenI remembered anintriguing story from theHindu epicMahabharata, whichtellsofarighteous kingwhoprotected afrightened dovefrom apursuing falcon. The falconbeggedthekingto lethim eatandwarnedthekingthathisinterference with 'Dharma'(perhaps'naturalorder',in thisthesis)wouldcreate fate. However,theking stucktohisprinciples andpromised the falcon aquantity ofhisownflesh that equalled theweight ofthedove.Eventually theking waseatentothebonesandboththe falcon andthedovelaughed attheking and flew away. Although theMahabharata story ismysterioustome,itraises anassociation thatIhave wantedtoput intothepreface ofthisthesis.Itconsidersthatthereisnodoubtthatman,as part ofnature,should interfere inecosystemstofeed himself.However, ifhis interference goesbeyondhisproperneeds,and are,sotosay,'noneofhisbusiness',hemaynotreally knowwhatheisdoing andmaytherefore unwittingly disturbthenatural order. Thusthework ofmodernbiologists likeRupert Sheldrakeconvinced methat currentbiology hasalimited comprehension ofliving systems.A'righteousecologist'(whoisfor exampleinterfering with food webs) should,therefore, remainmodest,whilstkeeping anopenmind and anopeneye, bothwhen looking atnatureand athisownmotives.Thismighthelptoprevent hisworst errors.Fortunately that afternoon myattempttointerfere withthehunting sparrowhawk failed, becauseIwouldnothaveknownhowtocarefor aseverelywounded blackbird. ThesmallmapsoftheFlevolandpolder inthisthesishaveaspecial meaning tome,because they echothelargeembroidered mapoftheNoordoostpolder thathungonthewallofthe diningroomwhen Iwasachild.Mygrandfather devotedhisprofessional life topolder reclamation. Hispolder service employed outstanding ecologists likeW.FeekesandD. Bakker,whowere engaged onboth applied andfundamental questions,whichwasmuch appreciatedbymygrandfather (somyfather toldme).However the aimsofreclamation concentrated onthematerial concernsof food andlabour,reflecting needsofsocietyatthat timeandresulting inlarge scaledrational landscapes.Following thistradition my father contributed tothedevelopment of agricultural education. Itismy sincere andmodest wish thatmycurrentwork maycontributetotheimplementation ofawider scopeof agricultural production, andaddressthephysical aswell astheemotional andspiritualneeds. Without the support ofmanypeople,thisthesiswouldneverhavebeen accomplished. Iam grateful to: Mypromoter EricGoewiewhogavemespace andconfidence tobegintheproject, andwho strengthened mybackbone and inspired meinmomentsofhesitation.Mypromoter Ariena vanBruggenwho,after her arrival inWageningen,needed only ahalfwordtounderstand the contents ofthework andhelped metoprocessthepiled-up field data.My co-promoter Wouter Joenje, withwhom Isharecommoninterests inecologicaltheories and field biology, particularly ofpioneer successional stages andthepolders. Thefunding organisation (LNV-DWK) for supporting asmallresearch group sothat they couldembarkuponaproject withanuncertain outcome.Howeverthisresearchgroupwas much strengthened thankstotheinvaluable co-operation andfriendship oftheresearchersof PlantResearchInternational (formerly IPO-DLO):KeesBooij, ClasienLockandLoesden Nijs. Thesupervision committee oftheproject 'Foodwebmanagement onfarms', that enthusiastically guidedtheresearchbyit'sreflections onourplans andresults.Thecommittee included:GeertdeSnoo(CML-Universiteit Leiden),FrankvanBelle (Vereniging Natuurmonumenten),PaulAukes (IKCNatuur),Paul vanHam(IKCLandbouw),Tibbe Breimer (LNV-DWK), aswell asKeesBooij, WouterJoenje (thechairman) andEricGoewie. Myresearch assistant, AndreMaassen,whowas apillarofstrengthwith all our laborious activities,thedesignerofinstruments andforms, companion ofthehundreds ofkilometres walkedwhiledatacollecting,andtheonewhocould, ifasked,alwayshelpmeremember the aimsofmywork. TheMSc studentswhodidreconnaissance work for thethesis:ElkeBoesewinkel, Jacintade Huu,NathalieReijers, JulienCothenet, Edwin Coomans,HongNan, andinparticularBart Venhorstwhoalso supported thefield work andinsect identification. Peoplewithwhom Iexchanged ideasorwhoprovided valuable information that contributed tothisthesis:GerardOomen,WillemBeekman,JanDiekvanMansvelt, Sjaak Wolfert, DorineDekker,DerkJan Stobbelaar,KarinaHendriks,DarkoZnaor,Prof.R.A.A. Oldeman, Ruurdtje Boersma,ManolisKabourakis,AnorFiorini,HansEsselink (whonamed 'Voedselwebbeheer'), Joop Schaminee,JohnVandermeer, YvettePerfecto, JulianPark,Nigel Boatman,FlipvanKoesveld,JanJaapvanAlmenkerk,Wolter vanderKooij, RobBoeringa, HenkKloen,YvonnevandenHork,MoniqueBulle,membersofthePE-Phd discussion group 'Plant and CropEcology',PaulaWesterman, Eefje denBelder, Walter Rossing. Thefarmers whoallowedmeaccesstotheir farms andwhogavetheirtimetoanswermy questions;inparticular, especial thanks areduetoMaartenPietvanAndel,CarlenRini Ferket, JanenMarleenvanWoerden-Zeelenberg, Lex enJannieKruit, HenkLeenstra, EvertJanRienks,JansjeTimmermans,DouweMonsma,HemandMarjon Cuppen,staff and residentsof'Thedinghsweert'for theirhospitality and interest. JoopOvervest,JohanJorink, HarryAlting andcolleagues (staff andworkersoftheA.P. Minderhoudhoeve), Swifterbant, andEgbert Lantinga (chairman oftheresearch team) for discussingmyresearch andimplementing recommendations onthe ecological farm. Allthepeoplewhodidtheorganisation behind theproject, particularly Gijsbertje Berkhout. ThestaffofUnifarm whowerealwayswillingtosupportthe project. Colleagues oftheBiological Farming Systemsgroupwhoaccepted myabsence,whilst encouragingmeto finish mythesisresearch. NickyCampbell ofCombpyne,Devon,UKfor correcting theEnglish. Wampievan Schouwenburg for helpwiththe final editing. HeleenBoerswhohelped metocollectmyself. Andlastbut notleastmydear friends and family who supported and encouraged me,andwith someofwhom Icould sharemyaspirations:Annelies,Francis,Philip,mybrother Guido,my uncleKeesCleveringa;butmost ofall,EliseandTimowhogavemewarmth atthecoldest momentsofmypersonal 'Winterreise'. Abstract Thispaperisthereportof four yearsofresearch onthefunctional group composition ofthe animalcommunity inrelationtofarm andecological infrastructure (E.I.)management on organic arable farms. Theresults aremainlybasedonabundance dataofground dwelling arthropods obtained bypitfall trapping,densitydataofvegetation dwelling arthropodsby vacuum sampling anddensitydataofinsectivorousbirdsbyterritorymapping. Arthropods were collected inwheat crops (representing thecroparea)andontheadjacent canalbank (representing theE.I.);thebird, farm andE.I.variablesweremeasured atthe farm level. Studyareasincluded intotal 18farms withvaryingextentsoforganicduration, croprotation intensity, andquantity andquality ofE.I. Thehypothesis oftheresearchwasthatthefood webstructureofanorganicarablefarm with longorganic duration aswell aswith animproved E.I. (i.e.enlarged, latemown),would show ahigher abundance ofmeso-andmacrofauna ofbothherbivorous and detritivorous functional groups.Theseenhancedprimary groupswereexpectedtocarryahighpredatorabundanceat both secondary (i.e.invertebrates) aswell astertiary(i.e.birds) levels.Withregardtothecrop areasitwas found, incontradiction tothehypothesis,thatherbivores weremost abundant in crop areasofrecentlyconverted farms andoforganicfarms withintensivecroprotation;this herbivore abundance was associated withinvertebratepredator abundance and species diversity. Inaccordance withthehypothesis, someevidencewas found for increased detritivoreandrelated epigeicpredator abundancerelatedtoextensivecropmanagementon thefarms oflongorganicduration. Whilst studyingtheE.I., anincreased abundanceof vegetation dwellingpredators andalsodetritivoreswasfound inimproved E.I.However Kherbivore numbersdidnot increaseintheimproved E.I.whentheywerecomparedtothe traditionally managed E.I.The summerabundance ofepigeicpredators wasalsonotrelatedto animproved E.I.Field studiesprovided someevidence forthedispersal of functional groups, abundant intheE.I.,towardsthecroparea.However, the effects ofcropconditions onthe arthropod abundance inthecrop areawereobserved tooffset the influence oftheE.I.Bird studies atthe farm levelrevealedpositive correlation betweenbird functional groups anda combination ofcrop areaandE.I. characteristics.Bird densitywas found tobepositively associatedwithhigh arthropod abundance intheE.I.vegetation canopy. Observations also suggested positive correlation to anincreased herbivory inthecrop areaofthelongduration organic farms that had anintensive croprotation. Aproposal for adescriptive ortopological farm food webisdrawn from field observations as wellasfromreferences inliterature.Predictions aremade for four different farm food web structures that express four extremes oftwoenvironmental gradients,which correspond tothe length oforganicduration andtheamount/quality oftheE.I.Withreference tofield observations important themesinthe food webtheory arediscussed, includingtheindirect effects ofsubsidised detrital food chains onherbivore abundance andconsequently onbird abundance, aswell asthepossible effects ofintraguildpredation onarthropod functional group composition. Theimplications ofthestudy arethatorganic duration andthe amount/quality oftheE.I.may contribute to improving ecosystem services andtoaimsbased onnature conservation. However anoptimisation ofthe farm food webwithregardto ecosystem servicesmaynot necessarily improvenature conservation values.Itisargued that increased understanding of the farm food webanditsmanagement islikelyto support thedevelopment of multi-species agroecosystems thatintegrate improved ecosystem services andnatureconservation goals. Notes Thisproject wasfunded bytheMinistryofAgriculture,NatureManagement andFisheries, Department of ScienceandKnowledge Dissemination. Chapters2,3,4 and6havebeen submitted forpublication ininternationaljournals. Tableofcontents Chapter 1: General introduction 1 Chapter 2: Functional groupcompositions ofvegetation dwelling arthropods inrelation toecological infrastructure andtime sinceconversion toorganic farming Smeding, F.W., A.H.T.M. Maassen&A.H.C. vanBruggen 5 Chapter 3: Shifts infunctional groupcomposition ofgrounddwelling arthropodsin relationtoecological infrastructure andconversion toorganic farming Smeding, F.W., CAM. Lock &C.J.H. Booij 31 Chapter4: Insectivorousbreedingbirds onorganic farms inrelationtocroparea, ecological infrastructure and arthropods Smeding, F.W. &C.J.H. Booij Chapter 5: Effect offieldmarginmanagement oninsectivorousbirds,aphidsand theirpredatorsindifferent landscapes Smeding, F.W. &C.J.H. Booij, 1999. AspectsofAppliedBiology54:367-374. Chapter 6: Aconceptof food web structure inorganic arable farming systems Smeding, F.W.&G.R. deSnoo 51 75 83 Chapter 7: Farm-NaturePlan: landscapeecologybased farm planning Smeding, F.W. &W. Joenje, 1999. Landscapeand Urban Planning46:109-115. 101 Chapter 8: General discussion 109 References 117 Summary 131 Samenvatting 133 Curriculum vitae 137 Chapter 1:General introduction Thisthesis ismotivatedbyconcernsaboutbiodiversity loss,duetoagricultural intensification (Altieri, 1994,1999;Paoletti, 1999;Wood &Lenne, 1999;Vandermeeretal, 1998)andis primarily concerned withplant and animal speciesindigenoustoagricultural landscapes. Biodiversity losshasbeenthought toresult inartificial ecosystems,requiring constant human intervention andcostly external inputs.From thisperspectivebiodiversity has economical value,related toitsecological services,e.g. pest control andbioticregulation of soil fertility (Altieri, 1994, 1999;Pimentel etal, 1995).Natureconservationworthy speciesmayhaveno evident significance for the functioning ofagroecosystem (Duelli etal, 1999).Howeverit canbe arguedthat agriculturehas,toacertain extent,responsibility for allspeciesand communitieswhichco-evolved with farming during around 10,000years(Wood &Lenne, 1999),irrespective oftheir utility. Oneimportant solution for thereversal ofbiodiversity lossinconventional agricultureof industrialised countriesisthedevelopment of farming systemsthat areeconomically basedon utilisation ofbiodiversity andthat alsoharbour conservation worthy species.Thisideais compatiblewith theconcept ofmulti-species agroecosystems (Vandermeer etal, 1998; Altieri, 1994, 1999;Almekindersetal, 1995;Swift &Anderson, 1993).Development of organic farming systems isapossible implementation ofthis concept (Stobbelaar &Van Mansvelt, 2000;Vandermeer, 1995; VanderWerff, 1991).Theadoption ofthisconcept in thecropareamaybecomplemented byanappropriatemanagement ofthe semi-natural habitat onthe farm, whichisdefined asthe ecologicalinfrastructure (E.I.)(Smeding &Booij, 1999). Afood web approach isanappropriatemethod for investigations intothehigher integration levelsofecosystems (Polis&Winemiller, 1996;Pimm, 1991; Gezondheidsraad, 1997).This approach istherefore suitable for fanning systemsresearch.Progress in scientific understanding offood websiscurrently expanding intoagroecology asisdemonstratedby articlesoninteractionsbetween detrital andherbivore subsystems (Brussaard, 1998;Wiseet al, 1999)andamongpredator functional groups(Tscharntke, 1997).Theseinteractionsmay affect theabundance of functional groups,cropperformance aswell asdecompositionrates. Complementary tofunctional analysis,afood webapproachmight alsooffer acomprehensive framework for the scattered information onfarmland species andhabitats (De Snoo& Chaney, 1999). Asimplified setofhypotheseswithregardtofood web structureonorganic farms servedas the startingpoint for thefieldresearchofthisthesis:itwasexpected thatthe durationof organicmanagement, extensive croprotationaswellasanimproved E.I.(i.e.enlarged area and latemowing date),wouldrelatepositively totheabundance ofnon-pest primary arthropod functional groups(Kromp&Meindl, 1997):thedetritalwebwouldbeenhancedby theincreased input oforganicmatter, consisting oforganicmanure,compost andcrop residues(ofcereals,leypasture);non-pestherbivorenumberswouldbeenhancedbycrop diversity aswell asweed diversity (Hald&Reddersen, 1990)and inparticular wouldbe boostedbythevariedplanttissues(Curry, 1994;Tscharntke &Greiler, 1995)whichoccurin improved E.I. Consequently predator andparasitoid numbers onthe farm wouldbe supported. Anaccumulatedhigh invertebratedensityonthefarm wouldsupport insectivorous vertebrates,particularlybirds (e.g.Poulsen etal, 1998). Theobjectives ofthisthesiswere: - Toanalyseandconceptualise food websonorganic arable farms that encompassthe important above-andbelow ground functional groups andthat canberelated to farmers' decisions about, for example,croprotation andmanuremanagement, farm lay-outand field margin management; - Tolinkknowledge ofthebiology ofgroupsofindividual species,crop and vegetation managementtofood webtheories,andtoidentify possiblefood webmediated factors that mightinfluence theabundance of functional groupsonthe farm; - To suggest strategies for development of farming practicesthat strivetopromote ecological servicesandconservation ofspecies. Tomeettheobjectives, field research andanalysisof literature datawereundertaken.The study areainvolved organic arable farms thatweremainly situated inFlevoland. Thisregion waschosenbecause ofitsuniformity intopography andhistoryandbecauseoftheoccurrence ofaround 75organic farms including farms with improved ecological infrastructure, resulting from aprototyping researchproject (Vereijken, 1997,1998). Empirical investigations wereconcentrated onparticular sectionsofthefarmland community. Functional group compositions (e.g. detritivores,herbivores andpredators)within these sectionswereassessed. Allthreeempirical chapters start from thesameinitial setof hypotheses explained above,andreflect toacertain extent oneachotherintheirdiscussions. Observations onvegetation dwelling arthropods onthirteen farms (Chapter2)arepresented first, becausethis section included largeproportions ofallthreemajor functional groups, involving especially herbivores and connectedpredators. Observations onground dwellersoneight farms (Chapter 3)included numerous epigeic predatorsthat aresupposed tohold akeyposition inthe farm food web.Howeverthisgroup appearstobemore stronglyrelated tothedetrital subwebthantotheherbivore subweb. Densities ofbirdterritories onten farms (Chapter4)arerelated tovariables ofboth vegetation dwelling andgrounddwelling arthropods aswell astofarm and ecological infrastructure traits.Birdsrepresent vertebrates,thatmightbe supported byanincreased abundanceofprey from theherbivore subweb aswell asthedetrital subweb. Chapter 5includes alandscape comparison between ayoungpolder landscape (i.e.Flevoland) andalandscape thathasbeen farmed for many centuries (i.e.river region).This explorative studyplacestheobservations inFlevoland into abroader geographical context. Aproposal for adescriptive ortopological farm food web (Chapter 6)isdrawn fromfield observations aswell asfrom references intheliterature. Important themes inthe food web theory aretentatively applied tothispreliminarymodel, explaining differences between local farm food webstructures andhowthey arerelated tofarm and/orE.I.management. Theinitial setofhypotheses onwhichthefieldworkwasbased, ismodified intomore elaborate hypotheses. Anadditional chapter (Chapter 7)dealswithplans for thecoexistence offarm andnatural life. Itpresents apragmatic advisory instrument that structures expertjudgement. The instrument isbased onacombination ofecological theory andfieldbiology.However results ofthe food webstudy arenot included sincetheinstrument (Smeding, 1995)was developed earlierand wastherefore anincentivetothe food webstudies ofthisthesis. Thediscussionchapter (Chapter 8)considersbriefly theimplications oftheresearch forthe development ofmultispecies farming systems. Itmustbenoted that compared tothechronology oftheinvestigations,chapters2-5 arein reverseorder.Theproject startedwithanassessment of farms indifferent landscapes (1997). Howeverthestudyareaincludedtoomuchvariation andtoofew sitestobe analysed statistically. Therefore investigations inthe following year (1998)wereconfined toamore uniform areainFlevoland. Howevertherelationsbetweenground dwelling functional groups andthefarm andE.I.variableswere,atfirstglance,difficult tointerpret and showed little coherencewiththebird data.Theherbivore subwebofthe farm food webwasexpected, and wasalsofound, togivebetterdistinctions,withregardtoinvestigated variables. Consequently vegetation dwelling arthropodswereassessed in 1999. Chapter 2:Functional group compositions ofvegetation dwelling arthropods inrelation toecologicalinfrastructure and timesince conversion toorganic farming F.W. Smeding,A.H.T.M. Maassen &A.H.C.vanBruggen Department ofPlant Sciences, Biological Farming Systems group, Wageningen University, Wageningen,The Netherlands Abstract Hypotheses onthe relation offarm management and ecological infrastructure (E.I.) characteristics tothe functional group composition ofvegetation dwelling arthropods inthe crop and E.I.were tested on organic arable farms. The study area included 13farms that varied withregard tothe studied traits.Arthropods were collected by vacuum trapping inwheat crops and adjacent boundaries. Observations inthe crop area suggested that bothorganic duration and farm 'intensity' affect thearthropods. In contrast toexpectations from the literature, K-herbivores and associated predators were most abundant inthe luxurious crops of recently converted farms. Long duration organic farms with anintensivemanagement, seemed tobe most prone torherbivore outbreaks, associated with species-diverse but not numerous predators. In support ofthe expectations, some evidence was collected for an increase of detritivores onlong duration farms with an extensive crop rotation. Observations inthe E.I. showed that, according tothe expectations, improved management (i.e. large area and late mowing) enhanced predators and also detritivores.However, herbivore abundance was similarly high in traditionally managed E.I. Effects ofhigh abundance ofarthropod functional groups inthe E.I. on dispersal intothe crop,were largely offset by crop conditions. Possible indirect effects of subsidized detrital food chains onherbivore abundance, as well as effects of intraguild predation on arthropod functional group composition, are discussed with reference to field observations. 1. Introduction 1.1. Agricultureandbiodiversity Thebiodiversity offarms andagricultural landscapes inindustrialised countrieshas decreased dramatically (e.g. Andreassen etal, 1996;Fuller etal, 1995;Aebischer, 1991).This biodiversity-loss isamatter ofgreatconcern for ecologists,agriculturists aswell aspoliticians (Paoletti, 1999;Wood &Lenne, 1999).Toreversethistrend ofbiodiversity-loss, farming system innovation isprobably needed (Altieri 1994;Vandermeer etal, 1998;Almekinderset al, 1995;Swift &Anderson, 1993).Oneoftheoptionstoenhancebiodiversity istopromote on-farm natural areasthat couldbevaluable forbothproduction aswell asfor nature conservation aims. Thetotal areaof semi-natural habitat onthefarm isalsocalled the'ecological infrastructure' (E.I.).Fieldmarginsareamajor constituent oftheE.I.(Smeding &Booij, 1999).Agricultural production couldbe enhanced byvariousecological functions ofthis E.I., such asregulation ofpestsbypredators andparasitoids,nutrient cyclingbysoilorganisms, andpollinationby various arthropods.Forexample,biodiversity ofarablefield margins significantly contributed todensities onthefarm ofpredatory invertebrates,butterflies, birds andmammals(e.g. Boatman etal, 1999;Joenje etal, 1997;LaSalle, 1999). 1.2. Farmmanagementandon-farm communities Despitetheincreasing amount ofinformation onfarmland speciesandvegetation, thereisstill fragmentary knowledge oftherelationshipsbetween farm managementpractices and farm communities (DeSnoo&Chaney, 1999).Forexample,croprotation, fertility level,weed control,field size,anddistribution andmanagement offield marginsmay all affect farm community composition. Managementpractices onorganic farms corresponding toproduction guidelines 2092/91in theECcountries(Anonymous, 1991)areessentially different from thoseon conventional farms. Inparticular, maintenance andpromotion ofbiodiversity isinherent tothephilosophy oforganicfarming. Therefore, organic farms could function asastepping stoneontheroadto developingrational,biodiverse farming systems (Stobbelaar &VanMansvelt,2000). However, information onthetrophicstructure ofanimalcommunities atthe farm levelisstill scattered andincomplete for conventional aswell asorganic farming systems (e.g. Kromp& Meindl, 1997;Isart&Llerena, 1995).Bothempirical andexperimental research atthe farm level isrequired tofillthegapsintheknowledge ofeffects ofconversion from conventional toorganic farming andoffieldmarginmanagementpracticesonagroecosystem community composition. Research addressing thewhole'biocoenosis'isneededtounderstand theeffects of management practices onagroecosystem functioning (Biichsetai, 1997).Recent advancesin research offood webs(Polis&Winemiller, 1996),including somestudies in agricultural habitats(DeRuiteretai, 1997;Tscharntke, 1997;Wiseetal, 1999),areproviding inspiring examples ofhow(agro)ecosystems canbe approached atintegration levelshigherthanthe species-level. Someofthisresearchindicatesthat foodwebs canmediate theeffects of environmental stress factors onspecies(Winemiller &Polis,1996). 1.3. Hypotheses andobjectives Detritivorenumbersareenhancedbytheincreased organicmatterinput,involving organic manure,compost and cropresidues(ofcereals,andleypasture)(e.g. Pfiffner &Mader, 1997; Weberetal, 1997;Idinger etal, 1996;Heimbach &Garbe, 1996).Non-pest herbivores are enhanced bycropandweeddiversity (Hald&Reddersen, 1990;Moreby &Sotherton, 1997; Andow, 1988).Moreover, the effects oforganicdurationmay continuetowork cumulatively overyears,with regardtoboth detritivores (Idinger &Kromp, 1997)aswell asherbivores (Hald &Redderson, 1990).Theabundance ofprimary functional groupswould support predacious functional groups ofe.g. epigeicpredators (Kromp, 1999;Wiseetal, 1999), predacious flies andparasitoids (Idinger &Kromp, 1997).Theincrease ofpredator abundance maysubsequently depresspest-herbivores (Altieri, 1994),provided that crops arenottoo muchaffected byherbivores (VanEmden, 1988).Basedontheseobservations,we hypothesisethat farms thathavebeenorganic formanyyears,havehigher densitiesofnonpestprimary functional groups (both detritivores andnon-pest herbivores) andtheirpredators inthecropareathan farms thatwere converted recently. Additionally wehypothesise that appropriately managed E.I.will support largenumbersand diversity ofnon-pest herbivores,predators andparasitoids both in field margins andcrop areas.Anincreased varietyinplanttissuequality andamorevariedvegetation structure are assumedtobekey factors (Curry, 1994;Feberetal, 1999).Alsomown grass strips,less complexthanmost otherboundaryhabitats,contributetoresources for these groups (Barker etal, 1999;DeSnoo&Chaney, 1999).Anincreased amount and spatial density ofE.I. 6 affects thepopulations intheadjacent croparea,involvingbothherbivores (Holland& Fahrig,2000)andpredators (Lys&Nentwig, 1992;Sunderland etal, 1996a).Inadditionto organicduration, croprotationintensity andE.I.characteristics (withregard toquantityand diversity),other farm management factors areexpected toinfluence the functional group composition ofvegetation dwelling arthropods.For exampletheeffects ofthestudied factors maybeoffset orenhancedby cropperformance. Totaketheseinfluences into account some cropvariables, indirectly related tovariablescentral inthehypotheses, arealsoincluded inthe study. However,theabove-stated hypotheses about theeffects oforganic farming duration andE.I. management onvegetation dwelling arthropod functional groupshavenotbeentested so far. Thus,theobjectives ofthis studywere: 1. todeterminethedensity anddiversity ofvegetation dwelling arthropod functional groups inthecroparea andsemi-naturalfieldmarginsonorganic farms, andrelatethedensity anddiversityofthesegroupstocropareaandecological infrastructure characteristics; 2. todetermine iftherearedistinct species compositions ofvegetation-dwelling arthropod functional groups among farms differing incropareaandecological infrastructure traits; 3. torelate abundance anddiversityofvegetation arthropod functional groupstothedistance from theecological infrastructure. Ourstudywas focused onvegetation dwelling arthropodsbecausethisgroup comprisesboth detritivores,herbivores,predatorsandparasitoids.Inmanystudiestheherbivore subwebis notwellrepresented,particularly whenpitfalls areused,whichprimarily collect epigeic predators (Duelli etai, 1999). N W -*4^" E S 10 20 Kilometers s Fig. 1.Study area. Theinvestigated organic arablefarms arerepresented by closed circles. 2.Materials and methods 2.1. Studyarea Thestudywasdoneonorganic farms andoneintegrated farm intheprovince ofFlevoland, TheNetherlands.Thefarms arelocated within a280km2areainthepolder Oostelijk Flevoland (Fig.l). Thispolderwasreclaimed in 1954andisdominated by agricultural landuse.Thesoilisacalcareous clayofmarineorigin.Flevoland waschosen asastudyarea becauseithas aconcentration of75organic arable farms that aresimilarwithregardtotheir history andtopography. Inthe study area 13farms were selectedthatdiffered invarious farm structure and ecological infrastructure (E.I.)traits(Table 1).Together thefarms comprised 656haarable land.The selection included eleven commercial organic farms andtwoexperimental farms. Threeofthe selected arablecommercial farms reared livestock whichwere fed onhomeproduced fodder inthewinter,butweregrazed elsewhere duringtherest oftheyear(farms T,Kand S).The experimental farms ofWageningen University (farms EandI)aremixeddairy and arable farms; farm Eisorganicand farm Iisintegrated. FarmIisdivided intotwopartsbyaroad andonlythenorthernpartwasincluded inthestudy area.Threecommercial farms (T,Land S)wereEcological ArableFarming Systems (EAFS)prototype farms during 1992-1997 (Vereijken, 1997,1998). 2.1.1. Crop area characteristics Theorganic duration oftheselected farms ranged from onetosixteenyears.Ploughing is generally at25-30cmdepth. Onallthe farms a6-7 yearcroprotation ismaintained, including per farm 11-41%cereals,0-18%leypasture, 12-43%traditional lifted crops (potatoes,sugar beet) and25-67%vegetable crops.Thevegetables grownweremainlyonions,peas,sweet corn,various cabbages,andrunnerbeans.The farms withthemostintensive croprotations hadupto60%vegetables andtherefore alowerpercentage (<20%) ofgramineous crops (cereals,andleypasture).Becausetheinputofnutrients (N,P,K)hastobe adjusted tocrop requirements, andvegetablesneedmorenutrientsthancereals,intensity ofcroprotationis assumedtorelatetothe amount ofNapplication atthe farm level.Compared withother crops,gramineous cropsprovide alarge amountofcarbon incropresidues andrequire few soil disturbing operations. 2.1.2.EcologicalInfrastructurecharacteristics TheEcological Infrastructure (E.I.)ofarablefarms inFlevoland ismainly determined by canals andbanks(together c.3-4mwidth),that arelaidoutaslinearherbaceous boundaries adjacent tothecrops.Onfive farms,boundaries arewiderbecauseof adjacent (2-3mwide) grassstrips,often including clovers (Trifolium spp.),ononeorboth sidesofthecanals.Farm E alsohasgrassstripsbetweencropplots.Percentages ofE.I.higher than c.2%(Table 1) weremainlyduetothepresence ofthesegrass strips.Onlyfarms Land Epossessed a boundaryplanted with ahedgerow. Spatial density ofE.I.ispurposefully increased on farm E (Smeding &Joenje, 1999)and farm L.Thespatial arrangement ofE.I.ontheother6 farms mainlyreflects landscape scale. Extremetypesofvegetationmanagement are: - 'traditional management' involving threeor four morecutsperyearwith aflail mower leavingtheshredded cuttings in situ; - 'latemowing management' involving oneortwocutsperyear after June 21st with a fingerbarmowerwith hiabgrab for removal ofcuttings. Thegrass stripsalongthecanals in'latemowingmanagement' arerequired for transport. The E.I.area is,therefore, related tothemowing date.InthisarticletheE.I.with enlarged area and latemowing isdefined as'improved E.I.'.Theimproved E.I.onthefour farms A,T,L, andDwascreated duringtheEAFS-prototyping researchprogram in 1992-1997 (Vereijken, 1997,1998).Theimproved E.I.ontheexperimental farm Estarted in 1995 simultaneously with conversion oftheconventional dairy farm toanorganicmixed farm (Smeding&Joenje, 1999). Table1 Thecharacteristics of thefarm, thewheat crop and the ecological infrastructure (E.I.) on the thirteen selected farms. c/1 00 Q ^ _; _; & & op. O u o 3 ui ui w 00 o en 1™ c c rt 3 T3 J3 o o 3 .3 o rt I 00 o o c <4-l a o ed "3 3 I-* V3 a o O > > o O o t-H 1 3 VI gVi 3 &Q O. C/3 Variable: dur area unit: year % Farm: level/habitat: farm farm K organic, arable 16 1.8 J organic, arable 11 4.4 S organic, arable 11 3.2 L organic, arable 11 3.1 O organic, arable 11 1.1 T organic, arable 9 2.3 F organic, arable 8 1.4 E organic, mixed 5 4.5 B organic, arable 2 1.4 R organic, arable 2 1.2 H organic, arable 1 1.5 Z organic, arable 1 1.2 M 0 2.0 integrated, mixed int ccov ucov % % % farm 30 26 35 18 50 31 35 55 17 11 27 17 65 crop 71 64 76 66 73 69 28 86 86 63 78 79 87 crop 28.6 7.1 7.5 7.8 5.1 9.4 2.3 16.4 0.3 25.6 5.7 0.0 1.7 uspn n/m2 crop 1.8 4.0 2.7 3.1 4.4 2.7 2.6 3.6 0.4 3.6 1.3 0.2 1.6 l l .2- > <4- o o 00 > 'o Q 00 Q o O mow eicov month % E.I. E.I. 5 64 6 92 7 89 7 88 6 89 92 9 5 73 11 97 5 91 5 76 5 96 5 90 5 68 eispn n/m2 E.I. 2.1 4.4 5.8 5.1 4.9 4.2 2.7 5.1 4.4 3.2 4.0 3.4 6.2 Dominant plant species incanalbank swardswere:couch (Elymus repens),perennial meadow grasses (Festuca rubra,Poatrivilais, Loliumperenne,Agrostisstolonifera),commonreed (Phragmitis australis)and afew perennial herbs:dandelion {Taraxacum officinale) and stinging nettle(Urticadioica).Canalswithtraditionalmanagement have alow,relatively open, speciespoor vegetation (<10species/4m2),dominated byafew grass species.Late mowingparticularly related toincreased vegetationbiomass inJune andJuly asexpressedby vegetationheight(upto 1-3 m)andcover(upto90-100%).Howeverlatemowingdoesnot necessarilyrelatetoincreased higherplant species diversity for tworeasons:a)tallgrass speciesmaydominatethe sward;b) swards oftraditional management may locallybecutto ground levelandtherefore beinvadedbyruderalsand annuals(increased speciesnumberup to 15species/4m ),e.g. thistles (Cirsium arvense, Sonchus arvensis),annualweeds(e.g. Sonchusasper,Polygonumaviculare)and annualsthat arerarelypernicious weedsin Flevoland (e.g. Myosotisarvensis, Veronicapersica, Cardaminehirsuta). Highperennialplantdiversities found insomelocationsmayrelatetovarious interrelated factors:reduced vegetationproductivity,removal ofthehay,nutrient buffering bythegrass strip,and longorganicduration. However, also,artificial speciesintroduction isinvolved;in theEAFS-project, around 90different nativeperennial dicotswere artificially seeded inthe canalbankstoobtainhigherplant diversity and flower abundance ofplantswith limited dispersal capacity (Vereijken, 1998).Although few specieswereabletosettlewell(e.g. Seneciojacobea, Crepisbiennis,Heracleum sphondylium), the introduction clearly affected speciesdiversity:vegetation including siteswith>15species/4m2wereconfined toprototype farms. 2.2.Samplingandmeasurements 2.2.1.Arthropods Sampling ofarthropods wasdoneinwheat crops andinadjacent canalsbanks(E.I.).Spring wheat (Triticum aestivumL.)waschosen asarepresentative crop asthis cropiscommonon organicarablefarms inFlevoland and arthropodnumbersincereals arelargecompared to numbersinothercommoncrops likepotatoes andonions (Booij &Noorlander, 1992).Within onewheatfieldoneachofthe 13farms one 50x30msampling areawas selected;thisarea was50meterlongbordering acanalby30mperpendicular tothatcanal.Nineplotsof 1 m2at distancesof0m(E.I.), 10m(wheat) and30m(wheat) from thecanalbankwere selected for measurement ofarthropods,crop,weedandE.I.-vegetation variables. Distance from thetopofthecanalbanktothecropedgeofthewheat could varybetween farms, duetotheoccurrence ofgrassy strips(farms T,L,S,E,I,J),asterilestrip (H),a recently drilled flower strip(F)oratransport track (O).Samplingwasdoneonce,inthe periodfromthe7thofJuneuntilthe6thofJuly, following themethods ofReddersen (1997) andMoreby &Sotherton (1997). Vegetation dwelling arthropods werecollectedbymeansofavacuum sampler(ES2100, EchoLakeZurich,U.S.A.) for 120sineach 1 m sampling area.Theairflow ofthissampler was 8.5 m3inasampling areaof0.01m2,whichcorresponds totheair flow ofthe apparatus recommended byMacLeod etal.(1995).Anet (pore size:0.8x0.8 mm 2 ) wasinserted inthe suctiontube.Asquareof 1 m2areaand0.4mhigh,madeoffour multiplex boards,was placed inthevegetation before switching onthe sampler. Thesampleswereput inaplasticbag,transported inacoolbox and stored inadeepfreeze (-20 °C).Sampleswerecleaned inthelaboratory. Litterwasremoved and soilwaswashed awaywithwater inasieve (pore size: 1x1 mm2).Slugs andsnails (Gastropoda) and springtails (Collembola)werediscardedbecausevacuum sampling isnot effective for quantification ofthesegroups(Potts &Vickermann, 1974).Arthropodswere stored in95% alcohol.Individuals weresortedtotaxaatorder-or family-level andplaced into five different arthropod functional groups: - Detritivores,includingmainly adult dipterathathavedetritivorous larvae,andwoodlice (Isopoda); - K-orsenescense feeding herbivores (White, 1978)that feed onmatureplant tissueswith highC/N ratios andtendtohave aslowerdevelopment, largerbody size(Crawley, 1983) anddefensive traits(Power etal.,1996).Herbivores which areanimportant constituent of 'chickfood' for farmland birds (Moreby etal, 1994),likesawflies, lepidopteran larvae, hoppers,bugs,leafbeetles,weevils andgrasshoppersbelong tothisgroup; - r-orflushfeeding herbivores (White, 1978)that feed onyoungtissueswith lowC/Nratios and lowfibrecontent (White, 1978).Theygenerally have asmallbody size, fast development andgood dispersal abilities.Forreasonsofsimplicity,r-herbivores were 10 representedbyonlyAphididae; infew available studiesonorganiccrop communities (Kromp&Meindl, 1997),aphidscorresponded most clearlytothe definition; - Predators includingbothpolyphagous andoligophagous species; - Parasitoids, almost exclusively represented byParasitica (Hymenoptera). Extraefforts weremadetoidentify Dipteratothe family-level (key:Unwin, 1981)because Dipteraoccurred inlargenumbers andinvolved largeproportions ofallthreedetritivores, herbivores andpredators (Frouz, 1999;Weberetal.,1997). 2.2.2.Crop andE.I.-vegetation Ineach 1 m2plot"inwheat fields, visual estimationsweremadeofcropcover {i.e.%coverof soil surface byverticalprojection) andunder storyvegetation cover. Theunder storyincluded arableweeds and/orundersown grass(Loliumperenne) and/orclovers (Trifoliumpratenseor T. repens).Thespecies oftheunder storywerelisted.Ineach 1 m2plot intheE.I.,the vegetation coverwasestimated visually and specieswerelisted.Plant speciesnumberof understory andE.I.vegetation were calculated for eachplot. 2.2.3.Farmmanagementandlayout A 1:5000mapwasmadeofeach farm, depictingthedifferent crops andthe ecological infrastructure (E.I.)-Onthesemapstheareaofsemi-natural andcrophabitatsweremeasured. The'E.I.-area'wascalculated asthepercentage ofsemi-naturalhabitat ofthefarm area (without the farm yard).Farmrotation intensitywasdefined astheproportion of gramineous crops(cereals and leypasture) ofthetotal croparea.Thespatial arrangement oftheE.I.or 'E.I.density',was expressedbythepercentage ofthefarm which liedwithin 100mdistance oftheE.I.Incasethecanalbankvegetation wascutbothafter September 15th aswellas before May 15th,adistanceof70mwasconsidered. Theinfluence offieldmarginsonthe abundance oflargecarabidbeetles and spidersprobably doesnot exceed 70-100m(Booij, unpublished data). Dataontheyearofconversion ofthewhole farm toorganichusbandrypractices inthewheat cropin 1998,andmowing ofcanalbanks andgrass stripswereobtained usinga questionnaire. Themowingmanagement isrepresented bythemonthofthefirst cut,because thiscut largelydetermines thephenological stage ofthevegetation inJune andJuly. 2.3.Statisticalanalyses Allmeasurements weretested fornormality and '°log-transformed. All subsequent analyses were conducted using Statistical Analysis System (SASInstitute, Cary,North Carolina). 2.3.1.Discriminantanalyses Individual farms wereclassified intooneofthreegroups onthebasisof corresponding characteristics (Table 1).For analysis ofdata from crop areasamples (234m2),the classifications werebased onrelevant farm structure characteristics (duration, E.I.-area and rotation intensity) oroncropperformance characteristics (crop cover,under story coverand under story speciesnumber).For analysisofdata from E.I.samples (117m ),the classifications werebased onrelevant farm structure characteristics (E.I.-area andduration)or onvegetation performance characteristics (month offirst cut,E.I.-vegetation coverorplant species numberperm2). Farmswere classified accordingtotwo splits:thefirstsplitbased ononeofthe above mentioned characteristics separated acategory of 3-7 farms, andthesecond splitbasedon another ofthesecharacteristics divided theremaining 6-10farms inasecond andathird category. Theminimum category sizewas3farms. Forallobtained classifications canonical discriminant analyseswereperformed onthenumbersofarthropodsineachfunctional group. 11 Observations inthewheat andintheE.I.wereanalysed separately for crop areaandE.I. classifications, respectively. Classifications withthehighest Wilks'LambdaF-valuewere selected;thisselection yielded thefour best classifications. Stepwisediscriminant analyseswereperformed onthenumbersofarthropods ineach functional group todetermine themost important groupsthat couldclassify the farms intothe threecategories.Arthropod observations inthecropareaandintheE.I.wereagain analysed separately. Canonical discriminant analysiswasusedtodeterminethemagnitudeand direction oftheassociation ofindividual variableswith indicatorvariables. Standardised canonical coefficients largerthan 0.3dividedbythesquareroot oftheeigenvalue ofthe canonical function (Afifi &Clark, 1984)wereconsidered largeenoughto contribute significantly tothe classification. 2.3.2.Taxa differentiatingamongfarm categories anddistancefrom E.I. Differences inspeciescomposition wereexpressed bythetaxathathad significantly higheror lowernumbers inonecategory ascompared totheothercategories.Differences in abundance ofvarioustaxabetweenthethreecategoriesinthe four selected classifications weretestedby ANOVA (P<0.05),including aDuncan'smultiplerangetest.Inthistest non-transformed data wereused, andtaxathatoccurred withlessthan20individuals inthewholedata-set were omitted.Differences inabundance oftaxaamongthe sampling distances from theE.I.of0m (intheE.I.), 10m(inwheat) and 30m(inwheat)were alsotestedwithANOVA (P<0.05) includingDuncan'smultiplerangetest. 2.3.3.Differencesinspecies diversity Differences inspeciesdiversitywerealsoanalysed. Taxathatoccurred with lessthan20 individuals inthewholedatasetwereomitted. Parasitoids andr-herbivores werenot consideredbecausebothgroups included onetaxon.Observations inthecroparea(234m2; pooled samplesof 10and 30mfrom theE.I.) andintheE.I.(117m2)were analysed separately. Calculationsweremadeofthenumber oftaxaperarthropod functional groupper m (speciesdensity: S)andtheMargalefdiversity indexperm2(Dm=(S-l)/lnN: S=number of species,andN=number ofindividuals) (Magurran, 1988).Differences in SandDmamong thethreecategories ineachofthe four selected classifications weretestedbyANOVA (P<0.01),includingDuncan'smultiple rangetest.Differences in SandDm amongthe samplingdistances (0, 10,and30mfrom theE.I.)were alsotestedbyANOVA(P<0.01), includingDuncan'smultiplerangetest,usingthewholedata-set (351m2). 2.3.4.Gradientanalysis Thepooled data-set ofwheat andE.I. samples (351m2)wasused to analysethe distribution ofarthropod functional groups alongthegradient from E.I.tocrop centre,represented by threesampling distances0m(E.I.), 10m(wheat) en30m(wheat),for each farm category. Linearregressions (GLM;P<0.1)wereperformed forthe four selected classifications using 10 log-transformed data.Effects ofdistance,category, anddistancebycategory interaction weretested. Cropareaobservations (234m2) andE.I.observations (117m2)werealsotested separately for differences between categories inthefour selected classifications (GLM; P<0.1),includingDuncan'smultiplerangetest. 12 3. Results 3.1. Observednumbers ofepigeic arthropodfunctionalgroups Atotal of26,722organismswerecaught in351m2sampling areaincluding 12,346aphids. Onaverage,63%and 13%ofvegetation dwelling arthropod numberswere aphidsinthecrop areaandintheecological infrastructure, respectively.Average arthropod density inthecrop area, excluding aphids,was28organisms/m2 ofwhichthemost abundant taxa(>2%)were: herbivores:leafbeetles (Chrysomelidae)(6%) andhoppers(Cicadellidae)(5%);detritivores: chironomidmidges(12%)andsciaridmidges(4%); predators:spiders(10%),empidid flies (9%), anddolichopid flies (3%);andparasitoids (32%)(Table2a).Theaveragedensityinthe E.I.,excluding aphids,was67organisms/m withthemost abundant taxa (>2%)being: herbivores:hoppers(36%),chloropid flies (7%),andbugs(3%);detritivores:wood lice(7%) andchironimidmidges(5%);predators:spiders (9%)andants(3%);andparasitoids (7%) (Table2b). Table2a Thetotal number/18 m~perform ofarthropod taxa inthewheat cropcaptured by vacuum sampling. Taxa Isopoda Chironomidae Mycetophilidae Sciaridae Lonchopteridae Phoridae Borboridae Drosophilidae Sepsidae Cicadelidae Heteroptera, herbivores Chrysomelidae Curculionidae Tipulidae Chloropidae Opomyzidae Ephidridae Symphyta Heteroptera, predator Coccinellidae Cantharidae Chrysopidae Syrphidae Empididae Dolochopodidae Aranae Carabidae Staphylinidae Formicidae Parasitica Aphididae Funct. Farm R group T F K Z L detr 0 0 0 0 0 0 dea22 8 67 92 34 26 den2 0 1 3 9 2 detr 4 12 10 18 10 6 dea1 0 2 3 0 43 den 1 0 1 0 2 0 dea1 1 0 1 3 0 den20 30 1 20 4 1 detr 0 0 0 1 1 0 K-herb 0 2 18 5 8 5 K-herb 1 2 0 1 0 1 K-herb 26 6 30 13 29 58 K-herb 0 0 0 0 0 1 K-herb 0 0 1 1 6 0 K-herb 5 1 2 2 23 4 K-herb 1 0 0 0 1 2 K-herb 6 1 6 6 23 7 4 K-herb 1 0 0 1 2 pred 0 1 1 0 0 1 pred 14 1 7 0 30 8 pred 12 18 12 18 12 10 pred 0 2 2 2 0 0 pred 20 0 28 3 36 26 pred 7 22 27 12 23 25 pred 0 7 1 1 6 0 pred 7 10 62 21 72 27 pred 0 0 1 0 0 0 pred 1 2 2 0 3 5 pred 0 2 0 0 0 0 par 117 68 140 183 311 336 r-herb 4693 270 1284 1437 746 701 13 B J M H O S E 0 1 0 0 0 1 0 11 60 10 52 11 20 380 1 2 7 10 1 20 7 22 65 4 23 12 2 61 0 14 1 5 0 3 0 0 0 1 2 2 3 0 3 2 7 5 1 20 10 1 9 0 18 0 3 3 0 1 0 8 23 0 1 41 59 30 80 30 11 8 1 0 0 0 0 0 0 62 8 32 13 51 65 8 1 0 0 4 0 0 51 0 0 5 0 0 0 1 14 0 9 2 2 3 8 0 1 1 0 1 0 1 2 1 0 1 0 0 0 0 1 0 0 0 2 3 1 1 0 0 0 2 2 10 1 3 3 11 3 5 4 3 4 2 14 5 0 4 7 11 6 0 1 6 1 7 1 4 3 18 8 17 173 139 13 68 44 29 12 14 5 0 103 30 3 57 42 15 189 20 81 61 16 1 0 10 1 3 5 4 3 2 2 6 5 3 0 0 0 0 1 2 0 67 143 28 118 251 238 58 82 397 290 188 236 367 465 Table2b Totalnumber/9 m~perform of arthropod taxa inthe ecological infrastructure captured by vacuumsampling. Taxa Isopoda Chironomidae Mycetophilidae Sciaridae Lonchopteridae Phoridae Borboridae Drosophilidae Sepsidae Cicadelidae Heteroptera Chrysomelidae Curculionidae Tipulidae Chloropidae Opomyzidae Ephidridae Symphyta Heteroptera Coccinellidae Cantharidae Chrysopidae Syrphidae Empididae Dolochopodidae Aranae Carabidae Staphylinidae Formicidae Parasitica Aphididae Funct. Farm group T detr 28 detr 220 detr 1 16 deaden16 detr 4 detr 48 detr 34 detr 17 K-herb 388 2 K-herb 1 K-herb 1 K-herb 6 K-herb K-herb 16 K-herb 25 K-herb 7 K-herb 4 9 pred pred 4 pred 17 4 pred pred 2 pred 41 1 pred pred 76 pred 19 pred 7 pred 49 par 88 r-herb 488 F 61 0 0 0 0 0 3 1 1 58 2 0 0 4 3 0 0 1 0 0 4 1 0 4 0 34 6 2 49 14 11 K 12 2 0 2 15 0 3 6 2 8 0 3 0 1 2 2 2 0 2 2 4 0 0 21 1 31 11 6 65 27 45 Z 13 18 1 13 1 12 5 12 3 211 54 0 0 3 29 11 14 13 22 0 26 0 0 1 3 86 6 2 7 95 106 R 0 2 0 5 2 7 16 7 3 772 1 0 0 0 36 9 7 1 3 0 0 0 0 4 6 83 4 1 19 49 127 L 364 32 1 5 9 0 16 8 2 190 142 1 3 4 12 5 29 6 91 0 10 1 0 9 4 116 14 29 36 47 59 H 1 0 0 2 1 3 4 6 1 105 1 0 0 0 125 0 0 1 0 0 0 0 1 1 0 8 3 5 6 8 4 B O 1 0 3 3 1 1 18 47 1 0 7 6 4 2 6 10 1 3 311 496 0 0 1 0 0 0 1 1 55 104 3 1 1 2 6 1 13 0 0 1 0 1 0 1 0 0 1 1 11 1 32 31 1 1 0 0 0 5 48 59 98 35 S 13 126 2 4 6 1 10 5 2 76 1 0 1 1 27 5 3 1 11 0 0 1 1 13 10 82 16 3 6 68 10 3.2.Crop areaarthropodfunctional groupsandspecies diversity 3.2.1.Arthropodfunctional groupsaffectingdistinctions amongfarm structure categories Theclassification 'dur/int'basedonorganic farming duration (first split) androtation intensity (second split)gavethebest separation oftheobservations (canonical discriminant analysis, Wilks'Lambda,F-value=18.7, PO.0001; Table3).Category 1included therecently converted organic farms; category2included thelongduration (>6years) organic farms with anintensivecroprotation (<33% gramineous crops);category 3included long duration organic farms with anextensive croprotation. Classifications based ondifference in percentage E.I.('area')showed lessdistinction thanclassifications basedonduration and rotation intensity (Table3). Theseparation intoduration-intensity categories,based onarthropod functional group numbers inwheat, isillustrated inaplot ofcanonical variabletwoversus canonical variable one(Fig.2).All arthropod functional groupswere selected asimportant factors by stepwise discriminant analysis fordiscrimination amongthethreecategories (Table4).Thefirst 14 J 12 0 0 1 2 5 1 0 12 94 7 0 2 0 72 1 1 0 9 5 0 0 0 7 2 57 4 6 5 30 82 E 26 14 0 5 17 1 26 1 4 66 36 0 0 0 35 1 1 2 5 1 1 5 1 21 2 43 2 1 2 35 35 M 0 1 0 2 0 0 2 0 6 32 1 0 0 0 14 0 1 0 6 6 0 0 1 12 3 15 0 1 1 6 90 canonical function containing all arthropod functional groups,separated theorganic extensive croprotationcategory from bothothercategories (Fig.2).r-Herbivores,predators andKherbivores werepositively associatedwithrecent conversion ororganicintensivecrop rotation,whereasdetritivores andparasitoidswerepositively associated with organic extensive croprotation (Table4).Thesecond canonical function, determined mainlyby predators andr-herbivores separated longduration intensive farms from recently converted farms;predatorswereassociated withrecently converted farms andr-herbivores with intensive farms. K-herbivoresandpredatorswere>25%more abundant onaverage,inrecently converted farms (category 1)than intheothertwocategories.Detritivores andparasitoidswere respectively >40%and>10%more abundant inorganic extensive farms (category 3)thanin theotherthetwocategories.r-Herbivores weremost abundant inintensive organic farms (category 2)andhadintermediate numbersinrecently converted farms ascompared to organic extensive farms (Table4). Table3 Examples of classifications of the crop area and theecological infrastructure, including the the Wilks'Lambda F-value and thesquared canonical correlation obtained by canonical discriminant analysis. Abbreviations of category characteristics areexplained in Table I. category farms category farms category farms Category1 dur<6 HZBREM dur<6 HZBREM int>33 FOSEM Category 2 dur>6 & int<33 TKLJ dur>6&area<2.1 FKO int<33 &dur>6 TKU Category 3 dur>6 & int>33 FOS dur>6& area>2.1 TLSJ int<33 & dur<6 HZBR category farms category farms category farms ccov>85 BME ccov>85 BME usp>3.5 OREJ ccov<85 & ucov>7.6 TKRL ccov<85 & usp>3.5 ORJ usp<3.5 & ucov>7.6 TKL ccov<85 & ucov<7.6 FOHZSJ ccov<85 & usp<3.5 TFKHZLS usp<3.5 &ucov<7.6 FHZBMS Ecological Infrastructure Farm structure category farms categories category farms Category 1 area>2.1 TLSEJ dur<6 HBZRME Category 2 area<2.1 &dur>6 FKO dur>6& area<2.1 FKO Category 3 area<2.1 & dur<6 HZBRM dur>6& area>2.1 TLSJ E.I. vegetation performance categories mow>7 TLSE mow>7 TLSE Eicov<80 FKRM mow<7 & eicov>80 HZBOJ mow<7 & eisp>4,3 BOMJ eicov>80 & eisp<4.3 THZ mow<7 & eicov<80 FKRM mow<7 & eisp<4,3 FKHZR eicov>80 & eisp>4.3 BOLSEJ Crop area Farm structure categories Crop performance categories category farms category farms category farms 15 F-value Sq.Can. 18.7 0.37 8.66 0.23 7.54 0.26 38.32 0.56 25.1 0.54 14.09 0.34 7.84 0.39 6.53 0.34 15.94 0.48 10.53 0.51 6.8 0.37 3H 2 1 0 • no -1 -2 H -3 •1 0 can1 Fig. 2.Plotof thesecond and first canonicalfunctions discriminating amongfarm categories of the classification 'int/area'.Squares representfarms with >-40%gramineous crops; circles representfarms with< 40%gramineous crops and >2.2%E.I. area; triangles representfarms with >40%gramineous crops and <2.2%E.I. -1 0 can1 Fig. 3.Plot of thesecond andfirstcanonicalfunctions discriminating amongfarm categories of the classification 'int/area'. Circlesrepresentfarms withdense crops (>85%); triangles representfarms with sparse crops (<85%) including an understory >7.6%; squares representfarms with asparse crop including apoor understory (<7.6%). 16 Table4 Arthropod variables that contributed significantly to theclassification of thecrop area observations in the three farm categories bystepwise and canonical discriminant analyses,standardised canonical coefficients, and mean valuesper crop area category. Classification in 'dur/int'-categories isbased onfarm structure characteristics and theclassification 'ccov/ucov'-categories isbased oncropperformance characteristics. Theabbreviations of thecategory characteristics are explained in Table1. Comparisonof arthropod mean numbers in thecategories according toDuncan's multiple range test. Canlb Farm structure (dur/int) Variablesa r-Herbivores Predators Detritivores K-herbivores Parasitoids Standardised Category 1 coefficient dur<6 0.95 c 0.46 -0.62 0.67 -0.49 Canld Crop performance (ccov/ucov) Variables * Predators r-Herbivores Detritivores K-herbivores Parasitoids Mean values andmultiple range comparison mean 32 13 5 5 8 b a ab a b Category dur>6& int>33 mean 14 5 10 3 10 3 c b a b a (PO.001) (PO.001) (P<0.07) (PO.001) (P<0.05) Mean values andmultiple range comparison Standardised Category 1 coefficient ccov>85 1.15 e 0.54 -0.15 0.52 -0.44 Category 2 dur>6& int<33 mean 96 a 6 b 4 b 4 a 9 ab mean 20 23 7 7 6 a b a a b Category 2 ccov<85& ucov>7.6 mean 7 b 103 a 5 a 4 b 13 a Category 3 ccov<85& ucov<7.6 mean 5 c 23 c 6 b 3 c 8 b (PO.001) (PO.001) (PO.05) (PO.001) (PO.001) *Variables are listed in order ofselection by stepwise discriminant analysis. Canonical function 1;responsible for 71% ofthe variation. c Standardized coefficients >0.39 were considered large enough for interpretation. Canonical function 1;responsible for 73%of the variation. e Standardized coefficients >0.26 were considered large enough for interpretation. 3.2.2. Differencesinspeciesdiversityamongfarm structurecategories Recently converted andintensive longduration farms had similar speciesrichnessinall functional groupsconsidered (detritivores,K-herbivores, andpredators).The species diversitieswereonlysimilar for K-herbivores andtotaltaxa(Table 5).Detritivoresweremost diverseinrecentlyconverted farms. Thereweretwodifferentiating taxa:Phoridae (detritivorous flies) preferred recently converted farms andherbivorousbugs (Heteroptera) preferred longduration intensive farms. 3.2.3. Arthropodfunctional groupsaffectingdistinctions amongcropperformancecategories Itwasenvisaged thatcropperformance factors couldoffset farm structure factors in determining arthropod functional group assemblages.Thisproved tobe correct: theclassification 'ccov/ucov'basedoncropcover(first split)andweedcover (second split) provided thebest separation ofobservations (Wilks'Lambda,F-value=38.3, P<0.0001; Table3).Cropperformance category 1 included densecropstands (cover>85%);crop performance category2included relatively sparsecropstands (cover<85%),accompanied by 17 anunderstoryvegetation (>7.6%cover);cropperformance category 3included relatively sparsecropstandswhichhad apoorunderstory vegetation. Theseparation ofcrop-weed covercategories,based onarthropod functional groupnumbers inwheat, isillustrated inaplotofcanonicalvariabletwoversuscanonical variableone(Fig. 3).Allarthropod functional groupswere selected asimportant factors by stepwise discriminant analysis for discrimination amongthethreecategories (Table4). Extremeswere densecrops andsparsecropswithpoorunder story(Fig.3).Significant contributions tothe first canonical function werethepositive associations ofpredators,r-and K-herbivores with densecrops,andthenegative association ofparasitoidswithdensecrops(Table4).The relationbetween understoryvegetation and arthropod groupswasnot aspronounced: the categoryof sparsecropswithunder storywasseparated from both other categoriesbythe secondcanonical function, determined significantly bypredators (negative association) andrherbivores (positiveassociation). K-herbivores andpredatorsindensecrops(category 1)wererespectively >65%and>40% moreabundant onaverage,thanintheothercategories.r-Herbivores andparasitoids in sparse cropswithunderstorywererespectively>75% and>40%moreabundant thaninthetwo othercategories (Table4). 3.2.4. Differencesinspeciesdiversityamongcropperformancecategories Speciesrichnesswasgenerally highestwhencropcoverwasmorethan 85%.Diversityof senescense-feeding herbivores,predatorsanddetritivores was lowest inthecategoryof sparse cropswithpoorunderstory ascompared totheothercategories.Densecropshadthehighest diversityofdetritivores.Densecrops andsparsecropswithunder storyhad asimilar diversity ofK-herbivores. Sparsecropswithunder storyhad thehighest diversity ofpredators (Table 5). Thirteentaxahad significantly higherdensitiesinoneortwo ofthe crop performance categories (ANOVADuncan,P<0.05):indensecropsthehighest densitieswereobserved for woodlice (Isopoda, detritivore),Phoridae,Borboridae, Sepsidae (alldetritivorousdiptera), Cicadellidae (herbivore),Aranae,Carabidae (polyphagous predators), and Dolichopodidae, Empididae (predacious flies); insparsecropswithunder storythehighest densities occurred amongDrosophilidae (detritivorous fly),herbivorousbugs (Heteroptera), Ephydridae (herbivorous fly), andhooverfly larvae(Syrphidae;predacious fly). 3.3.EcologicalInfrastructurearthropodfunctional groupsandspecies diversity 3.3.1.Arthropodfunctional groupsaffectingdistinctionsamongfarm structurecategories Oftwoconsideredpossibilities theclassification area/dur,based onE.I.areaasfirst splitand farm organicduration assecond split gavethebest separation ofobservations (canonical discriminant analysis,Wilks'Lambda,F-value=7.84,P<0.0001;Table3).Farm structure category 1 included farms withanenlarged E.I. (>2.1%ofthefarm arablearea)and corresponded to'improved E.I.';theothertwocategories arefarms with asmallE.I.which couldbe longduration organic farms thatdidnot enlargetheE.I.area(category 2)orrecently converted organic farms (category3). Theseparation into area-duration categories,based onarthropod functional groupnumbersin theE.I.,isillustrated inaplotofcanonicalvariabletwoversuscanonical variableone(Fig. 4).Detritivores andK-herbivores wereselected asimportant factors bystepwise discriminant Table5 Comparison between the threecategories inallfour selected classifications, withregard to their species richness (S)andMargate/diversity index (DJ (GLM;significance level *=P<0.1; **P<0.01; ***P<0.001); detr = detritivores; K-herb= senescensefeeding folivores; pred =predators; total =detritivores, K-herbivores andpredators. Abbreviations of category characteristics areexplained in Table I. Crop area Farm structure categories Crop performance Categories dur<6 dur>6 &int<33 dur>6 & int>33 Significance ccov>85 ccov<85&ucov>7.6 ccov<85&ucov<7.6 Significance S detr 2.3 1.9 1.5 a a b *** 2.7 2.1 1.5 Dm detr 1.0 0.7 0.6 a b b S K-herb 2.1 a 1.8 a 1.1 b a b b 2.4 2.0 1.2 *** a b c 1.0 0.7 0.7 *** Dm K-herb 0.8 a 0.8 a 0.4 b *** a b c 0.8 0.8 0.5 a a b S pred 3.4 a 3.1 a 2.4 b Dm pred 1.2 b 1.3 a 1.1 b S Total 7.8 a 6.8 b 5.0 c *** * *** 7.0 3.4 2.4 a b c 1.2 1.4 1.1 b a b 9.1 a 7.5 b 5.0 c Dm Total 2.3 a 2.3 a 1.7 b **# 2.4 2.4 1.8 a a b *** ** #** *** *** *** *** *** S detr 4.1 2.5 2.4 Dm detr 1.2 1.1 1.3 NS 1.2 1.3 1.1 NS S K-herb 3.8 a 2.0 c 3.0 b Dm K-herb 0.9 a 0.7 b 0.6 ab S pred 4.8 a 3.2 b 2.8 b Dm pred 1.4 a 1.0 b 1.0 b S Total 12.8 a 7.7 b 8.2 b Dm Total 2.9 a 2.0 b 2.0 b *** ** *** *** 13.8 a 8.5 b 7.2 b 3.0 2.0 2.0 *** *** Ecological Infrastructure Farm structure E.I. vegetation performance Categories area>2.1 area<2.1 &dur>6 area<2.1 &dur<6 Significance mow>7 mow<7 & eicov>80 mow<7 & eicov<80 Significance a b b *** 4.7 2.7 2.0 *** a b b *** 4.0 3.2 2.0 *** * a b c 0.9 0.6 0.7 ** a b b 5.1 2.6 3.6 *** a c b 1.4 0.9 1.2 a c b *** analysis for discrimination amongthethreecategories(Table6).Thelargest differences in arthropod functional groupcompositionwerebetweentheenlarged E.I. category andrecently converted farm category (Fig.4).Inthe first canonical function detritivoreswerepositively associated andK-herbivores negatively associatedwith enlarged E.I.(Table6).Althoughthe predator numberwassignificantly higherintheenlarged E.I. category ascomparedtothe othercategories (Table 6),ithad littlecanonicalpowerinthefirst canonical function because ofahighcorrelation (Pearsoncorrelation coefficient =0.79;P<0.01)between detritivore and predator abundance.Thesecondcanonical function, determined byK-herbivores (positive association), separatedbothextremecategories from thethirdcategoryoflongorganic duration farms with smallE.I. Detritivores andpredatorswere>70%and>40%moreabundant onaverageinthe enlarged E.I.category (1)ascompared tothesmallE.I. categories.K-herbivores were>20%more abundant onaverageinrecently converted farms (category 3)than intheother categories (Table6). 3.3.2. Differencesinspeciesdiversityamongfarm structure categories SpeciesrichnessofK-herbivores anddetritivores anddiversity ofpredators andtotaltaxa were significantly higherintheenlarged E.I.categorythaninothercategories (Table 5).The onlydifferentiating taxawereweevils(Curculionidae;K-herbivore) whichpreferred enlarged E.I. 19 a b b 3.3.3. Arthropodfunctional groupsaffectingdistinctions amongE.I. vegetationperformance categories Theclassification 'mow/eicov'basedon first mowing date(first split)and E.I. vegetation cover(second split)gavethebest separation ofobservations (canonical discriminant analysis, Wilks'Lambda,F-value=15.94,PO.0001; Table 3).Vegetation performance category1 included E.I.whichwascut late (after July 1st) and included the'improved E.I.'ofthethree prototype farms andtheorganic experimental farm (E).Ecological infrastructure whichwas cutbefore July couldhave ahighvegetation cover(>80%)(category 2)oran 'open vegetation' i.e.alowcover(<80%) (category 3).Wedefined category2as'grassy E.I.'becauseearly mowing inMay,combined with ahighermowing frequency peryearand/or careful mowing resulted inastable,dense sward dominated byperennial grassspecies. Table6 Arthropod variables that contributed significantly tothe classification of theE.I. observations in the threefarm categories bystepwise and canonical discriminant analyses,standardised canonical coefficients, andmean valuesper crop area category. Classification in 'area/dur'-categories isbased onfarm structure characteristics and theclassification 'mow/eicov'-categories isbased on vegetationperformance characteristics. The abbreviations of thecategory characteristics are explained in Table I. Comparison of arthropod mean numbers inthecategories according toDuncan's multiple rangetest. Canlb Mean values andmultiple range comparison Farm structure (area/dur) Standardised Category 1 Category 2 Category 3 coefficient area>2.1 rea<2.1 & area<2.l & dur>6 dur<6 mean mean Variables a mean 26 a 4 c Detritivores 1.16c 7 b -0.49 32 a 41 a K-herbivores 26 b -0.18 21 a 11 b 9 b Predators Parasitoids 0.33 6 a 4 b 5 b 0.03 13 a 8 a r-Herbivores 6 a Canld E.I. vegetation performance (mow/eicov) Variables * Detritivores K-herbivores Predators Parasitoids r-Herbivores Mean values and multiple Standardised Category 1 coefficient mow>7 1.34e -0.26 0.16 0.11 -0.22 mean 31 35 23 7 14 a a a a a Category 2 mow<7& eicov>80 mean 6 b 40 a 9 c 5 a 7 a (PO.001) (PO.01) (PO.001) (PO.05) NS range comparison Category 3 mow<7& eicov<80 mean 5 b 27 b 12 b 3 b 8 a (PO.001) (PO.001) (PO.001) (PO.001) NS "Variables arelisted in order of selection by stepwise discriminant analysis. The italicised variables were not selected by stepwise discriminant analysis. b Canonical function 1:responsible for 85%ofthe variation. c Standardised coefficients >0.37 were considered large enough for interpretation. Canonical function 1:responsible for 63%ofthe variation. "Standardised coefficients >0.31were considered large enough for interpretation. 20 3 2 l H A 4A % , - , • * § * • -,• o *,°A & * A DA A ^» A A " ** AflD A /A 0 A &* •1 H AA% a D oA2° D 0 -2 oo -3 -4 -2 -1 can1 Fig. 4.Plotof thesecond andfirstcanonicalfunctions discriminating among E.I.categories of the classification 'area/dur'. Trianglesrepresent enlargedE.I.(>2.1%);circles representsmall E.I. onfarms witha long organic duration; squares represent smallE.I.onfarms withashort organic duration. 0 31 2- 0 o o° °o 8 0 0 o 1- A° o o o 01 0 $> A -2 - O A A o O°T> A 0$ A & A A A A D A A A 1 ! i A A A • -r — D A A A -3 - n tP<* ^ A 1 0 can1 -1 Fig. 5.Plot of thesecond and first canonicalfunctions discriminating among E.I. categories of the classification 'eispn/eicov'.Squares represent late mownE.I.; circles represent earlymown E.I. withdense vegetation; triangles represent early mownE.I.withsparse vegetation. 21 Theseparation into'mow-eicov'categories,based onarthropod functional group numbersin theE.I.,isillustrated inaplotofcanonicalvariabletwoversuscanonical variableone(Fig. 5).All arthropod functional groupswere selected asimportant factors by stepwise discriminant analysis for discrimination amongthethreecategories (Table6).Thefirst canonical function containingonly detritivores,separated latemowing category from grassy E.I.andopenvegetation categories (Fig.5).Detritivores areassociatedpositivelywith late mowing(Table6).Althoughthepredatornumberwassignificantly higherinthelatemown E.I.categoryascomparedtotheothercategories (Table6),ithad littlecanonicalpower inthe firstcanonical function becauseofahighcorrelation betweendetritivore andpredator abundanceintheE.I.Thesecond canonical function, determined mainlybyK-herbivores and parasitoids (bothpositively associated) andpredators (negatively associated) showeda separationbetween grassyE.I.(category 2)andopenvegetation (category 3).All functional groups,except theK-herbivores wereonaveragemore abundant inthelatemownE.I. category (1)ascomparedtoboth othercategories:detritivores andpredators were respectively >80%and>40%more abundant. K-herbivores were>10%more abundanton averageingrassyE.I.(category 2)thaninboththeothercategories (Table6). 3.3.4. DifferencesinspeciesdiversityamongE.I. vegetationperformancecategories Speciesrichnessanddiversity ofallarthropod functional groups,except diversity ofdetritivores,weresignificantly higher inlatemownE.I.thaninothercategories.Thecategoryof grassy E.I.hadthe lowest diversity ofpredatorsascompared totheothercategories (Table5). Ofthetotalofeight differentiating species,sixpreferred latemownE.I.:three detritivorous taxa(Chironomidae, Lonchopteridae, Borboridae) andthreepredacious taxa (Chrysopidae, Carabidae,andEmpididae).Thehigh abundance ofchloropid flies (herbivorous) andphorid flies(detritivorous) wastypical for thecategory ofgrassyE.I. vegetation. 3.4. Arthropodfunctional groupsalongthegradientfrom E.I.tocrop 3.4.1.Functionalgroupcomposition alongE.I. - cropgradients Itwasexpected thattherelationsbetween abundance ofvarious functional groupsand distance from theE.I.wouldbe similar for different farm categories.However, therewere significant interactions betweencategories inall four selected classifications and distance from theE.I.,withregardtoabundance ofdetritivores andpredators.Therewere also significant interactionsbetween categories anddistancewithregard toK-herbivores for some classifications butnot for others.Theinteractionswerestrongest forpredator distributions, particularly for crop areaclassifications but alsofor 'mow/eicov' classifications. These interactions arebest illustrated fortheE.I.classification 'mow/eicov' (Fig.6).Although in most farms abundance ofpredators anddetritivores werelowest at30mdistance from the E.I., farms with an earlymowing date andrelatively littleplant coverinthe E.I.(category3) hadmorepredators anddetritivores at 30mthan at 10mdistancefromtheE.I.(Fig.6aand c).Thus,highdensities intheE.I.donot always gohand-in-hand withhigh densities inthe adjacent crop. Despitethesignificant interactions,predators,K-herbivores, anddetritivores were generally most abundant intheE.I.andwerelowerinthewheat field (Fig.6a,b,c). Although abundanceweregenerally decreasing orsimilarwith increasing distance from theE.I.,in category 3theywere sometimeshigher at30mthan at 10minsidethewheat field (Fig.6 a,b,c).Ontheotherhand, abundance ofparasitoids andr-herbivores weregenerally lowestin theE.I.andhighest at30minsidethewheatfield(Fig.6d,e),withtheexception ofthe parasitoids incategory2(grassyE.I.) thatwerehighest at 10minsidethewheat field and lowerintheE.I.and at30minsidethewheatfield(Fig.6d). 22 3.4.2. DifferencesindiversitybetweenE.I. andcrop area Speciesrichnessofdetritivores,K-herbivores andpredatorswassignificantly higherinthe E.I.,but diversity (Margalef) was onlylargerfor detritivores.Tenof30consideredtaxaof predators,K-herbivores anddetritivores showed apreference for E.I.:Phoridae,Borboridae, Cicadellidae, Chloropidae, Opomyzidae,Symphyta,predacious Heteroptera,Aranae, Carabidae, andFormicidae.Twotaxa showed apreference for thecrop area:Chrysomelidae (herbivorous) and Syrphidae (predacious).Noneoftheconsidered taxahad a significantly different abundancebetween 10mand 30msamplingstations. A: detritivores B: K-herbivores 1.5 2 1.5 1 0.5 10 m 0 30 m 0m C: predators 10 m 30 m D: parasitoids 1.5 0.5 0m 10m 30m E: r-herbivores 2 1.5 £ o 1 0.5 0 10m 30 m Fig. 6.Abundance of vegetation dwelling arthropodfunctional groups along thegradientfrom E.I. (0m)tothe crop area (10and 30m).E.I.vegetationperformance categories ofselected classification 'mow/eicov':category I (squares)=late mowing; category 2 (triangles)— early mowing, dense vegetation; category 3 (circles)=early mowing andsparse vegetation. Thelines between theaverages ofarthropodfunctional group numbers('"logtransformed) aredrawn to illustrate differentpatterns among thethreeE.I.categories and donot represent estimatedpoints inbetween thesampling stations, (a)detritivores; (b)K-herbivores; (c)predators; (d) parasitoids; (e) r-herbivores. 23 4. Discussion 4.1. Observations comparedtothehypotheses Itwasexpected thatduration oforganicmanagement andextensive croprotation would relate positivelytotheabundanceofprimary arthropod functional groups andthat consequently, predator andparasitoidnumberswouldbesupported. Itwasalso expected that improved E.I wouldpromotetheabundanceofK-herbivores andpredatorsinbothE.I. andthe adjacent croparea.Observationsthatmayconfirm ourhypotheses includetherelatively high detritivoreandparasitoid numbersonfarms whichhadbothalongorganic duration aswellas anextensivecroprotation, andincreased densitiesofpredatorsinimproved (i.e.latemown) E.I.However, severalobservations contradicted thehypothesis:dense cropsonrecently converted farms hadthehighest densitiesofK-herbivores andpredators;several longduration farms hadincreasednumbersofr-herbivores;K-herbivores andparasitoidswere equally abundant inimproved E.I.and 'grassyE.I.';increased densitiesofpredators and K-herbivores inthecropsareawere,inseveral cases,notrelated toincreased densitiesofthesegroupsin improved E.I. 4.2. Vegetation dwellingarthropods communityinthecrop area Observations suggesttheoccurrence offour distinctive arthropod functional group compositions.Outliningthesecompositionsmay explaintheobserved contradictionswiththe hypotheses and contributetoimproved hypotheses.Thefour functional group compositions represent ashift alongthegradient oforganicduration (involving e.g. carbon flow) and production intensity (involvinge.g. nitrogen input).Theywillbediscussed inascending order ofintensity:a)shortdurationwith asparsecrop,b)shortdurationwith adensecrop,c)long durationwithintensivecroprotation, andd)longdurationwithextensive croprotation. a)Recently converted farms whichdidnothavealuxuriouscrop growth andwhichhada poorunder story(corresponding tofarms HandZ). Cropareaswerecharacterised byrelatively lowdensitiesoff allfunctional groups.Theselow densities areoften encoutered infield centresofconventionally managed crophabitatsthat includealmostnoarableweeds,particularlywhenr-herbivores arenotconsidered (Kromp& Meindl, 1997).Establishment ofseveraltaxamayrequiretime(Hald &Reddersen, 1990). This'unsaturated'arthropod community maydevelop,during atleast onecroprotation, towards acommunity oftyped)orc),depending onthefarm's (rotation) intensity. However recentlyconverted farms represent relatively unstable farming systems (oral communication G.Oomen)inwhich stillunbalancedN-availabilityand/or apparent crop susceptibility may rapidly changeacommunity oftypea)intoacommunity oftypeb). b)Shortorganicduration with adensecroprepresents farms intheconversion process (corresponding to farms BandE),involving theadaptationby soil life tochanged manure management, andcreating asite-specific balancebetweenN-applicationandcrop requirements. Inthisunstable situation luxuriousgrowthmayoccurandprovide arich food resource for an arrayofK-herbivorous taxa.Inthedensecanopywithdampmicroclimate, several detritivorous dipterataxaareenhanced bydecaying leaves (Weberetah, 1997).ThelargeKherbivorepopulations inthesecropsrelated tohighpredator densities(Pearson correlation betweenpredators andK-herbivores incroparea:0.81,P<0.001).But alsodetritivorous flies mayhave supportedpredators like,for example,empidid flies. Allgroupsofherbivores, detritivores andpredatorshadhigh speciesrichness,probablyrelated totherich food 24 resource.Highpredatordensitiesmayhave affected r-herbivores andparasitoids,whichwere lessabundant than intypec). c)Longduration farms withanintensivecroprotation (corresponding to farms T,L,KandJ) may supportthedetrital subwebtoamuch lesserextentthan longduration farms withan extensive croprotation; lowdensitiesofdetritivoreswereobserved here. Therefore polyphagouspredatorsmaybelessabundant andtherefore have lesseffect ontheherbivore subweb arthropods.Alsocropsmaybemoresusceptible forherbivory duetothepresenceof moreN,andcropsneedingmoretillageinthecroprotation. Density of (polyphagous) predators andresistant cropphysiology arecomplementary factors controlling r-herbivore outbreaks (Embden, 1988);systemswith 'moderate'levelsofboth factors might alreadybe vulnerable.Thelongduration farms had amorediversearthropod community ascomparedto typed),involving acoexistence of severalpredacious taxaandK-herbivores inlowdensities. Howeverthepredators could apparently not inhibit outbreaksofr-herbivores. The r-herbivore outbreaksmayhavesupported theobserved highparasitoid numbers. d)Longduration farms with anextensive croprotation (corresponding tofarms OandS)had increasednumbersofdetritivoreswhichmayhaverelatedtoanincreaseddetrital subweb supported bycropresidues andorganicmanure (e.g. Heimbach &Garbe, 1997;Weberet al, 1997).Polyphagous epigeicpredatorsmightbesupportedby anincreased quantity of detritivorous prey(Wiseetal., 1999)andsubsequently depresstheherbivore subweb includingr-andK-herbivores andoligophagouspredators.Alsolessnutritiveandless susceptible croptissuesmay explainthelownumbersofherbivores in alongduration,with extensivecroprotation (Phelan, 1997;Theunissen, 1994;VanEmden, 1988).Parasitoidswere themainpredacious functional group inthecanopy,possibly duetoreduced interference by vegetation dwellingpredators (cf.Tscharntke, 1997).Hostsofparasitoidsmighthavebeenrherbivores occurring inlowdensities andalsodetritivorous diptera (Potts&Vickermann, 1974).Parasitoid abundance onall studied farms appeared tobe significantly correlated to detritivore abundance (Pearsoncorrelation coefficient=0.52; P<0.06) andnot tor-herbivore abundance,whichmay expressbothdirect(e.g.food) andindirect(e.g. predatorrelease) factors affecting this functional group. Threeofthe studied farms corresponded only slightlytothepresented typology.FarmFwas most similartotypea).However, lowarthropod densitiesonthis farmwereduetovery sparsecropstandsnearthecrop edgeandcropcentre,related tomechanicalweedcontrol. FarmMwassimilar totypec),butonthisintegrated farm estimated cropN-requirements werepartially supplied byartificial fertilisers. FarmRwasrecentlyconverted and corresponded therefore totyped);however, duetowetharvest conditions inthepre-crop,the investigated crophad asparse stand including arelatively dense anddiverseweed vegetation whichrelated toincreased arthropod abundance. Itmustbenotedthat theextensive organic arable farms inFlevoland areprobably more intensivethantheorganic farms studiedbyMoreby&Sotherton (1997)and Reddersen (1997).Relatively extensive organic farms inFlevoland havecroprotations including potatoes andvegetables,and aresituatedinintensively farmed open landscape.Thismightbe illustratedbythetotaldensitiesofvegetation dwelling arthropods (collectedbymeansof suction sampling);averagedensities found inorganic cereal fields inFlevoland were9-15% oftheaveragedensitiesfound byMoreby &Sotherton (1997),Reddersen (1997)andPotts& Vickermann(1974). 25 4.3. Vegetation dwellingarthropodcommunity intheecologicalinfrastructure Effects ofE.I.characteristics andparticularly of'improved E.I.1willbe explainedby discussingtheresponses ofthedifferent functional groups. 4.3.1. K-herbivores K-herbivoreswereequally abundant inimproved (i.e.enlarged and latemown) andin traditionally managed 'grassy'E.I.However speciesrichness anddiversity weregreaterin improved E.I. Weevilsweretheonly differentiating K-herbivorous species for improved E.I., andmayhaveindicated cloversinthegrassstripsofenlarged E.I.Thearthropod community in'grassyE.I.'waspredominated (55%ofindividuals) byherbivores:hoppers andchloropid flies. Thiswasprobably duetotheprolonged vegetative development of frequently mown vegetation.Accordingly, Haugthon etal.(1999)observed highernumbersof arthropods (mainlyheteroptera) under afield marginmanagement ofcutting twice ascomparedto cutting once.Intheirexperiment, onecutperyearwasfound tobedevastatingbecauseit inhibited thelife cycles ofhoppersandbugs.Althoughthis effect could notbe assessed inlate mownE.I.priortoitsmowing date,observations inthe'intermediate'management type seemedtoconfirm theconclusion ofHaugthon etal.(1999).Thismanagement is often appliedbyfarmers whoareconvinced thatthereisnoneed for frequent mowing,butwhoare notabletodotheextra labour(e.g.finger-bar mowing)required for improved management. Vegetation ofthiskind ofboundaries lost itsadaptationtofrequent mowing andbecame colonisedbyruderaldicots,e.g. dandelion;bothplant growthandherbivore community seemedtobemuchmoredisturbed following afirstcut after May 15thwithaflail mowerset atalowcut levelthan following traditional management. 4.3.2. Predatorsandparasitoids Predatorswerepromotedby'improved E.I.1withregardtobothnumbers anddiversity. Accordingly, Wakeham-Dawson etal.(1999)found atwotimesincrease ofspidernumbers inlonggrazedascomparedtoshortgrazedvegetation andarguedthatvegetation structureis akeyproperty (Curry, 1994).Theobservedpredator numberswereparticularly correlatedto detritivore numbers andnottoherbivorenumbers.Predatorswerelessabundant in'grassy E.I.'(with abundant herbivores) ascompared toopen swards.Inopen swards,spiders,the generallypredominant species inthepredator functional group,wereaccompanied byahigh proportion ofants. Highparasitoid numberswerealsorelatedtoimproved E.I.,although thesenumberswere muchsmallerthannumbersinthecrop,suggestingthatthegroupismoreaffected bycrop areafactors. Howevertheincreasedproportion ofparasitoids inthearthropod communityof 'grassyE.I.'maysuggest arelationtotheabundance ofhomopteranhosts. 4.3.3. Detritivoresandr-herbivores Thesegroupswerenot included inthehypothesesbecausetheywereexpected tohave little importance.However thedetritivorous component oftheE.I.vegetation dwellers showedto beverysignificant, particularlyinimproved E.I.Possiblydetritivorous diptera andwoodlice were favoured bytheincreased amount offibrous litterandstalks and ahigherhumidity in tallvegetation. Theearliermown vegetation of'grassy E.I.'mayprovide another litterquality that supportsother,not sampled,taxa,e.g. fungivorous staphylinids (Smeding etal, 2001a). r-Herbivores hadvariablebut generally lowabundance inE.I.andnosignificant differences betweenmanagement typeswere found. Numbers ofaphidsinE.I.werehighly correlated withnumbersinthecrop(Pearson correlation coefficient=0.96, P<0.0001).However, distinctive cropcommunities withmanyorfew aphidsweremoreor lessevenlydistributed overthedistinctive E.I.management categories. 26 4.4. Differences and interactions between crop area and ecological infrastructure 4.4.1. Differences According to the hypotheses predators, K-herbivores were more abundant and species rich in the E.I. as compared to the crop area. Detritivores were more abundant and both more species rich and diverse in the E.I. The vegetation dwelling arthropod community included several differentiating taxa compared to the crop area. These observations clearly indicate the increased resource of various plant tissues and structures in perennial vegetation as compared to annual crops (Curry, 1994). Parasitoids and r-herbivores were more abundant in the crop area. Only two taxa were significantly more abundant in the crop than in the E.I.; according to observations of Venhorst et al. (in prep.), aphidophagous syrphid abundance increased towards the crop centre, probably due to the increase of prey availability. The ratio between E.I. and crop arthropod numbers (excluding aphids) on the 13 studied farms, was on average 2.8. However, including aphids, seven of 13 studied farms had more arthropod individuals per m in the crop area than in the E.I. Accordingly Remmelzwaal & Voslamber (1996) found in Zuid Flevoland, the highest arthropod numbers in the E.I. in spring and early summer, whereas numbers (of particularly crop herbivores) became higher in the crop area later in the season. 4.4.2. Interactions Visual assessment of E.I.-crop area gradients suggested that higher average densities in the E.I. of predator, K-herbivore and detritivore functional groups might relate to increased average densities in the adjacent crop area. However crop area conditions could have a much stronger effect on the distribution of these groups. In particular, crop canopy density supporting K-herbivores, and factors supporting detritivorous diptera, may offset potential E.I. influence on the crop community. Difference between the 10m and 30 m sampling station with regard to abundance, species richness and diversity of K-herbivores, detritivores and predators were generally insignificant, indicating that the influence of E.I. on the crop community in the summer, may stop before 10 m or might reach further than 30 m. Aphids in the crop area may be transported and accumulated into emergent structures like ditch slopes and tall vegetation (Hradetzky & Kromp, 1997). This might explain the correlation of E.I. predator abundance to aphid abundance in the crop (Pearson correlation coefficients. 69, P<0.01). Intermediate numbers of parasitoids and aphids at the 10 m sampling station may indicate the effects on these groups of arthropods (e.g. predators) in the field margin. Detritivorous diptera taxa, emerged in the crop area, may also accumulate in the E.I.; however an increased diversity and occurrence of differentiating species in the E.I. suggested that this group is at least partly autochthonous in the field margin habitat. 4.5. Conclusions Comparison of vegetation dwelling arthropod functional groups in the wheat crops on thirteen organic arable farms suggested that both organic duration and 'intensity' are determining factors. Intensity relates to crop rotation (i.e. percentage gramineous crops) but also to soil nutrient level. Observations provided no support for the general hypothesis that organic duration and extensive crop rotation would promote abundance of both primary arthropod functional groups and consequently, support predator and parasitoid numbers. 27 Resultsindicated ashift orsuccession inarthropod functional group compositions from recentlyconverted farms to longduration farms with extensive croprotation. Inrecently converted farms pest susceptible crops,e.g. duetoluxurious growth,may attract various herbivores andtherefore supportpredator abundance.Inlongduration farms, arthropod communities arenotnumerousbutmorediverse.However inthesecommunities,related also tocropcondition,particularly r-herbivores (aphids)maynotbecontrolled. However, in extensive croprotation a'subsidised increased detrital subweb',related toincreased total organicmatter input,may supportpolyphagous predators.Thesepredatorspossiblydepress theherbivore subweb (i.e.herbivores andspecific predators)bybothpredationand competition. Inthiscommunity, aswell asinotherobserved communities,effects of'predator interference' couldplay arole,e.g. inreleasingparasitoids from predation orcompetitionby (oligophagous) vegetation dwellingpredators. Accordingtoourhypotheses improved E.I. (i.e.largearea and latemowing)promoted the predacious functional groups.Howeverherbivore abundancemay alsobehigh inthe traditionalmanagement. Thedetrital functional group (particularly diptera) contributed stronglytothedistinctionbetweenimproved E.I.andotherE.I.typesandwastherefore a moreimportant component intheE.I. arthropod communitythanweexpected. E.I.had generallymuchhigherdensitiesofnon-pest arthropodsthanthecrop areaandthese arthropodsmight therefore disperse intothecroparea.However itwasdifficult todetectthese E.I.effects because cropconditions werevariablebetween farms andcrop areaconditionshad astrongeffect onfunctional group abundancewhich mayhaveoffset theE.I. effect. 4.6. Recommendations Furtherresearchrelated tothis studymayconcerntheimpact ofdetrital subsidy(Wiseetal., 1999;Polis&Hurd, 1996)inarable farming systems,andmight specifically address predation pressure incropswhereepigeicpredatorsfindabundant detritivorousprey.Herethe conceptual issue isindirect control oftheherbivore subweb,includingpests,by management ofthedetritivore subweb,i.e. the soilsystem (DeRuiter etal, 1993;Brussaard, 1998). Connected withthethemeofdetrital subsidy,arestudiesonhighertrophic levelsinthe farm food web,which aresupportedbyboth detrital andherbivore subwebs.Relationsbetween bothprimary subwebsmay affect food availability for insectivorousbirdsthat havevalue for nature conservation. Interference betweenpredatorsmightbeanother important research topic.Information on intraguildpredation andsubsequent releases oftaxa at lowertrophiclevels,might explain features that arepossibly commoninarthropod communities onfarms (Tscharntke, 1997). Appropriate studyareas forresearchwithregardtodetrital subsidy,predator interference and food webstructure shouldinclude,preferably, acombination ofrelatively similar (commercial) farms, and additionally experimental fields for testing extreme management options.Practice farms areimportant studyobjects,because effects mayonlyoccur ina farming system,and suchfarm level experiments arevery expensive;anotherreason isthat experimental manipulation onfarms mustnecessarily remainwithintheboundaries oforganic agriculturalproduction systemswhichmay safeguard the later applicability ofresearch outcomes. Withregardto functional group assessment, improved definition oftheassemblages is needed. Inparticular,herbivorous taxamightbe aggregated inamore sophisticated way.For 28 exampleHald&Redderson (1990) distinguished crop-related andnon crop-related herbivores,and Tscharntke (1997)distinguished endo-andectophagous species. Foroptimisation ofE.I.withregardtoarthropod functional groups,further comparative research including experiments ofmowingregimesmightberequired (e.g. Boatmanet ai, 1999;Remmelzwaal &Voslamber, 1996).These studies should alsotakeinto account detritivorous androotherbivorous arthropods.Additional attention inarablefieldmarginsis required for abundant molluscsandearthworms andtheeffects ofantnestsonthe arthropod community. Withregard topractice,results suggestthat improvingthe ecological infrastructure is worthwhile: inparticular, latemowing isimportant toenhance arthropod numbersand diversity.However, frequently mownmarginswithintact swardscanalsoharbourhigh insect densities.Itmightbebettertoavoid an'intermediate'typeofmowingmanagement, involving few cutsperyearand alate(June) first cuttogroundlevelwithaflail mower. This management isprobably deleterious for arthropod abundance.Withregard tothepromotion ofbeneficials inthecrops,moreresearchisstillneededtofind soundlybasedpractical recommendations relatingtocropandecological infrastructure management. Acknowledgements Theauthorswould liketothankthe farmers whoallowedusaccesstotheir land,andKees Booij andClasienLock(PRI-WUR)whogavevaluable suggestions andprovidednecessary equipments.TheworkattheWageningen University isfunded bytheMinistry ofAgriculture, NatureManagement andFisheries,Department of Science andKnowledge Dissemination. 29 Chapter 3: Shifts infunctional group composition ofground dwelling arthropods inrelation toecologicalinfrastructure and conversion toorganic farming F.W. Smedinga,C.A.M. Lockb&C.J.H. Booijb "DepartmentofPlant Sciences, Biological Farming Systemsgroup, Wageningen University, Wageningen, TheNetherlands ''PlantResearch International, Wageningen, TheNetherlands Abstract Hypotheses on therelation of farm management and ecological infrastructure (E.I.) characteristics to the functional group composition ofground dwelling arthropods inthe crop and E.I.were tested on organic arable farms. The study area included 8farms that varied with regard tothe studied traits.Arthropods were collected by pitfall traps inwheat crops and adjacent canalbanks. Observations in the crop area suggested that the arthropods were affected by farm 'intensity', as defined by crop rotation, manuring and soil cultivation. Broadly in accordance with thehypotheses, relativelyhigh abundance ofpredacious beetles, lycosid spiders, granivorous beetles and folivores were found incrop areaswith acomparatively low 'intensity'. In contrast tothe hypotheses, small staphylinid beetles, asrepresenting thedetritivores, seemed tobe associated with ahigh 'intensity', andthe linyphiidspiders suggested anassociation tolarge continuous fields. Contrarytoimproved E.I., traditionally managed E.I. enhanced specific groups like lycosid spiders, small staphylinids as well as ground dwelling herbivores. Improved E.I.did not support ahigh density ofground dwellers in the summer. Comparison of crop area and E.I. observations suggested that themost numerous epigeic groups (predacious beetles and linyphiid spiders) inboth crop area and E.I.were affected by crop area conditions. Possible interactions between epigeic arthropod predators arediscussed with reference to field observations. 1.Introduction 1.1.Biodiversity-loss in agriculture Populations ofvarious animal andplant specieson farmlands inindustrialised countries are seriouslydeclining duetoagricultural intensification (e.g.Paoletti, 1999;Fulleretal.,1995; Andreasen etal, 1996).Thisbiodiversity-loss isamatterofgreat concern for ecologists, agriculturists aswell asthe generalpublic(Paoletti, 1999;Wood &Lenne, 1999),whoare increasingly awareofboththeintrinsic aswell astheeconomicvalueofbiodiversity. Toreversethistrendofbiodiversity-loss, development ofmulti-species orsustainable farming systemsisprobablyneeded (Vandermeer etal, 1998;Altieri, 1994, 1999;Almekinderset al, 1995).These farming systemsutiliseecosystem servicesprovidedbybiodiversity (e.g.pest control, soil fertility) andmay alsogiveroom fornatureconservation-worthy biodiversity of whichtheutilityisnotclear(Duellietal.,1999).Severalexamplesofmulti-species farming systempractices areelaborated byAltieri (1994),Wood &Lenne (1999),andotherauthors. Development ofmulti-species farming-systems mayrequire specific research approaches, particularly withregardtothestudy areaandstudiedvariables.Firsttheresearch shouldtake site-specificity ofbiodiversity into account (Vandermeer etal, 1998),and should preferably start from 'nearlynatural systems'which exhibit theprocesses onwhich ecosystem services arebased (Brown, 1999a).Secondthevariables,should specifically addressthe farm-, or higher levelsofaggregation (Almekinders etal, 1995),andtherefore addressthewhole biocoenosis (Biichsetal, 1997).Thismayinvolverecognition oftheholistic conceptthatnot 31 all structures atthesystem levelcouldbepredictedbycomponent knowledge(Stobbelaar& VanMansvelt, 2000;Bockemuhl, 1986;Sheldrake, 1988, 1991).Third thepredictor variables shouldremainclearlyrelated todecisions inthefarm management, sooutcomes canbe translated tofarming practice andpolicy,includingmanagement ofsemi-natural habitatson thefarm (Vereijken, 1998;Smeding&Joenje, 1999;Park &Cousins, 1995). 1.2.Organicfarms andecological infrastructure Among appropriate objects inEurope for empirical system-oriented research on farm biodiversity areprobably organic farms, corresponding toproduction guidelines 2092/91in theECcountries (Anonymous, 1991);themaintenance andutilisation ofbiodiversity is inherent tothephilosophy oforganicfarming. Researchprovidesevidence that organic farming ascompared toconventional farming involvesincreased numbers and species diversityofbirds(Chamberlain etah, 1999;Braaeetat, 1988),vegetation dwelling arthropods(e.g. Moreby &Sotherton, 1997;Hald&Reddersen, 1990),epigeic arthropods (reviewedbyKromp, 1999),earthworms (Pfiffner &Mader, 1997),arableweeds(e.g. Van Elsen,2000;Smeding, 1993)andhabitats(e.g. Stobbelaar&VanMansvelt,2000; Chamberlain etal, 1999). Ofparticular interest,because oftheirincreased similarity to'nearlynatural systems'(Brown, 1999a),mightbe farms that combineorganic croppingwith apurposefully enlarged, spatially distributed anddiversified ecological infrastructure. Inthisarticle ecological infrastructure (E.I.)isdefined asthetotalofsemi-natural(aquatic,woody,tallherb and grassy)habitatson the farm including itsspatial arrangement (Smeding &Booij, 1999).Invarious farming systems,enlarged anddiversified E.I.enhancesthenumbersanddiversity of indigenous plants andanimals atthe farm level,includingthecroparea(e.g. Joenje etal.,1997;LaSalle, 1999;Boatman etal., 1999).Inorganic farms thismaycontribute topest control (Kromp& Meindl, 1997;Theunissen &Kohl, 1999)andtosoil fertility (Brown, 1999b). 1.3. Foodweb approach Anappropriate methodology forbiodiversity research, addressing variables athigher levelsof aggregation,isoffered byrecentadvancesinresearchoffood webs(Polis&Winemiller, 1996;Pimm, 1991).Theseadvances,including some studiesinagricultural habitats (e.g. De Ruiteretal, 1995;Tscharntke, 1997),areproviding inspiring examplesofhow (agro) ecosystems canbeapproached athigher integration levelsthanthe species-level. Someofthis researchindicatesthat farm food webs canmediatetheeffects ofenvironmental factors on species(Wiseetal, 1999;Tscharntke, 1997). Ourgeneralhypothesis aboutthefarm food webonorganic arablefarms with improved E.I. isbased onthree sub-hypotheses: Firstthatthedetrital webisenhanced bytheincreased organicmatter input,involving organic manure,compost andcropresidues (ofcerealsand leypasture),andrelates to increased numbersofinvertebratemeso-andmacrofauna (e.g. Pfiffner &Mader, 1997;Weberet al, 1997;Idingeretal, 1996;Heimbach &Garbe, 1996). Second that numbers ofvariousnonpestherbivorous functional groups areenhanced byimproved E.I. (Holland &Fahrig,2000; Boatman etal, 1999)but alsobyorganic cropcharacteristics (Hald &Redderson, 1990; Morbeby &Sotherton, 1997).Third,combined increaseofdetrital andherbivore invertebrates relates toacumulative positive effect ontheabundance ofpredatorswhich feed onprey from bothdetrital andherbivore subsystems (Wiseetal, 1999;Idingeretal, 1996;Sunderlandet 32 al, 1996a;Kromp, 1999).Thiseffect isacceleratedbythe frequently occurring food shortage onfarms, limiting theabundanceofbothpredacious invertebrates (Booij etal., 1996)aswell asvertebrates (Poulsen etal, 1998). Additionally weexpectthat successionof food webstructurerequirestime(Idinger &Kromp, 1997;Idinger etal, 1996),possibly uptoatleastoneortwocroprotations.Former application ofpesticides anddepletion oforganicmatter andsoilcompaction duetoreliance onartificial fertilizers maynegatively influence therateofthissuccession{e.g. Paoletti, 1999). 1.4. Hypothesesandobjectives Ourfieldstudywasfocussed onfunctional groupcomposition ofground dwellingarthropods, comprising detritivore,herbivore andpredator groups.Particularly theepigeicpredatorshave major quantitativeandfunctional importanceinthefarm foodweb,linkingthedetritaland grazerfood chains (e.g. Kromp, 1999;Sunderland, 1991).Complementary studies,published elsewhere,weredevotedtovegetationdwellingarthropods (Smedingetal.,2001b)and insectivorousbirds(Smeding &Booij,2001). Applyingthe farm food webhypotheses toground dwelling arthropod functional groupswe expectedtofind moreepigeicpredators,detritivores andherbivoresincropsoforganic farms withalongduration and/or extensive croprotation (i.e.highproportion ofgramineouscrops). Wealsoexpectedtoobservepositive effects ofimprovedE.I. (i.e.largeareaand appropriate management) onthe abundance ofpredacious andherbivorous functional groups inboth cropsandE.I.Althoughpartsofthishypothesesarealreadytested (references mentioned aboveande.g. Ryszkowski etal.(1993) andRyszkowski &Karg (1991),whocompared above-ground insectbiomassinvariousagriculturallandscapes),hypothesesintegratingthe effects ofduration oforganicmanagement andeffects ofE.I.management on functional groupcompositionhavenotbeentestedso far. Thus,theobjectives ofthisstudywere: 1. todeterminetheabundanceofground dwelling arthropod functional groupsinthecrop areaandintheecological infrastructure oforganicfarms, andrelatetheabundanceof these groupstocrop areaand ecological infrastructure characteristics; 2. torelatethe abundance ofground dwelling arthropod functional groups inthecropareato their abundance inthe ecological infrastructure. 2. Materials and methods 2.1. Studyarea Thestudywasdoneonorganic farms intheprovince ofFlevoland,TheNetherlands.The farms arelocated inthethreepoldersNoordoostpolder, Oostelijk Flevoland andZuidelijk Flevoland (Fig.l). Thesethreepolderswerereclaimed around 1940, 1957and 1968 respectively, and aredominated byagricultural landuse.Thesoil isacalcareous clay-sandy clayofmarineorigin.Flevoland waschosenasastudy areabecause ithasaconcentration of organic farms that aresimilarwithrespecttotheirhistory andtopography. Therearecurrently 75economically viableorganic arable farms inFlevoland, which aregenerally large(c.30-70 ha)andintensiverelativetootherorganic arable farms inEurope. 33 Eight farms wereselectedbasedondifferences incrop areaandE.I. characteristics (Table 1). Theselection included sevencommercial organic farms andone experimental farm. The selected commercial farms wereall arable,althoughtwo(farms NandT)possessed astable with livestock, whichreceived fodder crops from thesamefarm but grazed elsewhereduring thesummer. Theexperimental farm ofWageningenUniversity (farm E)isamixed dairyand arable farm. Fourcommercial farms (farms A,T,L, andD)wereEcological Arable Farming Systems(EAFS)prototype farms during 1992-1997(Vereijken, 1997);amongthese farms, farm Aisdifferent becauseitissituated intheyoungest polderZuidelijk Flevoland andjoined theEAFS-project afew yearslaterthantheothers.FarmsAandNstarted in 1985onan experimental reclamation area,which hadnever received pesticides. w Fig. 1.Study area. Theinvestigated organic arablefarms are represented by closed circles. 2.1.1. Croparea characteristics Organicduration oftheselected farms ranged from onetotwelveyears.Ploughingisdone generally at25-30cmdepth. Onallthe farms a6-7 yearcroprotation ismaintained,with 6-11different cropsper farm. Together thefarms comprised 542ha arableland withper farm 15-33%cereals,0-36%leypasture, 10-31%traditional lifted crops(potatoes, sugarbeet)and 19-69%vegetable crops.Vegetables involvemainly onions,runnerbeans,variouscabbages, peas,andsweetcorn.Thefarms withmostextensivecroprotationshadahighpercentage (>30%)ofgramineous crops(cerealsandleypasture) andtherefore alowpercentage (<50%) ofvegetablecrops.Ascomparedtoothercrops,gramineous cropsprovide alargeamountof carbon incropresidues andrequire few soildisturbing operations.Because inputofnutrients (N,P,K)hastobe adjusted tocroprequirements, andvegetables need morenutrients than cereals,intensity ofcroprotation isassumedtorelatetoboththeamount ofcropresiduesand the amount ofN-applicationatthe farm level. 34 Table1 Characteristics of thefarms and ecological infrastructure and totalnumbersperform of arthropod functional groups captured inweekly trappings over aneight weekperiod inthe wheat crop (30mfrom the field margin) and in theecological infrastructure. Level Farm Farm Farm Farm E.I. E.I. E.I. E.I. E.I. E.I. Variables n Yearoforganicfarming (n) Cerealsandleypasture (%) Cropswithin 100mrangeofE.I. (%) Semi-natural habitat (E.I.) (%) Mowingdate(farm level)(month) Mowingfrequency (n/year) Heightvegetation (m) Covervegetation (%) Speciesdiversity vegetation (n/4m2) Dominant speciesdiversity (n/4m2) Agepolder (year) Crop Crop Crop Crop Crop Crop E.I. E.I. E.I. E.I. E.I. E.I. D 8 35 72 3.5 7 2 1.4 95 16.0 3.8 57 L E 10 4 11 61 80 90 3.1 4.5 6 6 2 2 0.8 1.5 100 85 13.2 11.8 3.0 3.4 41 41 A 12 38 47 2.1 7 2 0.4 98 10.5 3.4 30 N 12 59 40 0.8 5 3 0.5 67 9.3 2.8 30 Predaciousbeetles Lycosid spiders Linyphiid spiders Small staphylinid beetles Granivorous carabids Folivores 1731 1333 3765 1011 1035 2889 8 57 38 18 83 35 1944 2979 2622 2515 2055 1687 541 893 425 640 772 205 15 7 4 3 19 504 5 7 21 13 6 8 952 53 3061 1308 5 4 1064 146 3311 329 83 3 Predaciousbeetles Lycosid spiders Linyphiid spiders Small staphylinid beetles Granivorous carabids Folivores 926 64 2554 709 66 100 1365 87 2508 739 52 104 1319 535 2577 703 149 275 dur int ei 100 area mow mowfrq eihgt eicov eispn eidom lsage T 8 38 74 2.3 9 1 2.4 95 12.0 3.4 41 F 7 24 74 1.4 5 2 1.1 88 9.5 3.1 41 1205 2808 208 302 880 4235 444 334 83 79 150 33 R 1 18 65 1.6 5 3 0.7 77 7.5 2.3 41 832 46 1191 365 253 38 1706 2603 168 226 1607 1930 217 411 291 279 61 35 2.1.2.Ecologicalinfrastructure characteristics TheEcological Infrastructure (E.I.)of arable farms inFlevoland ismainlydeterminedby canals andbanks(together c.3-4mwidth)that arelaidoutaslinearherbaceous boundaries adjacent tothecrops.Onfivefarms, boundaries arewiderbecause of adjacent (2-3mwide) grassstrips,often includingclovers(Trifolium spp.),ononeorbothsidesofthecanals.Farm Ealsohasgrassstripsbetween cropplots.Percentages ofE.I.higherthanc.2%(Table 1) weremainly duetothepresence ofthesegrass strips.Onlyfarms Land Epossessed a boundaryplanted with ahedgerow. Spatialdensity ofE.I.ispurposefully increased on farm E (Smeding &Joenje, 1999)and farm L.Thespatial arrangement ofE.I.ontheother6 farms mainlyreflect landscape scale. Extremetypesofvegetation management are: - 'traditionalmanagement' involvingthreeor four morecutsperyearwithaflail mower leavingthe shredded cuttings in situ; - 'latemowingmanagement' involvingoneortwocutsperyear after June21 stwitha fingerbarmowerwith ahiabgrab forremoval ofcuttings. Thegrassstripsalongthecanals arerequired forfieldtransport in'latemowingmanagement'. TheE.I.areais,therefore, related tothemowing date.Inthis articletheE.I.withenlarged areaandlatemowing isdefined as'improved E.I.'.Theimproved E.I.onthe four farms (A,T, L,andD)wascreated duringtheEAFS-prototyping researchprogram in 1992-1997 35 (Vereijken, 1997, 1998).Theimproved E.I.ontheexperimental farm Estarted in 1995 simultaneously with conversion oftheconventional dairy farm toanorganicmixed farm (Smeding&Joenje, 1999). Dominant plant species incanalbank swardsare:couch (Elymus repens),perennial meadow grasses (Festuca rubra,Poatrivialis,Loliumperenne,Agrostisstolonifera),commonreed (Phragmitis australis)and afew perennial herbs:dandelion {Taraxacum officinale) and stingingnettle (Urtica dioica).Canalswithtraditional managementhavealow,relatively open, speciespoor vegetation (<10species/4m2),dominatedbyafew grass species.Late mowingparticularlyrelatestoincreased vegetationbiomassinJuneandJulyasexpressedby vegetation height (upto 1-3 m)and cover(upto90-100%).However, latemowingdoesnot necessarily relatetoincreased higherplant speciesdiversity for tworeasons:a)tall grass speciesmaydominate thesward;b)swardsoftraditional management may locallybecutto ground levelandtherefore beinvadedbyruderals and annuals (increased speciesnumberup to 15species/4m2),e.g. thistles (Cirsium arvense, Sonchusarvensis),annualweeds(e.g. Sonchusasper,Polygonumaviculare)and annualsthatarerarelypernicious weedsin Flevoland (e.g. Myosotisarvensis, Veronicapersica, Cardamine hirsuta). Highperennial plant diversities found insome locationsmayrelatetovarious interrelated factors (Kleijn, 1997):reduced vegetation productivity,removal ofhay,nutrient buffering by thegrass strip,andlongorganicduration.However, also,artificial speciesintroduction is involved; intheEAFS-project, around 90different nativeperennial dicotswere artificially seededinthecanalbankstoobtainhigherplant diversityand flower abundanceofplantswith limiteddispersal capacity (Vereijken, 1998).Although few specieswere ableto settlewell (e.g. Seneciojacobea, Crepis biennis, Heracleum sphondylium), theintroduction clearly affected speciesdiversity:vegetation includingsiteswith>15species/4m wereconfined to prototype farms. 2.2.Samplingandmeasurements 2.2.1.Arthropodsampling Samplingwasdoneinwheat cropsandinadjacent canalsbanks (E.I.)which were situatedin theinterioroftheorganic farm area.Wheat (Triticum aestivumL.)waschosen asa representative crop asthiscropiscommon onorganic arable farms inFlevoland and arthropod numbers incereals arelargecompared tonumbers inothercommon cropslike potatoesandonions(Booij &Noorlander, 1992).Withinonewheatfieldoneachoftheeight farms one60x30m2 sampling areawasselected; thisareawas 60m longbordering acanalby 30mperpendicular tothat canal.Sixpitfall traps (10cmdiameter) wereplaced inarowwith intervalsof 10matdistancesof0m(E.I.) and30m(wheat) from the field boundary. Traps contained apreservativeof4% formaline plusdetergent. Weekly samplesweretaken during8 weeks,startingfrom 6thofJuneuntil28th ofJuly 1998.Theobservations ofthesixtrapsand eight sampling datesweretreated separately, giving 48measurementsperhabitat (cropor E.I.)per farm. Springtails (Collembola), andants(Formicidae)werediscarded because pitfall trapsdonotgiverepresentative measurements ofthesegroups.Arthropodswere storedin 95%alcohol.Individuals weresortedtotaxaatorder- orfamily-level andplaced intosix different arthropod functional groups: - Predaciouspolyphagousbeetles including carnivorous Carabidae and large (>6mm) staphylinid beetles; - Lycosid spiderswhich arerelatively largepolyphagous predators andrepresent diurnal wandering spiders (Marcetal, 1999;Sunderland, 1991); 36 - Linyphiid spiderswhich arerelatively small species andrepresent highly dispersive sheetweb spiders (Marc etai, 1999;Sunderland, 1991); - Small staphylinid beetles oftheepigeobiontic lifeform (Bohac, 1999)which aremainly fungivorous andrepresent thedetritivore functional group amongepigeic arthropods; - Granivorous carabidbeetles (generaAmaraandHarpalus)representing the invertebrate granivore functional group;althoughthese carabidsmay feed, tosome extent,on invertebrates aswell(Westerman etal, inprep.); - Folivorous herbivoresrepresentedbyweevils(Curculionidae) and leafhoppers (Cicadellidae). 2.2.2. Vegetation measurements Vegetation studiesincluded theE.I.wherepitfalls werelocated. Theinvestigation wasdone from MaytoAugust:latemownvegetationwassampled inJune-Julybefore thefirstcut. Early andor frequently mown vegetation wassampledbefore thefirstcut (May)orlater (until August)when species composition couldbeidentified adequately. Theherb layerwas sampled insevenplotsof4m2areawith intervalsof50mbetween samples.Plotsincluded theditchbankvegetation from thetoptothehelophytic zone;vegetation affected by flooding wasexcluded. Parameters were:cover,maximum height,plant species anddominantplant species (totalling 80%cover).Averageswerecalculated for each farm. 2.2.3.Farmmanagementandlayout A 1:5000mapwasmadeofeach farm, depicting thedifferent crops andthe ecological infrastructure (E.I.).Onthesemapstheareaofsemi-natural andcrophabitatswere measured. The'E.I.-area' iscalculated asthepercentage ofsemi-naturalhabitat ofthefarm area (without the farm yard).Farmrotation intensityisdefined astheproportion ofgramineous crops (cereals andleypasture) ofthetotalcroparea.Thespatial arrangement oftheE.I.or'E.I. density',was expressed asthepercentage ofthe farm within a 100mdistance oftheE.I.In casethecanalbankvegetation wascutboth after September 15th andbefore May 15th,a distance of70mwas considered. Theinfluence offieldmargins ontheabundance oflarge carabidbeetles andspidersprobably doesnot exceed 70-100m(Booij,unpublisheddata). Dataontheyearofconversion ofallofthe farm toorganic,husbandrypracticesinthewheat crop in 1998,andmowing ofcanalsbanks andgrassstripswereobtained usinga questionnaire. Themowingmanagement isrepresented bythemonth ofthefirst cut,because thiscut largely determines thephenological stageofthevegetation inJune andJuly. 2.3.Statisticalanalyses Data from all samplingperiodswerecombined, tested for normality and log-transformed. Allsubsequent analyseswereconducted using Statistical Analysis System (SAS Institute, Cary,NorthCarolina). Individual farms wereclassified intooneofthreegroups onthebasisofcorresponding farm andE.I.characteristics (Table 1).Withregardtothecropareasamples,the classifications werebasedonrelevant farm level characteristics (duration,rotation intensity, areaofE.I.,and E.I.density).Withregard totheE.I. samples,theclassifications werebased onboth farm level characteristics aswell asE.I.-vegetation characteristics (duration, E.I.-area, monthof first mowing,vegetation cover,vegetationheight, plant speciesnumber ordominantplant speciesnumberper4m2).Theclassifications weredetermined bytwosplits:thefirstsplit basedononeoftheabovementionedcharacteristics,separated acategoryof2-3farms and thesecond splitbased onanother ofthesecharacteristics,divided theremaining 5-6 farms ina 37 second andathirdcategory. Theminimumcategory sizewas2farms.Forall obtained classifications canonical discriminant analyseswereperformed onthenumbersofthe arthropod functional groups.Dataofthecrop areaandoftheE.I.wereanalysed separately for cropareaandE.I.classifications respectively. Theclassifications withthehighest Wilks' LambdaF-valuewere selected. Stepwise andcanonical discriminant analyseswereperformed onthenumbersof arthropod functional groupstodeterminethemostimportant groupsthat couldclassify the farms into threecategories.Arthropod observations inthewheat andintheE.I.were again analysed separately. Stepwisediscriminant analysiswasalsousedtoidentify variables that contributed mosttotheselected classification. Canonical discriminant analysiswasusedtodeterminethe magnitude anddirection oftheassociation ofindividual variableswith indicatorvariables. Standardised canonical coefficients largerthan 0.3dividedbythe squarerootofthe eigenvalueofthecanonical function (Afifi &Clark, 1984)were considered large enoughto contribute significantly tothe classification. Differences intheabundance ofarthropod functional groupsbetween thethree categories weretestedbylinearregression (GLM)using the 10log-transformed measurements and u including aDuncan'smultiplerangetest. Thecombined data-set ofwheat andE.I. sampleswasusedtoanalysetheabundanceof arthropod functional groups alongthegradientfromE.I.tocropcentre,representedbytwo sampling distances0m(E.I.)and 30m(wheat)fromthefieldmargin. ANOVAwas performed onthetwoselected classifications todetermineinteractionsbetween distanceand category. 3. Results 3.1. Observednumbers ofepigeic arthropodfunctionalgroups During eightweeks 77,784organisms werecaught in96pitfall traps including 40,233 organisms inthecropareaand37,551organisms intheEcological Infrastructure. Croparea samplescomprised 33%predacious carabidbeetles, 1%large (>6mm)predacious staphylinid beetles, 1%lycosid spiders,50%linyphiid spiders, 13%small (<6mm) detritivorous staphylinidbeetles,0%folivores and2%granivorous carabidbeetles.E.I. samples comprised 33%predacious carabidbeetles, 1%largepredacious staphylinid beetles,4%lycosid spiders, 10%smalldetritivorous staphylinidbeetles,47%linyphiid spiders,2% folivores (Curculionide andCicadellidae) and2%granivorous carabidbeetles. 3.2. Arthropodfunctional groupsinthecroparea,affectingdistinctions amongfarm categories Theclassification 'int/area'based oncroprotation intensity(first split) and areaofthe ecological infrastructure (second split)gavethebest separation ofcrop area arthropod observations (canonical discriminant analysis,Wilks'Lambda,F-value=30.1,PO.0001; Table2).Thesecondbest classification 'eilOO/dur'(Wilks'Lambda,F-value=28.1,PO.0001) wasinterestingbecausethedistinction wasaffected bythethemost abundant group predaciousbeetles,whereasthedistinction ofthebest classification wasonly affected byless abundant groups.Therefore both classifications arepresented below. 38 Table2 Examples of classifications of thecrop area and theecological infrastructure, including the the Wilks'Lambda F-value and thesquared canonical correlation obtained bycanonical discriminant analysis. Theabbreviations of category characteristics areexplained in Table1. Crop area: Category Farms Category Farms Category Farms Category Farms Category Farms Category 1 int>40 NE eil00<70 ANR int<20 RL int<30 ARL dur<6 RE Ecologica 1 infrastru :ture: Category 1 Category eispn>12 Farms TLD Category eispn>12 Farms TLD Category eihgt<0.5 Farms AN Category mow>7 Farms TED Category eicov<80 Farms NR Category2 int<40 & area >2.2 TLD eil00>70 & dur<8 FE int>20 & eil00<50 AN int>30 & area<2.2 FN dur>6 & area<2.2 ANF Category 3 int<40 & area <2.2 AFR eil00>70&dur>8 TLD int>20 & eil00<50 TFED int>30 & area>2.2 TED dur>6 & area>2.2 TLD F-value Sq. Can. 0.52 30.1 Category 2 eispn<12 & eicov>80 AFE eispn<12 & eihgt>l FE eihgt>0.5 & mow<7 FRL mow<7 & eidom>3 FL eicov>80 & mow<7 AFL Category 3 eispn<12 & eicov<80 NR eispn<12 &eihgt<1 ANR eihgt>0.5 &mow>7 TED mow<7 & eidom<3 ANR eicov>80 &mow>7 TED F-value Sq. Can. 0.32 15.9 28.5 0.46 22.8 0.34 19.7 0.32 12.0 0.19 15.7 0.33 14.2 0.27 12.7 0.25 11.9 0.23 Table3 Arthropod variables that contributed significantly toclassification of thecrop area observations in'int/area' farm categories bystepwise and canonical discriminant analyses,standardised canonical coefficients, andmean valuesper crop area category. Comparison ofarthropod numbers in thecategories byDuncan's multiple range test. Variablesa Granivorous carabids Lycosid spiders Small staphylinids Linyphiid spiders Folivorous insects Predacious beetles Canlb Mean values andmultiple rang Standardised coefficient Category 1: int>40 0.89 c 0.43 -0.39 0.15 -0.05 -0.04 mean 6.1 1.9 5.6 52.1 0.1 41.3 a a b b b a Category 2: int<40& area>2.2 mean 0.3 b 1.0 b 15.3 a 48.5 b 0.1 b 28.5 b e comparison Category int<40& area<2.2 mean 0.1 0.8 16.5 56.9 0.3 39.8 3: b b a a a b (PO.0001) (P<0.0001) (P<0.0001) (PO.01) (P<0.05) (P<0.05) "Variables are listed in order ofselection by stepwise discriminant analysis. Italicised variable wasnot selected by stepwise discriminant analysis. b Canonical function 1;responsible for 95%ofthe variation. c Standardised coefficients >0.29 were considered large enough for interpretation. 39 3.2.1. Classification'int/area' Category 1 included farms with anextensive croprotation (>40%cerealsand leypasture); category2included farms with anintensivecroprotation andalargeE.I. area(whichwere thethree former prototype farms inOostelijk Flevoland);category 3included farms withan intensivecroprotation and asmallE.I.area. All arthropod functional groups exceptpredaciousbeetles,wereselected asimportant factors by stepwisediscriminant analysis for discrimination amongthethreecategories (Table3). Thefirst canonical function containinggranivorous carabidbeetles,lycosid spiders,and small staphylinid beetles separated category 1 (extensivecroprotation) farms from bothother categorieswith intensivecroprotation (Fig.2);granivorous carabids and lycosid spiderswere positively associated, andsmallstaphylinid beetleswerenegatively associated withthis first axis(Table 3).Inthesecondcanonical function noneofthearthropod groupshad sufficient canonical loading;however, linyphiid spiders contributed mosttotheseparation ofcategories 2and3,andwerepositively associated withthesmallE.I. areaofcategory3. A D - cJ&Acg nDQn ° • 1 -2 4 can 1 Fig. 2.Plot ofthesecond andfirst canonicalfunctions discriminating amongfarm categories of the classification 'int/area'.Squares representfarms with >40%gramineous crops; circles representfarms with <40%gramineous crops and >2.2%E.I. area; triangles representfarms with >40%gramineous cropsand <2.2%E.I. Onfarms withextensive croprotation (category 1),granivorous carabid beetleswere>20 timesmoreabundant onaverage, lycosid spiderswere>90%more abundant onaverageand small staphylinid beetleswere >60%lessabundant onaverage,than ontheothertwo categories.Linyphiid spiderswere 15%more abundant onaverageincategory 3(intensive croprotationwith smallE.I.)thanincategory 2(intensive croprotation with large E.I.) (Table3). 3.2.2.Classification 'eilOO/dur' Category 1 included farms with large scaleE.I./landscape;category 2included farms witha spatiallydenseE.I.andmoderately long(4-7years)organicduration;category 3farms hada spatially denseE.I.and alongorganic duration (8-10years) (thesewerethethree former prototype farms inOostelijk Flevoland). 40 10 Theseparation into'eilOO/dur'categories,based onarthropod functional groupnumbersin wheat,isillustrated inaplotofcanonical variabletwoversus canonical variable one(Fig.2). Allarthropod functional groupswereselected asimportant factors bystepwise discriminant analysis fordiscrimination amongthethreecategories (Table4).Thefirst canonical function containingpredacious beetles,small staphylinid beetles andgranivorous carabids separated the farms with denseE.I.andmoderate duration (category 2) from bothothercategories (Fig. 2).Predaciousbeetlesandgranivorous carabidswerepositively associated and small staphylinidbeetleswerenegatively associated withthefirstaxis(Table4).Inthesecond canonical function noneofthe arthropod groupshad sufficient canonical loading;however, linyphiid spiders contributed mostthe separation ofcategory 3and 1,andwerepositively associated with alargescalelandscape (category 1). Inextensive farms (category 1),predacious beetleswere>2timesmore abundant onaverage, granivorousbeetles>8timesmore abundant andsmall staphylinid beetleswere>2timesless abundant onaverage,than intheothertwocategories.Linyphiid spiderswere>20%more abundant onaverageincategory3(largescalelandscape farms) thaninbothother categories (Table4). Table4 Arthropod variables that contributed significantly toclassification of thecrop area observations in 'eilOO/dur' farm categories bystepwise and canonical discriminant analyses, standardised canonical coefficients, andmean valuesper crop area category. Comparison ofarthropod numbers inthe categories byDuncan's multiple range test. Canlb Mean values andmultiple range comparison Standardised Category 1: coefficient eil00<70 Variablesa Predacious beetles Small staphylinid beetles Lycosid spiders Granivorous carabid beetles Linyphiid spiders Folivorous insects 0.86 c -0.42 -0.26 0.28 -0.06 0.16 mean 21.1 15.8 1.5 0.6 61.7 0.1 c a a b a b Category 2: eiI00>70& dur<8 mean 69.3 a 6.6 b 0.8 b 5.3 a 44.9 b 0.3 a Category 3: eiI00>70& dur>8 mean 28.5 b 15.3 a 1.0 b 0.3 b 48.5 b 0.1 b (PO.0001) (PO.0001) (P<0.0001) (P<0.0001) (P<0.0001) (PO.05) a Variables are listed in order of selection by stepwise discriminant analysis. Canonical function 1;responsible for 86%ofthe variation. c Standardised coefficients >0.32 were considered large enough for interpretation. b 3.3. Arthropodfunctional groupsintheEcologicalInfrastructureaffectingdistinctions among E.I. categories Theclassification 'eispn/eicov',basedonE.I.-species number (first split) and E.I.-vegetation coverassecond split gavethebest separation ofobservations (canonical discriminant analysis,Wilks'Lambda,F-value=15.9 (P<0.0001);Table2).Classifications basedonorganic duration, E.I.area,dateoffirstmowing,E.I.-vegetation height anddominant speciesnumber showed lessdistinction thantheclassification 'eispn/eicov'(Table2).Category 1 included speciesrichE.I.onprototype farms inOost Flevoland; category 2included aless speciesrich E.I.with adensevegetation;category 3included aspeciespoorE.I.with open vegetation relatedtotraditionalmowing management. 41 Theseparation into'eispn/eicov'categories,based onarthropod functional groupnumbersin theE.I.,isillustrated inaplot ofcanonical variabletwoversuscanonical variable one(Fig.3). Allarthropod functional groupswereselected asimportant factors bystepwise discriminant analysisfor discrimination amongthethreecategories (Table5).The first canonical function separated thespeciespoorcategories 2and3from eachother (Fig.3);predaciousbeetlesand linyphiid spiderswerepositively associated withdensevegetation andgranivorous carabid beetleswerenegativelyassociatedwithdensevegetation(Table5).Inthesecondcanonical function noneofthearthropod groupshad sufficient canonical loading;however, linyphiid spiders contributedmosttothe separation ofcategory 1 from both categories 2and3,and werenegatively associated with speciesrich vegetation. can 1 Fig. 3.Plot of thesecond andfirstcanonicalfunctions discriminating among E.I. categories of the classification 'eispn/eicov'.Circlesrepresent theE.I. withplant species number >I2; squares represent E.I.withplant species number <12and vegetation cover >80%;triangles representE.I.withplant species number <I2 and eicov<80. Predacious carabid beetlesand linyphiid spiderswere>70%and>50%respectively more abundant intheE.I.withfew plant speciesanddensevegetation (category 2)ascomparedto othercatagories. Granivorous carabidswere>30%moreabundant inE.I.with speciespoor andopenvegetation (category 3;'traditionalmanagement');also folivores weremore abundant herebut didnotcontribute tothedistinctionsbetween thecategories becauseof theirlownumbers(Table5). 42 Table5 Arthropod variables thatcontributed significantly toclassification of E.I. observations in 'eispn/eicov'categories bystepwise and canonical discriminant analyses,standardised canonical coefficients, and mean valuesper crop area category. Comparison of arthropod numbers inthecategories byDuncan's multiple range test. Canlb Mean values and multiple Standardised Category 1: eispn>12 coefficient Variablesa Predacious beetles Granivorous carabids Linyphiid spiders Small staphylinids Folivorous insects Lycosid spiders -0.92 c 0.52 -0.51 0.43 0.32 0.27 mean 26.7 3.1 35.0 9.5 1.1 3.1 b b b b b b Category 2: eispn<12& eicov>80 mean 47.2 a 2.9 b 60.2 a 10.3 b 0.8 b 4.3 b -ange comparison Categorj' 3 : eispn<12 & eicov<80 mean 22.6 b 4.2 a 39.3 b 11.1 a 1.7 a 6.1 a (P<0.001) (PO.001) (P<0.001) (P<0.1) (PO.001) (P<0.05) "Variablesare listed inorder of selection by stepwise discriminant analysis. b Canonical function 1;responsible for 89%of thevariation. c Standardised coefficients >0.43 were considered large enough for interpretation. 3.4.Interactionsbetween distancetoE.I. andfarm category Abundance oflycosid spiders,granivorous carabidbeetles and folivores were significantly higher intheE.I.thaninthewheat (Table 6).Thedistribution of linyphiid spiders showeda preference for thecrop area.Abundance ofpredacious beetles and small staphylinid beetles didnot significantly differ between cropareaandE.I.(Table6). Table6 Average numbers ofarthropodfunctional groups intheE.I.and inthe wheatcrop (30mfrom thefield margin). Comparison of log-transformed values byDuncan's multiple range test. Arthropod functional group Predacious beetles Lycosid spiders Linyphiid spiders Small staphylinids Granivorous carabids Folivorous insects E.I. 12764 1636 17482 3922 1252 446 a a b a a a Crop area 13780 438 20174 5113 640 67 a b a a b b Significance (NS) (PO.001) (PO.001) (NS) (PO.001) (PO.001) Highnumbers ofpredacious beetles andlycosid spidersintheE.I. coincided withhigh numbers inthecroparea(Fig.4aand4b).Thedifferences inlinyphiid spiders (Fig.4c)and granivorous carabid beetles(Fig.4d)weresimilar fortheE.I.categories 1('prototype farms') and3('traditional management').However, thedifference ofthesespecieswasintheopposite direction inE.I.-category 2(speciespooranddensevegetation):high linyphiid abundancein theE.I.decreased towardsthecrop area,whileitincreased inboth other categories (Fig.4c); granivorous carabidbeetles incategory2weremostnumerousinthecrop areaandleast numerous intheE.I. (Fig.4e).Increased numbersof small staphylinidbeetles and folivores in theE.I.didnot alwayscoincidewithincreased numbers inthecrop area (Fig.4eand 4f): distribution patternsof small staphylinids wereveryvariable; folivore abundance intheE.I. wasdifferent between categoriesbutwasgenerally lowinthecrop area. 43 B: lycosid spiders A:predacious beetles 0.6 2 00 o 60 O 1.5 2 0.2 1 Om 30 m Om 30 m D: small staphylinids C: linyphiid spiders 1.1 2 i 0.8 0m 30 m Om 30 m F: folivorous insects E: granivorous carabids 0.8 0.3 0.6 0.2 0.4 o - 0.2 0.1 0 0m 0m 30m 30 m Fig. 4. Theabundance ofarthropodjunctional groups intheE.I. (0m)and in thecrop area (30 m). E.I. categories ofselected classification 'eispn/eicov': Category I (squares)=species rich E.I. vegetation; category2 (triangles)= speciespoor and dense vegetation; category 3=(circles)speciespoor and sparse vegetation. Lines between theaverages of arthropodfunctional group numbers('"log-transformed) aredrawn to illustrate the differentpatterns among the threeE.I. categories and do notrepresent estimatedpoints inbetween thesampling stations, (a)predacious beetles (b)lycosidspiders; (c)linyphiid spiders; (d)small staphylinid beetles; (e) granivorous carabid beetles; (f)folivorous insects. 4. Discussion 4.1.Epigeicarthropodsinthecrop area 4.1.1.Observations comparedtothe hypotheses Itwasexpected that organic duration, extensivecroprotation, areaofE.I.,andhigh spatial densityofE.I.wouldrelatepositively withtheabundance ofpredacious and herbivorous grounddwelling arthropods.Also,that organic duration and extensive croprotation would relatepositivelytotheabundanceofdetritivorousepigeicarthropods.Allmentioned factors indeedrelatedtodifferences intheabundance ofthearthropod functional groups involved in 44 the study.However only afew oftheobservations ofthedirection ofchangesof abundance, wereinaccordancewith thehypothesis:lycosid spiders(whichwerethe least abundant predaciousfunctional group) andgranivorouscarabidbeetlesshowed affinity for extensive croprotation;predaciousbeetleswereassociatedwiththe farms withdenseE.I. Mostobservationsdidnotcorrespondwithourhypotheses.Extensivecroprotations (farm N andE)had alow abundance of (epigeic)detritivores,representedby smallstaphylinids. Predaciousbeetles andlinyphiids,representing 84%ofallobserved epigeic arthropods inthe croparea,didnotprefer extensivecroprotation,neither alargeE.I.areanoralongorganic duration. Contrarytoexpectation,prototype farms whichhad alongduration, alargeE.I.area andadensespatial arrangement ofE.I.,harboured comparatively lowabundanceofall five predacious andherbivorous functional groups. 4.1.2.Smallstaphylinidbeetles Contrarytoourhypothesis, anabundance ofdetritivorous staphylinids seemedtobe associated with 'intensity' includingnotonlypercentage gramineous cropsbut also interrelated management factors likemanure application, soilcultivation,weed controland pest controlbyentomopathogens. Ambiguousbehaviour of staphylinidswithregardto intensity, ascompared tootherlargeepigeic groups,isfound instudieswhichrelatetotillage treatment (Heimbach &Garbe, 1996)andfarming systemscomparisons (Booij &Noorlander, 1992;Reddersen, 1997;Biichsetal, 1997).However,positive effects onstaphylinidswere reported withregard tomanure(Bohac, 1999)andhousewastecompost (Idinger &Kromp, 1997).Inacomparisonoffour, long-durationorganicfarms inanoldculturelandscapeand polder landscape,more staphylinidswere found inthepolderwhichrepresents anearlier successional stageof soilcommunity (Smeding &Booij, 1999). Ourobservations anddata from literaturemay suggestthat small staphylinid abundanceis positively relatedtoacertain quantityoforganicmanure andfrequent soilcultivation. Small staphylinidsmaytherefore notbeanappropriateindicator fortheaggregate functional group ofsaprovorous arthropods (including also large Collembola andDiptera larvae);lowC/N ratio andfibercontent oforganicmatterinputcould relatetodominancewithinthis functional groupby smallstaphylinids. 4.1.3. Predacious beetles Theobserved highest densitiesofpredacious beetles(mainlycarabids)werenot associated with longorganicduration orextensive croprotation. Thisobservation iscontradicted by severalfieldstudies inwhich carabidswere found tobe associatedwith lessintensiveor organic crops(e.g. Booij &Noorlander, 1992;Holland etal, 1996;Basedow, 1991).Several authorsreported that theunderlying factors whichpositively affected carabidswerecrop coverandweeds,manure andless frequent soilcultivation(DenNijs etal., 1996;Hollandet al., 1996;Booij &Noorlander, 1992;Idinger etal, 1996).Therefore itcouldbepossiblethat the farm category 2withmoderately long-duration farms mighthavehad alower 'intensity' (accordingtotheabovegivenwiderdefinition) thancategory 3withlong-duration farms; category 3included former prototype farms whichhadproceeded further inoptimalisation of intensivevegetableproduction. Wheatcrops in 1998offarm category 2hadrelatively high weed densities,including Capsella bursa-pastoris onfarm EandPolygonumaviculareon farm F,andtherewas anapparent abundance of springtailson farm F,although wedidnot measurethese features. Onboth farms,therobust carabid speciesPterostichus melanarius dominatedthecarabid community,whichwasalso found inthemostextensive systemsof comparative studiesbyBooij &Noorlander (1992) andHolland etal.(1996). 45 4.1.4. Spiders Superior dispersive abitilies of linyphiid spiders are stressed by several literature sources {e.g. Sunderland, 1991; Halley et al, 1996). This could explain the observed positive association with farms that have a low E.I. density. Both farms in Zuidelijk Flevoland had a long organic duration but the polder is young (1968) which implies larger fields and also apossibly earlier successional stage of the soil biocoenosis. Farm R is the most recently converted farm in the study area and is situated centrally in a very open landscape part of Oostelijk Flevoland. Abundance of linyphiid spiders might also indicate an earlier successional stage of the epigeic community (that could be sustained in large scale landscape with less reinvasion possibility). Accordingly, Idinger et al. (1997) observed most linyphiids in the inorganic as compared to organic treatments. In all the epigeic arthropod data there was anegative correlation between large organisms (mainly carabids) and small organisms (mainly linyphiids). This suggested that intraguild predation might influence functional group composition of ground dwellers. According to Sunderland et al. (1996b) linyphiid abundance might be affected by predation. Lycosid spiders were positively associated with extensive crop rotation. This was in accordance with other studies which found that lycosids prefer organic above conventional farms (Idinger et al, 1997) and belong to later stages of succession (Biichs et al, 1997). This suggests that lycosids are the most vulnerable functional group among predacious ground dwellers. 4.1.5. Ground dwelling herbivores With regard to granivorous carabids, extensive crop rotation or lower 'intensity' was probably correlated with (weed) seed availability. Several studies reported the relation between mobile granivorous carabids and presence of weeds (De Snoo, 1995;Kromp, 1999). Folivores seemed to be an insignificant group in the crop area and were slightly affected by 'intensity' {e.g. weed control). The higher mid-field densities in less intensive systems observed by Hald & Reddersen (1990) and Biichs et al. (1997) were collected by vacuum sampling or emergence traps respectively, which might be more appropriate sampling methods for this group. 4.2. Epigeic arthropods in the Ecological Infrastructure 4.2.1. Observations compared to the hypotheses Our hypothesis was that improved E.I. would promote the densities of predacious and herbivorous epigeic arthropod functional groups. However, observations did not provide evidence for this hypothesis. The E.I. category based on high plant species number, included the most succesful examples of improved E.I. This catogory involved the three former prototype farms in Oostelijk Flevoland. In this E.I. all six investigated functional groups had decreased densities as compared to other categories. Highest densities of ground dwelling detritivore and herbivore functional groups were found in the E.I. category with presumed adverse management ('traditional management' including a damaged sward). 4.2.2. Small staphylinid beetles Although detritivores were not considered in our hypothesis with regard to the E.I., observations suggested that small staphylinids might be an important functional group in field margins. Small staphylinid numbers were positively associated with 'traditional management'. This observation suggests that staphylinids could be supported by the shredded and easily decomposable litter of frequent cuts. In a field margin study in Zuidelijk Flevoland, staphylinid density increased in the grass margins with 4 cuts per year as compared to crop 46 edges (Remmelzwaal & Voslamber, 1996). Accordingly, Canters et al. (1997) found that staphylinids related positively to mowing frequency. Preference of small staphylinids to crop as compared to E.I., observed in the 'prototypes' category (late mowing) was in accordance with observations of Holland & Thomas (1996). 4.2.3. Predacious beetles In improved E.I. in early summer, predacious beetles may be a relatively small component of the arthropod community, because potential prey is foraging or resting higher in the vegetation canopy. High densities of vegetation dwelling arthropods were found in improved E.I. by means of vacuum sampling (Smeding et al., 2001b). Similar observations with regard to predacious beetles were done by Haysom et al. (1999) in grassed headland; lowest densities of carabids were observed in the uncut and 1cut per year sites as compared to 3 cuts per year, field centre and unmanaged boundary sites. However, the highest predacious beetles abundance were observed in tall and species poor vegetation. Interpretation of this abundance may require a consideration of crop area influence. 4.2.4. Spiders Linyphiid spider abundance in E.I. was difficult to interpret inrelation to E.I. characteristics and probably requires consideration of interaction with the crop area density. Lycosid spiders prefer sites with a warm microclimate (Remmelzwaal & Voslamber, 1996); this may explain the observed positive relation to 'traditional management'. 4.2.5. Ground dwelling herbivores Granivorous carabids and folivores showed positive association with the 'traditional management' of frequent mowing without litter removal. With regard to the carabids this might be explained by the occurence of annual species in open locally disturbed swards; these plants have short life cycles, may have ascendant phenotypes and can provide seeds early in the summer. With regard to folivores more frequent cutting may improve the food availability near the soil surface, because the vegetative stage of the vegetation is sustained by the inhibition of flowering. Observations by Haughton et al. (1999), involving around 85%bugs and hoppers (Hemiptera), showed a devastating effect on arthropod numbers by 1cut per year in the summer as compared to 2 cuts per year in spring and late summer. In our study such a devastating effect was not found, however folivore numbers captured by pitfalls indeed showed a positive association with frequent mowing. 4.3. Comparison of Ecological Infrastructure and the crop area 4.3.1. Differences between E.I. and crop area According to the hypothesis, lycosid spiders, granivorous carabids and folivorous insects showed a higher abundance in the E.I. than in the crop area. However, abundance of the most numerous functional groups (predacious beetles, linyphiid spiders and small staphylinids) did not significantly decrease towards the crop. In the case of linyphiid spiders the opposite was found, which corresponds to the observations of Holland & Thomas (1996) and could relate to the dispersive abilities discussed above. The E.I. crop area distribution pattern of linyphiid spiders, granivorous carabids and folivorous insects on the farm-type with species poor and tall E.I. vegetation was significantly different from distribution patterns found on the farm types with other E.I. traits. Mean linyphiid numbers decreased towards the crop centre on this farm type, and mean numbers of granivorous carabids and folivorous insects decreased less on this farm type than in other 47 farm types.Another apparent characteristic offarms with speciespoor andtallE.I. vegetation wasthelowabundance ofsmallstaphylinids inboth E.I.andcroparea. Apossible explanation oftheseobservations on linyphiid spiders,granivorous carabids, folivorous insects and small staphylinid beetlesmayinvolvetheabundance ofpredacious beetles.Predaciousbeetleshadthehighest abundance inthecrop areaoffarms with species poorandtallE.I.vegetation. Thishighpredaciousbeetleabundance inthecrop areacould haveinterfered withtheabundanceofsmall-organism epigeicgroups.Accordingly, inthe wholedatasetamarginally significant negativecorrelation was found inthecrop area betweentotalnumber/farm ofcarabidbeetles andtotalnumber/farm ofpooled linyphiidsand small staphylinids (Pearsoncorrelation coefficient =-0.61, PO.0105). Interaction between predaciousbeetles andlinyphiid spidersmayinvolve'intraguildpredation'(Sunderland et al, 1996b).Theabovementioned increased abundance ofherbivores (i.e.granivorous carabids andfolivorous insects)incropswith abundant predacious beetles,couldindicate acauseas wellasaneffect ofpredaciousbeetleabundance: - herbivorous functional groupsindicatethe suitability ofthecrophabitat (weeds) for herbivorywhich involvesincreasedprey availability for theground dwelling beetles (Booij &Noorlander, 1992); - predaciousbeetlesreducepredationpressure onherbivoresbyinterfering with predators thatcanmore effectively hunt inthecanopy(e.g. spiders)whereascarabidsprefer tohunt atthe soil surface (Kromp, 1999). 4.3.2. Indicationsfor dispersivemovements betweenE.I. andcrop area Onlylycosid spiderdistribution suggested thattheE.I.couldbearesource for croparea populations,becauseE.I.populationsweregenerally much largerthancrop areapopulations andthelycosidabundance inE.I.wascorrelated tolycosid abundance inthecroparea. HighnumbersofpredaciousbeetlesintheE.I.werealsoassociated withhighnumbers inthe croparea.Accordingly, inthewholedatasetasignificant positivecorrelation is found betweentotalnumberperfarm of carabidbeetles inthecrop area andtotalnumberper farm intheE.I.(Pearson correlation coefficient =0.72,P<0.05).However, highnumbersof predaciousbeetlesinbothE.I. andcroparea,couldbebetter explainedby crop areatraitsthan byE.I.traits:thegroupoffarms (farms A,F,E)with speciespoorandtallE.I.vegetation overlapped withthegroupof farms witharelatively 'extensiveproduction' inthecroparea (farms F,E).Forthislattercategoryitcouldbearguedthat predacious beetleswere enhanced inthecroparea.Whereas for theformer categoryexplanationwasdifficult becausetheE.I. represented anintermediate E.I.typepossessing avegetation coverorplant speciesnumber similar tootherE.I.types.Anadditional argument fortheassertion that crop areatraitsand not E.I.traitsdetermined thehighpredaciousbeetlenumber, isthat crop area sizeexceedsthe E.I.sizeandmaytherefore includealargeramountof food for epigeicpredators than theE.I. Sincepredaciousbeetlesaremobilespecies(Thomasetal, 1997),theymay easily dwell from cropareatoE.I. andviceversa. Observations oflinyphiid spiders,amobilespecies,alsosuggested that abundance intheE.I. mightbedeterminedbycroparea abundance.High abundance inthecrop areawas associated withhighabundance intheE.I.However,thehighest abundance intheE.I.(speciespoorwith tallvegetation)wasnotrelated toahighcropareaabundance.This divergent situation might havebeenduetohighcarabid abundance inthecroparea,asexplained above. Withregardtothedistribution of small staphylinids inE.I.andcrop area,observations didnot indicatedispersivemovement. Apparentlyhigh levelsinboth E.I.andincrop areawere associatedwith lowlevelsinadjacent habitat (cropareaorE.I.respectively).High abundance 48 ineachhabitat werepossibly related tolocalhabitat factors, assuggested earlier inthispaper: flailmowing inE.I.andintensive cropmanagement inthecroparea. SincetheimprovedE.I.vegetationdidnotharbourhighabundanceofepigeic functional groups,itcouldnotbeidentified asaresource for epigeic arthropods inthecrop area.This observation andalso indications ofeffects onabundance intheE.I.bypopulations inthecrop area(withregard topredaciousbeetlesandlinyphiid spiders),areseemingly contradicting reportsonenhancing effects onarthropods of(improved) E.I.vegetation.However, these reports areoften dealingwithwinter shelter andsubsequent dispersion ofarthropods inspring (references reviewed inDeSnoo&Chaney, 1999).Itmightbepossiblethat enhancing effects ofE.I.cannotbeobserved inthe summer,becauseepigeic arthropods have already left their shelter. Subsequentlytheirnumberatthefarm-level mightbedeterminedbycroparea resourcesofinitiallydetrital and latermixed detrital/herbivoreorigin.However availabilityof shelterprovidedbyE.I.duringwinter andspringmaystillaffect thetotal farm-level numbers (Lys, 1994;Lys&Nentwig, 1992).Thisexpectationwassupportedbyobservations(inthe discriminant analyses above) ofthepositive effect of spatialdensityofE.I.onpredacious beetles.However,thiseffect maynotbeobservable inacomparison ofE.I. andcroparea numbers. 4.4. Conclusions Comparisonofepigeicarthropod functional groupsoneightorganicarablefarms suggests thatthe'intensity'ofthecropareaisamajor determining factor. Theconcept of'intensity' shouldnotonlyaddresspercentage gramineous cropsbut also,for example,manuring and soilcultivation. Length oforganicdurationbyitselfmayprovidenoclearbasis for distinctionsbetweenthefarms becauseofdifferences in'intensity' amongthe long-duration farms. Interpretation offieldobservationsdeliniatesthreemoreorlessdistinct functional groupcompositions inthecroparea: - relatively high abundance ofpredaciousbeetles(mainly carabids),lycosid spiders, granivorousbeetlesandfolivores incrop areaswithcomparatively low 'intensity'; - relatively highabundance of small(fungivorous) staphylinids incropareaswitha comparatively high 'intensity'; - relativelyhigh abundanceoflinyphiid spidersincropareaswhichrepresent anearlier successional stageduetorecentconversion ortolandscape factors. TheareaandqualityofEcological Infrastructure provided noclearbasis for distinctions between thefarms. Summer abundance inE.I.ofdominant ground dwellinggroups, predaciousbeetles andlinyphiids,mightbedeterminedbycropareaconditions. Traditional management ofE.I.,thatwas expectedtobeadverse,showedtohave aqualitatively different epigeic community andmaypositively supportlycosid spiders,small staphylinids andepigeic herbivores ascompared toothermanagement. Potential increaseofarthropod abundancein latemownE.I.maynot involvegrounddwelling arthropodsbutinvolvevegetation dwelling arthropodsthatoccurinahigherstratumofthevegetation. Increased abundanceofpredacious speciesisnot equaltothecapacity ofthecropping system tocontrolherbivorouspests(e.g. Wood&Lenne, 1999).Low epigeicpredator abundance(as observed inthe'prototypes') could indicateboth asufficiently balanced system, inwhich predatorsinhibit initialpestdevelopment, aswell asapestoutbreak susceptible system. Conversely highpredator abundancemaypositively correlate withhighherbivorouspest densitiesbecausethesepredatorsmighthavebeen supported byabundant prey.Highnumbers ofpredatorsmayindeedrepresentpestcontrolpotentialiftheywould developon detritivorousprey (Wiseetal, 1999)ornon-pestherbivorousprey(e.g. Andow, 1988; 49 Altieri, 1994)and subsequently depresspestpopulations.Tobringclaritytothis subject further investigations areneeded. 4.5. Recommendations Comparative studiesonground dwellingarthropod functional groupswouldbenefit from a further restriction ofgeographical variationbetween farms. Definition of'intensity' shouldbe based onmore farm characteristics thanonlycroprotation intensity. Ourexplorative studies mightberepeated with emphasisonthreeextremefarm types:recently (1-2years) converted farms, longorganic duration (>8years) and'intensive'cropping, andlongorganic duration extensivecropping {e.g. >35%gramineous crops,including leys).Becausethe latter category isincreasingly rareincommercial organic farming, farm experimentsmaybeneeded, particularlywheninvestigating theeffects ofincreased detrital input assuggestedbyWiseet al.(1999). More specific researchthemesmayaddress; - theecologyoftheaggregate functional group ofsaprophorous arthropods including staphylinids,Diptera, andCollumbola(e.g. Weberetal.,1997;Idingeretal.,1997); - theimportanceofintraguildpredation incrops(e.g. Tscharntke, 1997); - theeffect ofdifferent mowingregimesonarthropod communities (e.g. Haughton etal., 1999),including vegetation dwelling functional groups aswell aseffects ofpredation pressure intheE.I.duetoepigeicpredators supported byrichresources inthe croparea. Additional attention shouldbepaidtotheoften abundant butpatchilydistributed ants (Formica), becausethis speciesmaycompetewithotherpredators andmayprotect aphidsand related speciesinfieldmargins.These studiesshould extend toalargerpartofthe farm food web,whichmightbenecessary for soundlybasedpractical recommendations with regardto enhancing farm biodiversity and itspotential ecosystem services.Although nofirm conclusionscanbedrawn yet from thisfieldstudy,wethinkthat results indicate future perspectives ofafood webapproach on farms. Acknowledgements Theauthorswishtothankthefarmers whoallowedus accesstotheirland.Thanks aredueto AndreMaassen (Unifarm-WUR) for technical assistance,BertusMeijer, Bart Venhorst and JanNoorlander (PRI)for arthropodmeasurements andArienavanBruggen for her statistical help.Thework atWageningenUniversity isfunded bytheMinistry ofAgriculture,Nature Management andFisheries,Department of Science andKnowledge Dissemination. 50 Chapter 4:Insectivorous breedingbirds onorganic farms in relation tocroparea,ecologicalinfrastructure and arthropods F.W. Smeding3&C.J.H. Booij" "DepartmentofPlant Sciences, Biological Farming Systems group, Wageningen University, Wageningen, TheNetherlands Plant Research International, Wageningen, The Netherlands Abstract Hypotheses onthe relation ofarthropod functional group abundance, crop area and ecological infrastructure (E.I.) variables tothe territory density offunctional groups of insectivorous birds were tested on organic arable farms. Bird territories were mapped onorganic arable farms (eight in 1998,when epigeic arthropod were also studied, andnine in 1999,whenvegetation dwelling arthropod studies wereincluded). The farms were all situated in an open landscape dominated by agricultural landuse; skylark, linnet and meadow pippit were the most numerous species. Most birds were more strongly related tovegetation dwelling arthropods in 1999, particularly those in the E.I., than toground dwelling arthropods in 1998.The density ofbird territories could usually bepredicted by a combination of crop area and E.I.variables, including positive relations to improved E.I. characteristics. In 1999,according tothehypotheses, positive relations to organic farming duration were found; however inboth years a general negative relation to extensive crop rotation was found. It willbe discussed asto whether intensively managed crop areas may supportbirds due totheperiodic and localised herbivore increases ina crop mosaic,but also whether extensively managed crops might offer lessprey items due totheherbivore control exercisedby epigeicpredators aswell asaless susceptible cropphysiology. Late mown E.I.might possibly offer animportant food resource thatmay supplement the,often interrupted, food resources ofthe crop area. 1.Introduction 1.1. Biodiversitylossin agriculture Aseriousdeclineofthepopulation invariousplant and animal speciesonmore intensively farmed land inindustrialised countries,hasbeen shownby, for exampleFuller etal.(1995) andAndreasen etal.(1996).Thisdecline concernsnotonlyecologists and agriculturists,but alsothewiderpublic(Paoletti, 1999;Wood &Lenne, 1999).Thedevelopment ofmultispecies orsustainable farming systems isprobably neededtoreversethistrend (Vandermeer etal, 1998;Altieri, 1994, 1999;Almekinders etal, 1995).Suchfarming systems utilise ecosystem servicesprovided bybiodiversity (e.g. pest control, soil fertility), and allowa greater chance for natureconservation centeredbiodiversity. Several examples ofmultispecies farming systempractices aregivenbyAltieri (1994),Wood &Lenne (1999) andother authors. Development ofmulti-species farming systemsmayrequirespecific research approaches. Firstlytheresearch shouldtakesite-specificity ofbiodiversity into account (Vandermeeret al.,1998)and shouldpreferably start from 'nearlynatural systems'(Brown, 1999a).Secondly thevariables, should specifically addressthe farm-, orhigher levelsof aggregation (Almekinders etal.,1995).Thirdly thepredictorvariables shouldclearlyrelatetodecisionsin the farm management (Vereijken, 1997;Kabourakis, 1998;Smeding &Joenje, 1999;Park& Cousins, 1995). 51 1.2.Organicfarms andecologicalinfrastructure Organic farms that adheretotheproduction guidelines2092/91 oftheEC (Anonymous, 1991) aresuitableresearch objects asthemaintenance andutilisation ofbiodiversity isinherentto thephilosophy oforganicfarming. Research showsthatorganic farming whencomparedto conventional farming, involvesagreaternumber anddiversity of species andhabitats for birds,vegetation dwelling arthropods, epigeic arthropods,earthworms and arableweeds(e.g. Kromp&Meindl, 1997;Paoletti, 1999;VanElsen,2000;Smeding, 1993;Hendrikset al, 2000). Becauseoftheirincreased similarityto'nearlynatural systems' farms that combineorganic croppingwith adeliberately enlarged, spatiallydiversified ecological infrastructure areof particularinterest (Brown, 1999a).Inthisarticle ecological infrastructure (E.I.) isdefined as thetotalofsemi-natural (aquatic,woody,tallherb andgrassy)habitats onthe farm including theirspatialarrangement (Smeding &Booij, 1999).Enlarged and diversified E.I.enhances thenumbersanddiversity ofindigenousplants andanimals atthefarm level (e.g. Joenjeet al, 1997;Boatman etal, 1999).Thiscouldcontributetosoil fertility andpest controlon organic farms (Brown, 1999b;Kromp &Meindl, 1997;Theunissen &Kohl, 1999). 1.3. Foodweb approach Recent advances inresearch of food webs(Polis&Winemiller, 1996;Pimm, 1991)offer an appropriatemethodology forbiodiversity research, addressingvariables athigher levelsof aggregation.Theseadvances,including somestudiesinagricultural habitats (e.g. DeRuiteret al., 1995;Tscharntke, 1997),areproviding inspiring examplesofhow(agro) ecosystems can beapproached athigher integration levelsthan thespecies level.Someofthisresearch indicatesthat farm food webscanmediatetheeffects ofenvironmental factors on species (Wiseetal., 1999;Tscharntke, 1997). Ourgeneralhypothesis aboutthe farm food webonorganic arable farms withimproved E.I. isbasedonthree sub-hypotheses: Firstly,increased organicmatter inputsfromorganicmanure,cropresidues,cereals,ley pastures,andcompost,relatetoincreasednumbers ofinvertebrate detritivorous meso-and macrofauna (e.g. Pfiffner &Mader, 1997;Weberetal, 1997;Idinger etal., 1996;Heimbach &Garbe, 1996).Secondly,thenumbersofvariousnon-pest herbivorous functional groupsare increasedbyimproved E.I.(Holland &Fahrig, 2000;Boatman etal, 1999)but alsoby organic cropcharacteristics (Hald&Redderson, 1990;Moreby &Sotherton, 1997).Thirdly, combined increasesofdetrital andherbivore invertebrates relatetoacumulative positive effect onthehigher trophic level,includingbothinvertebrate andvertebrate predators,which feed onpreyfromboth detrital andherbivore subsystems (e.g. Wiseetal, 1999;Idingeret al, 1996). Itislikelythat succession toahypothetical farm food webrequirestime(Idinger etal, 1997; Edwards etal, 1999),possibly atleast thelength ofoneortwocroprotations.The succession speedmaybenegatively influenced byprevious applications ofpesticides andthedepletion oforganicmattercausedbyreliance onartificial fertilisers (e.g. Paoletti, 1999). 52 1.4. Insectivorousbirdsandarthropodpreyavailability Thecurrentfieldstudy was focussed onthe abundance ofinsect-feeding birdsinrelationto croparea,E.I.characteristics andabundance ofarthropod functional groups. Associated studies,tobepublished elsewhere,weredevotedtolowertrophiclevelsofthefarm foodweb, includingboth vegetation andground dwelling arthropods(Smedingetai, 2001a,b).The guild ofinsect-feeding birdsrepresents ahighertrophic levelthatmaybeenhancedby productivity atthebaseofthefood web(accordingtotheconcept ofOksanen etai, 1996), andtherefore reflects the'ecological carryingcapacity' ofafarming system (Braaeet ai, 1988).Birds,andtheirpreyorganisms, areinfluenced by farm characteristics.Birdsare therefore affected bothdirectly andindirectly byfarm traits.Theseindirect effects onbirds areprobably mediated throughthe food webonthe farm (e.g. Tscharntke, 1997). Bird abundanceonfarms isnot onlydetermined by foodbut alsobyother environmental factors (ascomprehensively outlinedbyAndrewartha &Birch, 1984).Importantphysical factors actingon farmland birdsmaybedisturbance andnest destructionbymachinesor trampling (e.g. Green, 1980),availability of songpostsornest sites(Stoat, 1999),weather conditionsorinaccessiblevegetation (e.g. Schekkerman, 1997).Spatial features like field size,cropdiversity androtationmaynotnecessarily relatetofood distribution.Howevermost studiesonfarmland birdsindicatethat food availability isamajor factor determiningbird density(reviewedbyPoulsen etai, 1998).Bird chicks areparticularly vulnerableto shortage ofproteins supplied bytheirinvertebrateprey(e.g. Hald&Reddersen, 1990;Aebischer, 1991;Poulsen etal, 1998). Comparative studiesbetween organic andconventional farms (Braaeetal.,1988;Hald& Reddersen, 1991;Wilson etal.,1997;Chamberlain etal.,1999;Moreby &Sotherton, 1997) emphasized the effects ofpesticide usageon food availability,becausepesticides depressed bothpreyandhostplantsofpreyonconventional farms. Contributionsofother farm characteristics affecting invertebrates weredifficult toassessbecausemost studied factors werecorrelated withpesticide application. However, Braaeetal.(1988)traced apositive effect ofmanure/fertilizer on8of35numerouslyoccurringbird species;Hald&Reddersen (1990)revealed thepossible importance ofhostplantsofFabaceae, Cruciferae, Polygonaceae, which arecommononorganic farms ascroporweed. Chamberlain etal. (1999)detected effects ofdifferent landscape structures,whichmightbemorerelevantto organic farming practices (Hendriksetal, 2000)onthebird community. Traditional farming systemsmayrevealthekeyposition offood resources for rich wildlife (e.g.ofdehesas;Edwardsetal, 1999);inTheNetherlands atraditional(i.e.orthodox biodynamic) mixed farm of8ha,possessed territories ofendangered bird species,red-backed shrike(Lanius collurio)andortolanbunting (Emberiza hortulana),probably dueto increase ofspecific preyitems(Esselink etai, 1996). Autecological research on farmland birdsgreatlycontributed todeepening the understanding oftherelationbetween cropmanagement andchick food availability. Inparticular,workon greypartridge (Perdrixperdrix) (e.g. Rands, 1985) andskylark (Alaudaarvensis) (e.g. Wilson etai, 1997;Poulsen etai, 1998;Wakeham-Dawson etal, 1998)involved detailed investigations ofhabitat selection,nesting success,diet andchick condition inrelationto farm characteristics andarthropod abundance.These studies wereabletorelate starvation ofchicks and lowterritory densitiesto apparant food shortageinthebreedinghabitat (e.g. Poulsenet al, 1998). 53 Arthropod functional groups,central toourresearch,includepreyitemsforbirds,butmany taxamaybeinsignificant becauseofsize,digestibility,repellant tasteorother characteristics assummarizedbytheconcept 'availability'. Consequently farmland birdshave distinctive preferences. Inour explorative studywechosetorelateinsectivorousbird-density tothe abundanceofentirearthropod functional groups.Contrarytoe.g. Morebyetal.(1994)and Poulsenetal.(1998)whoselected 'chick-food'withinarthropod samples,according todiets ofconsidered birds.Ourresearch, therefore, doesnotdiscernbetween direct feeding relations andshared indirect association withcertainhabitat factors. Distinguishing different bird functional groupswithknownspecific food andhabitatrequirements improvesthebasis for interpretation withregardtopossible causal factors. However,thisresearch wasprimarily concernedwithrelatingbird functional group abundance (determined byits specific food with emphasisonchickdiets)toarthropod functional groups (indicatingthe farm food web structure)inanattempt tolinkautecological research(e.g. Poulsen etal, 1998)to farming systemsresearch(e.g.Swift &Anderson, 1993; Vereijken, 1997;Wolfert, 1997;VanKeulen etal, 1998). 7.5.Hypothesesandobjectives Fivefunctional groupsofbirdsfeeding oninvertebrates areexamined.Thedistinctionis basedondifference inadultdiet (insect,mixedinsect-plant/seed orsoil life) andhabitat preference (field orfield margin).Foreachgroup,specific hypotheses werederived from the above-explained generalhypothesis withregard tothefarm foodweb. 1.5.1. Insecti-granivorous birdswithfieldaffinity Thesebirds feed onthegroundonplants.Theywereexpected tobe supported byground-and vegetation dwellingdiurnal predators andherbivores inthecrop area.Farm management features whichwereexpected toenhancethepopulation ofthesebirdswere areduced number ofmachineoperations (whichdisturbtheirnests) andtheoccurrenceofcerealcropsand weedswhich supplyarthropods andseeds.Therefore extensivecroprotationswere expected tofavour thisgroup.Thisgroup isrepresentedbytheskylark (Alaudaarvensis)whichis knowntofeed itschickswith largespiders,carabidbeetlesand largesized herbivores (sawfly andlepidopteran larvae,beetles).Youngchicksreceiveboth smalland large soft-bodied insects,for exampleherbivorous larvae,andolderchicksreceivemore largehard-bodied insects,for examplebeetles(e.g. Wilsonetal, 1997;Poulsenetal, 1988).Skylarksare particularly attractedbygrass leys(set-aside) andspringcereals.Theyprefer opencropsto forage, andavoiddensecrops. 1.5.2. Insecti-granivorous birdswithE.I. affinity Thesebirdswereexpected tolookfor theiranimal food inthevicinity oftheir seedresources atthesoil surface, onplantsintheE.I.andincropedges.Herethesebirdsfindground living andvegetation dwellingdiurnalpredators andherbivores.Farmmanagement features which wereexpected toenhancethisgroupwerethe amountofE.I.onthe farm, thetiming ofE.I. cutting andthevariation ofE.I.vegetation, including fruiting dicots.These factors would mainly influence theirfood availability sincenests areusuallynot locatedin herbaceous vegetation.Thisgroup ismainlyrepresentedbythelinnet (Carduelis cannabina), which feeds itschickswithinvertebrates toavarying extent,captured ontheground aswell asonplants; chick dietsincludebeetles,spiders,fly adult and larvae,andcaterpillars,but alsosmall herbivores likeaphids(Cramp, 1988). 54 7.5.3.Specialistinsectivorous birdswithfield/E.I. affinity Thesebirds areabletocapture flying insects.Therefore theirdensitywas expectedtorelateto thenumber ofvegetation dwelling diptera,whichdominatetheairborne arthropod community;thesediptera aremainly adultsofdetritivorouslarvaeand (root)herbivorous larvae{e.g. Tipulasp.).Probably toalesserextent,thegroupwouldbesupported bynumbers ofvegetation dwellingpredators {e.g. syrphids)andfolivorous herbivores.Farm management factors thatwereexpected tofavour field-inhabiting insectivorousbirdswouldbe organic duration andextensive croprotation becausethese factors werepresumedto supportthe detrital food web.Alsotheamount andquality ofE.I.wasexpected toinfluence fieldinhabiting insectivorousbirdnumbers,becauseadultsofmany flying insects from various trophicgroups areattractedby flowers intheE.I.Thisgroupisrepresented bythe Motacillidaespeciesincludingwagtails{Motacilla sp.)andmeadowpipit {Anthuspratensis). Wagtailsareknowntofeed onflies andmidges,including smallindividuals from 1-2 mm, but alsoonbeetles(carabidsaswell asherbivorous species) (Cramp, 1988).Meadowpipit adultsseemtofeed onsmallpredominantly dipteraninsects (<5mm)(Cramp, 1988)andare often seentoforage onthegroundbeneathcropcanopies.However chicks areoften tobe fed with large(>1cm)soft larvae(Cramp, 1988),that aregenerallyherbivorous.Pipits onarable farmsmostlyoccurinfieldmargins(Scharenburg etal, 1990). 1.5.4. Specialistinsectivorous birdswithE.I. affinity Thesebirds feed onvegetation dwelling arthropods ofvarioustrophicgroupsintheE.I.and areexpected toprefer quantity(height andcover)abovequality {e.g. speciesrichness)ofE.I. vegetation. Theamount ofE.I.(boundarywidth, areaandspatial density)might contributeto thedensityofthesebirds(Stoat, 1999).Thisgroupismainlyrepresentedbyreedwarbler {Acrocephalusscirpaceus) andreedbunting {Emebriza schoeniclus).Innorthern claydistricts inTheNetherlands,dominatedbyarable farming, abundance ofbothbirds isclearlyrelatedto thelengthofditcheswithold (>1year)reed stands (Scharenburg etal, 1990).Ditchesin Flevolandwith amowingregimepromotingreed growthwererapidly colonizedbyreed warbler andalsomarshwarbler (Remmelzwaal&Voslamber, 1996).Dietsinclude awide rangeofarthropodtaxathatcanbefoundwithinthisvegetation (Cramp, 1988). 1.5.5. Soillife-feedingbirds Prey itemsofsoil-life feeding birds includemainly soilmacrofauna, including detritivores (earthworms) androotherbivorous insect larvae (particularly Tipulasp.)and additionally epigeic arthropods (carabidbeetlesand spiders).Open fields without vegetation orwith sparseorvery lowvegetationprovidebest accesstosoillife.However, fields thatremain openduring springand early summer,receiveintensive farming procedures that disturb nesting.Thegroup ismainlyrepresented byLapwing {Vanellus vanellus).Food availability for lapwing chicksisoften critical becauseofagriculturalpractices.Dry soil isharderto penetrate andlimitstheaccesstosoilmacrofauna. (Schekkerman, 1997;Beintemaet al, 1991,1995). 1.5.6. Insecti-granivores versusspecialistinsectivores Withregardto food requirements ofcombined groupsofinsecti-granivorous and specialist insectivorous birds,ourhypothesis wasthattheinsecti-granivorous groupwill showaclearer relationship with grounddwellling arthropods (sampled bypitfall traps)than specialistbirds. Furthermore,weexpected thatvegetation dwellingpredatorswouldbethemost important common food resourceofthe four functional bird groupsbecause oftheirgenerally larger size.Totalbirddensityisexpectedtoberelatedbothtothis groupofvegetation dwelling predators aswell asto farm characteristics that favour detrital webnumbers{i.e.duration, extensive croprotation) andflowers/seeds intheecological infrastructure. 55 1.5.7. Landscapeeffects Birdsmaybeaffected bydifferences intheterrain.Forexample,inthenorthern clay district inTheNetherlands, skylark,blue-headed wagtail,meadowpipit andquail(Coturnix coturnix) prefer openterrain.Marshbird abundance is favoured bycontinuousreedhabitat of 1.5-3 km length(Scharenburg etal, 1990).Therefore alsolandscape differences between farms were takeninto account. 1.5.8. Objectives Thus,theobjectives ofthisstudywere: 1. todeterminetheterritory densityofinsectivorousbirdsoforganicfarms, andrelatethis densitytotheabundanceofarthropod functional groups; 2. torelatetheterritory density ofinsectivorousbirdsoforganic farms totheextentofonfarm ecological infrastructure, andvegetation andcrop characteristics. w 20 Kilometers Fig. 1.Study area in 1998-1999:five farms withbirdand arthropod studies in 1998as well as 1999are represented bysquares; onefarm with birdandarthropod studies only in 1998isrepresented by across;two farms with birdand arthropod studies in 1998and onlybirdstudies in 1999are represented by circles; two farms withbirdand arthropod studies in 1999arerepresented by triangles. 56 2. Materials and methods 2.1. Study area Thestudywascarried outonorganic farms intheprovince ofFlevoland, TheNetherlands. Thefarms arelocatedinthethreepoldersNoordoostpolder, Oostelijk Flevolandand Zuidelijk Flevoland (Fig. 1).Thesethreepolderswerereclaimed around 1940, 1957and 1968, respectively, and aredominatedbyagricultural landuse.Thelandscape isvery flat andopen withwood lotsconfined to farmyards, villagesandmainroads.Thesoilisacalcareousclaysandyclayofmarineorigin.Flevolandwaschosenasourstudyareabecauseithasa concentration oforganic farms that aresimilarwithrespecttotheirhistoryandtopography. There arecurrently 75economically viableorganic arable farms inFlevoland,which are generally large(c.30-70ha)andintensiverelativetootherorganicarable farms inEurope. TableI Characteristics of thefarms, ecological infrastructureand landscape (200ha, including thestudied farm). 1998 Level Variable Abbrev. A N T F Farm n year organic farm (n) 12 12 8 Farm Cereals and ley pasture (%) DUR INT 59 Farm Farm % of crop area within 100 m range E.I. (%) 38 74 Semi-natural habitat (E.I.) (%) EI100 AREA 38 47 7 24 E.l. Mowing date (farm level) (month) Mowing frequency (n/year) MOW 7 5 9 5 E.I. MOWFRQ 2 3 1 2 E.I. Height vegetation (m) EIGHT E.I. Cover vegetation (%) EICOV 1.8 98 1.1 82 1.8 97 1.0 88 E.I. Species diversity vegetation (n/4 m2) Dominant species diversity (n/4 m 2 ) EIDOM 12 3.4 8 2.8 11 3.4 9 E.I. Landscape Age polder (year) LSAGE 41 41 Semi-natural habitat landscape (%) Cereals/ley pasture landscape (%) Vegetables landscape (%) 8 44 5 32 5 Landscape Landscape LSNAT LSINT 30 4 34 30 Landscape LSVEG 38 23 17 Farm n year organic farm (n) DUR 13 Farm Cereals and ley pasture (%) 13 24 32 Farm Weed abundance (class) INT WABUN Farm Farm % of crop area within 100 m range E.I. (%) Semi-natural habitat (E.I.) (%) Ell00 AREA E.I. E.I. Mowing date (farm level) (month) Mowing frequency (n/year) E.I. E.I. Height vegetation (m) Cover vegetation (%) E.I. E.I. Species diversity vegetation (n/4 m2) Dominant species diversity (n/4 m 2 ) EIDOM Landscape Age polder (year) LSAGE 2 EISPN 40 1 2 L E 1 10 4 8 18 11 70 35 51 2 80 3 90 5 72 4 5 6 3 0.7 2 6 2 2 0.7 92 97 10 3.0 10 3.4 15 41 41 41 57 4 7 4 26 5 27 23 27 16 29 22 51 21 K Z 74 1 R 85 6 2.3 3.1 1.2 1999 MOW MOWFRQ EIGHT EICOV EISPN 2 0.4 2.3 9 1.2 1 2 11 42 3.9 33 1.8 18 12 20 66 1 8 16 47 40 74 74 72 2 1 2 1 2 7 2 1.8 5 3 1.1 9 1 5 3 1.0 3 0.7 98 12 3.4 31 82 8 2.8 31 1.8 97 U 3.4 42 88 9 3.1 42 5 84 9 2.8 42 1.3 5 2 0.4 82 8 2.5 42 2.3 2.3 2.4 80 80 90 1 3 5 5 7 2 0.7 3 0.7 6 85 92 2 1.2 97 6 10 10 2.3 42 3.0 42 Tenfarms were selectedbased ondifferences infarm structure andecological infrastructure (E.I.)traits(Table 1).Theselection includedninecommercial organic farms andone experimental farm. Theselected commercial farms areallarablealthough three(farmsN,T, andK)possessastablewithlivestock fedonfodder cropsfrom thesamefarm but grazing 57 5 72 3.4 42 D 7 1.1 94 3.8 28 elsewhere duringthe summer. Theorganic experimental farm ofWageningen University isa mixeddairyand arable farm. Fourcommercial farms (A,T,LandD)wereEcological Arable Farming Systems (EAFS)prototype farms during 1992-1997(Vereijken, 1997, 1998).Among thesefarms, farm Aisdifferent becauseitissituated intheyoungest polder Zuidelijk Flevoland,andjoined theEAFS-project afew years laterthantheothers.FarmsAandN startedin 1985onanexperimental reclamation areawherepesticideshadneverbeenused (Remmelzwaal, 1992). Bird and arthropod studies in 1998involved 8farms (total 542ha)inthreepolders (Fig.1). Bird and arthropod studies in 1999involved 7farms (total 392ha)thatwereconfined tothe polder Oostelijk Flevoland. Ontwofarms inpolderZuidelijk Flevoland (farms AandN;216 hastudy area)onlybird studiesweredonein 1999. 2.1.1. Croparea characteristics Theorganicduration oftheselected farms ranged from oneto sixteenyears (Table 1). Ploughing isgenerally at25-30cmdepth.Onall farms a6-7yearcroprotation is maintained, with 6-14 different cropsper farm. Theproportions ofdifferent typesofcropper farm ranged inboth yearsfrom 10-70%for gramineous crop (cereals and leypastures), 10-28%for traditional lifted crops(potato,beet) and20-11% for vegetables (mainlyonions,peas,sweet corn,variouscabbages,redbeet andrunnerbeans). Thefarms with themost intensive croprotationshad upto60%vegetables and therefore a lowpercentageofgramineous crops (cereals,leypasture).Ascompared toothercrops, gramineous cropsprovide alarge amount ofcarbonincropresidues andrequire fewer proceduresthat causesoildisturbance.Becauseinput ofnutrients (N,P,K)hastobe adjusted tocroprequirements,andvegetables needmorenutrientsthancereals,intensity ofcrop rotation isassumed torelatetoboththeamount ofcropresidues andtheamount ofNapplication atthefarm level. 2.1.2.Ecologicalinfrastructurecharacteristics Canals andbanks (together c.3-4mwidth)that arelaidoutaslinearherbaceous boundaries adjacent tothecropsmainlydetermine theecological infrastructure (E.I.)ofarablefarms in Flevoland. Onfive farms,boundaries arewiderbecauseofadjacent (2-3mwide) grassstrips, often including clovers(Trifolium spp.),ononeorboth sidesofthecanals.Farm Ealsohad grassstripsbetween cropplots.Percentages ofE.I.higherthanc.2%(Table 1)weremainly duetothepresenceofthesegrass strips.Onlyfarms K,LandEpossessed aboundaryplanted withahedgerow. Spatial density ofE.I.ispurposively increased on farm E(Smeding& Joenje, 1999)and farm L;thespatial arrangement ofE.I.ontheother6farms mainly reflects landscape-scale features. Extremetypesofvegetation management are: - 'traditional management' involving threeor four morecutsperyearwith aflail mower leavingtheshredded cuttings insitu; - 'latemowingmanagement' involving oneortwo cutsperyear after June 21st with a fingerbarmowerwith hiabgrabfor removal ofcuttings. Thegrass strips alongthecanalsarerequired fortransport on farms with a'latemowing management'. E.I.areaistherefore relatedtomowingdate.InthisarticletheE.I.with enlarged areaand latemowing isdefined as'improved E.I.1.Theimproved E.I.onfour farms (A,T,L,andD)wascreated duringtheEAFS-prototyping researchprogram in 1992-1997 (Vereijken, 1997).Theimproved E.I.ontheexperimental farm Estarted in 1995 simultaneously withconversion oftheconventional dairy farm toanorganicmixed farm (Smeding &Joenje, 1999). 58 Dominant plant speciesincanalbank swards are:couch(Elymus repens),perennial meadow grasses (Festuca rubra,Poatrivialis,Loliumperenne,Agrostisstolonifera),commonreed (Phragmitis australis)and fewperennialherbs:dandelion {Taraxacum officinale) and stingingnettle(Urtica dioica).Canalsthat aretraditionally managed have alow,relatively open,speciespoorvegetation (<10species/4m2),dominated byafew grass species.Late mowingparticularly relatestoincreasedvegetationbiomassinJuneandJuly asexpressedby vegetationheight (upto 1-3 m)andcover(upto90-100%).However, latemowingdoesnot alwaysrelatetoincreasedhigherplant speciesdiversity fortworeasons:a)tallgrass species maydominatethesward;b) swardsthathavebeentraditionallymanaged maybecut locally togroundlevelandtherefore beinvadedbyruderals andannuals (increased speciesnumber upto 15species/4m2),e.g. thistles(Cirsium arvense, Sonchusarvensis),annualweeds(e.g. Sonchusasper,Polygonumaviculare)and annualsthat arerarelyperniciousweedsin Flevoland (e.g. Myosotisarvensis, Veronicapersica, Cardaminehirsuta). Highperennialplantdiversities found insomelocationsmaybecausedby various interrelated factors (Kleijn, 1997);suchasreduced vegetationproductivity,removal ofthe hay,nutrient buffering bythegrass strip,andlongorganicduration. Artificial species introduction ishowever, also involved. IntheEAFS-project, around 90different native perennial dicotswere artificially seededintothecanalbankstoobtainhigherplant diversity and flower abundanceofplantswith limiteddispersal capacity (Vereijken, 1998).Although few speciescould settlewell(e.g. Seneciojacobea, Crepis biennis,Heracleum sphondylium), theintroduction clearly affected speciesdiversity:vegetation including siteswith>15 species/4m2wasconfined toprototype farms. 2.2.Samplingandmeasurements 2.2.1.Birds Territorymapping ofskylarkwasdone four timesin 1998andthreetimesin 1999,inthe beginningofMay (week 19),aroundtheendofMay(week22),aroundthemiddleofJune (week25)and,onlyin 1998,aroundthebeginning ofJuly (week28),using themethod described inVanDijk (1993).Arepresentativepart (80-100%)ofthe farm, excluding the farm yard,wasselected. Farmswerevisited inthemorningbetween 8:30-12:00h. Observationsweredonewhile slowlywalking alongtransport tracksandcanalbanks,within afree observationrangeof200mtoboth sidesofthetransect.Birdobservationswereplotted ona 1:5000field map,includingterritorialbehaviour(singing, fighting, mating)orother nesting indications (nestvisits,feeding andpresence ofchicks). Fieldmapswereinterpreted accordingtoVanDijk (1993):observationswerecollected on individual bird speciesmaps.Separatesightingswithin specific merger distances were attributed tothesameterritory,unlesstwoindividualswereseen simultaneously. Breedingbirdsweregrouped accordingto food types andhabitat preferences: 1. Insecti-granivorous birdswithcropareapreference: skylark (Alauda arvensis); 2. Insecti-granivorous birdswithE.I.preference: linnet(Carduelis cannabina)and goldfinch (Carduelis carduelis),both finch species(Fringillidae); 3. Specialist insectivorousbirdswithcombined cropareaandE.I.preference: blue-headed wagtail (Motacillaflava),whitewagtail (Motacilla alba)andmeadowpipit(Anthus pratensis)membersofthebird family Motacillidae; 4. SpecialistinsectivorousbirdswithE.I.affinity, defined as'marshbirds'(accordingto Remmelzwaal &Voslamber, 1996):reedwarbler (Acrocephalusscirpaceus),reedbunting (Emberizaschoeniclus) andbluethroat (Lusciniasvecica). 59 5. Insecti-granivorous birdsonthefarm, including groups 1.and2.mentioned aboveand alsoafew observations ofquail(Coturnixcoturnix) whichisnot asongbird buthas requirements similartothefirstgroup; 6. Specialist insectivorousbirdsonthefarm, including groups 3.and4.mentioned above; 7. Totalsongbirdsincluding insecti-granivorous birds and(specialist) insectivorousbirds; 8. Soillife-feeding birds:lapwing (Vanellus vanellus), oystercatcher(Haematopus ostralegus)andblacktailed godwit (Limosa limosa). Observations ofswallow (Hirundo rustica), housemartin(Delichon urbica),starling (Sturnus vulgaris)andhousesparrow(Passerdomesticus)werenot included becausethese species nestinfarmyards andstablesandmostly stayaroundthefarmyard orareaccidentally present inthefieldsofadjacent farmland. Linnet,goldfinch andwhitewagtail alsodonotnestinthe openfieldbut aremuchmoreresident inparticularpartsofthearablefields.Observationsof soil life-feeding birdswereinterpreted withcautionbecausethemostcommon species, lapwing,requiresobservations inApril(VanDijk, 1993). 2.2.2. Arthropods Samplingwasdoneinwheatcropsandonadjacent canalbanks (E.I.)- Wheat (Triticum aestivum) waschosenasarepresentative cropbecausethiscrop iscommon onorganic arable farms inFlevoland and arthropod numbersincereals arelargercompared tonumbersinother commoncrops likepotatoesandonions (Booij &Noorlander, 1992). In 1998grounddwelling arthropods weresampledbysixpitfall trapsplaced inarowwith intervalsof 10matdistancesof0m(E.I.)and30m(wheat).Weeklysamplesweretaken during 8weeks,starting from 6thofJuneuntil 28th ofJuly 1998.Individualsweresortedto taxaatorder-or family-level andplacedinto sixdifferent arthropod functional groups (for further details seeSmeding etal, 2001a): - Predaciousbeetlesincluding carnivorous Carabidae and large(>6mm) Staphylinidae; - Lycosid spiderswhicharelargeandrepresent diurnal wandering spiders; - Linyphiid spiderswhicharesmallandrepresent sheet-webspiders; - Smallstaphylinidbeetleswhichrepresent animportant detritivorous functional group; - Granivorousherbivores represented bygranivorous carabidbeetles; - Folivorousherbivoresrepresentedbyweevils(Curculionidae) andhoppers (Cicadellidae). Theobservations ofthe sixtraps andeight samplingdateswere accumulated givingonetotal numberperfunctional groupperhabitat (croporE.I.)per farm. In 1999vegetation dwelling arthropodswerecollected bymeansofavacuum sampler(ES 2100,Echo,LakeZurichU.S.A.) for 120sateach 1 m2sample.Nine samplesof 1 m2at distancesof0m(E.I.) and30m(wheat)wereselected. Samplingwasdoneoncebetween June7thandJuly 6th.Taxawereplaced intotrophic categories (for further detailssee Smeding etal, 2001b): -Detritivores; -K-orsenescense-feeding herbivores (White, 1978); -r-or flush-feeding herbivores (White, 1978),representedby aphids (Aphididae) -Predators; -Parasitoids,represented byParasitica(Hymenoptera). Theobservations oftheninesuction sampleswereaccumulated, giving onetotalnumberper functional groupperhabitat (croporE.I.)per farm. 60 2.2.3. Vegetation measurements intheE.I. Vegetation studiesincluded thebanksofsmallcanals (width<4m)thatwere adjacent tothe crops;investigationwasdonefrom MaytoAugust:latemownvegetationwasinvestigatedin June andJulybefore thefirstcut.Early andorfrequently mownvegetation was investigated before thefirstcut (May)orlater(untilAugust)when speciescomposition could sufficiently beidentified. Investigationwasdoneoncein 1997-1999.Speciesnumberwereassumed tobe moreorlessconstant overthetwoyears.Observations onvegetation height andcoverwere influenced bysampling dateanddifferences betweenyears;howeverbyinvestigating many plots including allcanalbanks (width<4m)onthefarm, therewassufficient representation ofgeneralperformance, standing cropandoccurrence ofgapsinthe sward. Theherblayerwas sampled inplotsof4m2areawith intervalsof50mbetweenplots.Plots includedtheditchbankvegetation from thetoptothehelophytic zone;and vegetation affected bysubmersionwas excluded.Parameters were:cover,maximumheight,plant species anddominantplant species(totalling 80%ofthecover).Averageswerecalculated for eachfarm. Thedatabase comprised 397plotswith30-50plotsper farm. 2.2.4. Farmmanagementandlayout A 1:5000mapwasmadeofeach farm, depictingthedifferent cropsandthe ecological infrastructure (E.I.)andonthesemapstheareaofthecropsandofsemi-naturalhabitatswere measured. Measurements offarm characteristicswererestrictedtoarepresentative farm areainwhich thebirdterritories weremapped,whichwas 80-100%ofthetotal farm area.However, crop rotation intensity (%gramineous crops,including leypasture andcereals)wascalculated for thewholearablecrop areabecausethisfigureindicatedboththeinput ofcarbon aswellasa specific habitat withinthebird mapping area. The'E.I.area' iscalculated asthepercentageof semi-natural habitat oftherepresentative farm area. ThespatialdensityoftheE.I.wasexpressedbythepercentage ofthe farm whichlay within a 100mdistance oftheE.I. Incasethecanalbankvegetation was cutboth after September 15th aswellasbefore May 15th,adistanceof70mwas considered. Weed abundance inthecrop areawasmeasured inthefieldusing asimplified Tansley scale (with 0.5=few individuals, 1 =rare,2=occasional,4=frequent, 8=abundant; 10=codominant);weed abundancewasestimated duringhalfofJuneineachcrop.Aweighted averagevaluewascalculated for eachfarm,basedontheproportionsofthecropswithinthe areawherethebirdterritoriesweremapped. Dataonconversion toorganic,operations inthewheatcropin 1998,andthemowingof canalsbanks andgrass stripswasobtainedbyusingaquestionnaire. Durationisdefined asthe number ofyears sincethewholecropareaofthefarmwascertified accordingtotheEuropean regulations for organic farming (Anonymous, 1991).Thetimingofmowing isrepresentedby themonthofthefirstcut andthefrequency per year. 2.2.5. Landscape Landscapeparameterswere sampled around 8farms in 1998,inanareaof200hawhich included theinvestigated farm. Theareahad arectangular shapewith alength andwidthratio congruent tothe farm andpositioned inthesameorientation asthefarm. Thefarm was situated inthecentre.Insidetherectangletheareaofdifferent crops,semi-naturalhabitats, roads,pavements andurban occupation weremeasured.Thesemi-natural aquatic,woody,tall herb andgrassyhabitatsweredefined as'natural'. 61 2.3.Statisticalanalyses Allmeasurementsweretested for normality.Arthropod numberswereIn-transformed. All subsequent analyseswereconducted usingStatistical Analysis System (SAS Institute,Cary, North Carolina).Therelativeimportance ofarthropods,croparea andE.I.characteristicson birdterritorydensityweredetermined usingmultivariate REGMAXRregression. Eight explored response variableswere:skylarks,wagtails/pipit, finches, marshbirds, insectivores,insecti-granivores, totalsongbirds andsoil life-feeding birds. Therewerefour separate analysesconcerning arthropods andfarm environmental factors in twodifferent years andoneadditional analysisconcerning thelandscape factors. These analysesincludethefollowing predictorvariables: 1. withregardtoground dwelling arthropods (1998),twelvevariables incrop andE.I.: predaciousbeetles,lycosid spiders,linyphiid spiders,small staphylinids, granivorous carabids and folivorous insects; 2. withregardtovegetation dwelling arthropods (1999),tenvariables incrop areaandE.I.: r-herbivores,K-herbivores, detritivores,predatorsandparasitoids; 3. withregardtofarm andE.I.characteristics in 1998,tenvariables:organic duration, intensity, spatialdensityofE.I.,areaofE.I.,mowingdate,mowingfrequency, maximum height, cover,plant speciesnumber anddominant plant species number; 4. withregardtofarm andE.I.characteristicsofsevenfarms inOostelijk Flevolandin 1999, thesametenvariables asin 1998wereused andalsoweed abundance:the sameanalysis wasperformed includingtwomore farms inZuidelijk Flevoland becausethese farms were also involved instudiesof 1998butnotinarthropod studiesof 1999thatwereconfined to Oostelijk Flevoland; 5. withregard tolandscape structureofeight farms in 1998,fivevariables:ageofthepolder, proportion ofsemi-naturalhabitats,proportions ofvegetable crops,lifted cropsand gramineous crops. Inthemultipleregressionsallpredictorvariableswereincluded inboth linearand quadratic form tofind both linearandquadraticrelationsbetweenresponse andpredictor variables. Multipleregression modelsincluded maximally4variables(Maxr; STOP=4).Foreach responsevariablethebestmodelwasselected according tothe following criteria: - theR-square ofthemodel waslargerthan50%; - thesignificance leveloftheeffects ofallindividual variables andthemodel shouldbe smallerthan0.05; - themodelwiththehighest probability wasconsidered asthebestmodel.Butifthemodel withthehighestprobability, ascompared tothebestmodelwith onevariable less,hadthe sameprobabilityclassand addedlessthan5%totheR-square,thanthemodelwith fewer variableswas considered asbetter. 62 3. Results 3.1. Observedbirdspeciesandterritorydensities In 1998within 422ha study area, 169territories ofinsectivorous and insecti-granivorous birdswerecounted andin 1999within467hastudy area, 133territories were counted. Observations inbothyearsincluded 10species(Table2).Additional observationsofsoillifefeeding birdsyielded 39territories inboth years,including 3species (Table2). Mostterritories (c.39%)concerned skylark (Alauda arvensisL.),thathadterritory densities ranging from 0.06-0.24perhawith averagedensitiesof0.15and 0.12territoryperhain 1998 and 1999respectively. Othernumerous specieswerelinnet (Cardueliscannabina L.) (c. 18% ofobservations) andmeadowpipet (Anthuspratensis L.)(c. 13% ofobservations).Soil lifefeeding birdsweremainly (c.90%)lapwing (Vanellus vanellus L.). 3.2. Birdfunctional groupsinrelationtoarthropodfunctionalgroups Skylarkterritory densitywas found tobepositively relatedtoarthropod functional groups (Table3)inthe E.I.,particularly tothediurnal predacious groups:lycosid spiders in 1998 (Table4)andvegetation dwellingpredatorsin 1999,butalsotoherbivoresin 1999(Table5). Withregard to arthropods inthecrop area,r-herbivores were animportant predictor in 1999 (Table 5).Multiple regression selected asbest 1-variablemodel: ALAU=0.0003+0.0029(rHERB)2(R2=0.66;PO.034). Table2 Observations of birdterritories: the territory numbers of differentspeciesperform, thesize of thestudy area, and thedensities of thefunctional groups. Theassemblages areexplained in themethod section. 1998 Farm Birds Skylark Linnet Goldfinch Quail Blue-headed wagtail White wagtail Meadow pipit Reed warbler Bluethroat Reed bunting Lapwing Oystercatcher Black-tailed godwit Bird mapping area (ha) 1999 A N T F R L E D A N T F K Z R L E 4 3 0 1 1 2 0 1 1 3 0 0 0 15 4 0 4 2 2 1 0 0 3 7 0 0 9 3 1 2 2 1 2 0 0 1 5 0 0 9 4 0 0 1 2 5 0 0 0 4 0 0 9 2 0 2 1 1 4 0 0 0 5 0 0 4 3 0 1 2 1 7 0 0 0 4 0 0 4 5 1 2 1 3 1 0 0 0 2 3 1 8 5 1 0 2 1 9 0 0 0 7 1 0 2 2 0 0 1 2 0 4 2 0 1 0 0 12 5 0 0 1 3 0 1 0 0 8 0 0 8 2 1 0 1 2 1 2 0 0 3 0 0 5 2 0 1 2 1 2 0 0 0 3 0 0 7 6 0 1 0 1 0 0 1 1 5 0 0 5 1 0 0 0 1 0 0 0 0 3 0 0 7 2 0 1 1 2 0 0 0 0 8 0 0 5 5 0 1 1 1 6 0 0 0 4 0 0 4 4 0 1 1 2 0 0 0 0 2 2 0 39 93 37 47 57 34 68 47 39 93 37 47 45 47 57 34 68 Skylarks n/10 ha Finches n/10 ha Motacillidae n/10 ha Marsh birds n/10 ha Insecti-granivores n/10 ha Insectivores n/10 ha Total songbirds n/10 ha 1.0 0.8 0.8 1.3 2.0 2.0 4.1 1.6 0.4 0.5 0.3 2.5 0.9 3.3 2.4 1.1 1.3 0.3 4.0 1.6 5.6 1.9 0.9 1.7 0.0 2.8 1.7 4.5 1.6 0.3 1.0 0.0 2.3 1.0 3.3 1.2 0.9 2.9 0.0 2.3 2.9 5.3 0.6 0.9 0.7 0.0 1.8 0.7 2.5 1.7 1.3 2.6 0.0 3.0 2.6 5.6 0.5 0.5 0.8 1.5 1.0 2.3 3.3 1.3 0.5 0.4 0.1 1.8 0.5 2.4 2.1 0.8 1.1 0.5 2.9 1.6 4.5 1.1 0.4 1.1 0.0 1.7 1.1 2.8 1.6 1.3 0.2 0.4 3.1 0.7 3.8 1.1 0.2 0.2 0.0 1.3 0.2 1.5 1.2 0.3 0.5 0.0 1.7 0.5 2.3 1.5 1.5 2.3 0.0 3.2 2.3 5.6 0.6 0.6 0.4 0.0 1.3 0.4 1.8 Soil life-feeders total n/10 ha 0.0 0.8 1.3 0.9 0.9 1.2 0.9 1.7 0.3 0.9 0.8 0.6 1.1 0.6 1.4 1.2 0.6 63 Table3 Observations of arthropodsperform: datafrom 1998representing total numbers ofground dwelling arthropod functional groups captured in 6pitfall traps inweekly trappings over aeight weekperiod in thewheatcrop (30 mfrom thefield margin) as wellas inthe ecological infrastructure; datafrom 1999representing thetotal number/9 m'perfarm of vegetation dwelling arthropods inthe wheatcrop (30mfrom the field margin) andin theecological infrastructure, captured by vacuumsampling. Crop area 1998 Arthropod functional groups (n/trap) Ground dwelling 1998 Predacious beetles inwheat 30m Lycosidae inwheat 30 m Linyphiidae inwheat 30m Staphylinidae <6mm inwheat 30m Carabidae granivorous inwheat 30m Folivorous insects inwheat 30m Crop area 1999 Arthropod functional groups (n/9m2) Vegetation dwelling 1999 r-Herbivores total K-Herbivores total Detritivores total Predator total Parasitoids total EI 1998 Arthropod functional groups (n/trap) Ground dwelling 1998 Predacious beetles inwheat 30m Lycosidae inwheat 30 m Linyphiidae inwheat 30 m Staphylinidae <6mm inwheat 30m Carabidae granivorous inwheat 30m Folivorous insects inwheat 30m EI 1999 Arthropod functional groups (n/9m2) Vegetation dwelling 1999 r-Herbivores total K-Herbivores total Detritivores total Predator total Parasitoids total abbrev. COL LYC LIN STSM CARH FOLI Farms: A 952 53 3061 1308 5 4 T N F 1064 1333 3765 146 57 38 3311 2979 2622 329 893 425 83 7 4 3 7 21 Farms: A N rHERB KHERB DETR PRED PAR COL LYC LIN STSM CARH FOLI * * * * * Farms: A 1365 87 2508 739 52 104 * * * * * * * * * * F 219 12 24 31 60 N T F 1319 1205 2808 535 208 302 2577 880 4235 703 444 334 149 83 79 275 150 33 Farms: A N rHERB KHERB DETR PRED PAR T 2379 20 19 33 94 * * * * * T 488 471 395 254 88 F 11 71 67 104 14 K Z * * * * * * * * * * * * K 836 28 45 85 68 z K Z * * * * * * * * * * * * K 45 24 43 158 27 Z 106 341 79 158 95 E D R L 1011 1035 2889 1731 35 8 18 83 2515 2055 1687 1944 640 772 205 541 19 504 15 3 8 5 6 13 R 413 36 66 93 156 743 15 23 33 66 E 189 58 63 221 79 D * * * * * E D R L 832 1706 2603 926 64 46 168 226 1191 1607 1930 2554 365 217 411 709 253 291 279 66 38 61 35 100 R 127 831 45 121 49 Finches(mainly linnet) territorydensitywasfound tobepositively related tovegetation dwellingpredators inboth cropareaandE.I. andwasfound tobenegatively related to herbivorous groups intheE.I.(granivorous beetles andK-herbivores in 1998and 1999 respectively) and alsonegatively relatedto linyphiid spiders inthecroparea in 1998and parasitoids inE.I.in 1999(Tables4and5). Motacillidae (wagtails/pipit) territorydensitywas found tobepositively related to lycosid spiders intheE.I. in 1998(Table4) andtodetritivores intheE.I.in 1999(Table 5).In 1998 64 L 377 42 48 39 152 L 59 509 440 336 47 E 35 145 98 96 35 D * * * * * Motacillidaewerenegatively related tolinyphiid spidersandcurvilinearly to granivorous carabidsinthecroparea(Table4). Marshbirdterritory densitywasbestpredictedby small staphylinidbeetlesinthecropareain 1998(Table4)andbyr-herbivores andparasitoids intheE.I.in 1999(Table5). Insecti-granivorous birdsterritory density (including skylark, linnet,goldfinch andquail)was bestpredicted byvegetation dwellingpredatorsintheE.I. (Table 5).Nomodelwithregardto grounddwelling arthropod observations,wasobtained in 1998(Table4). Insectivorousbirdsterritory density(includingblue-headed andwhitewagtail,meadowpipit, reedwarbler, reedbunting andbluethroat)wasfound tobecurvilinearly related to detritivores intheE.I.andtor-herbivores intheE.I. (Table5).Themostimportantpredictorwas vegetation dwelling detritivores intheE.I.:Multipleregression selected asbest 1-variable model:INSECT =0.0066(DETREI)2 - 0.0054 (R2=0.71;PO.017).Nomodel forinsectivorousbirdsinrelation togrounddwelling arthropod observationswas found (Table4). Table 4 Multiple regression models (P<0.05) with ground dwelling arthropods as predictor variables based on bird and arthropod observations on eight farms in 1998; Birds (territory/ha): Alau = skylark, Mota = Motacillidae, Fin = Finches, Marsh = Marsh birds, Insect = Specialist insectivorous birds; Insgran= Insecti-granivorous birds; Avis = total songbirds; Soilf = soil life-feeding birds; Ground dwelling arthropods; COL =predacious beetles; L YC = lycosid spiders; LIN = Linyphiid spiders; STSM = small staphylinid beetles; CARH = granivorous carabids; additional symbols: 'ca' =crop area; 'ei' = ecological infrastructure. Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model -0.063'ln(LYCca)- 0.005«ln(CARHca)2+0.010*ln(LYCei)2-0.004*ln(LINei)2 +0.437 -0.11*ln(LINca)-0.04*ln(CARHei)2 +1.0612 -0.42*ln(LINca) +O.U'lnfCARHca) -0.025*ln(CARHca)2 +0.039*ln(LYCei) + 3.071 -0.96*ln(STSMca) +0.08*ln(STSMca)2+ 2.839 No model No model Nomodel -0.36'ln(LINca) -0.03*ln(CARHca) -0.15*ln(COLei)+0.1*ln(LYCei) + 3.53 R" 96 72 99 74 Pr>F 0.0162 0.0401 0.0011 0.0327 94 0.0390 Table 5 Multiple regression models (P<0.05) with vegetation dwelling arthropods as predictor variables based on bird and arthropod observations on eight farms in 1999; Birds (territory/ha): Alau = skylark, Mota = Motacillidae, Fin = Finches, Marsh = Marsh birds, Insect = Specialist insectivorous birds; Insgran= Insecti-granivorous birds; Avis = total songbirds; Soilf =soil life-feeding birds; Vegetation dwelling arthropods: rHERB = rherbivores; KHERB= K-herbivores; PRED =predators; DETR = detritivores; PAR =parasitoids; additional symbols: 'ca' = crop area; 'ei' = ecological infrastructure. Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model 0.063•ln(rHERBca)+0.0014*ln(KHERBei)2+0.038*ln(PREDei) -0.077*ln(PARei)-0.244 0.034*ln(PREDca) -0.014*ln(KHERBei)+0.139*ln(PREDei)-0.004*ln(PARei)2-0.632 0.006*ln(DETRei)2 -0.059 -0.044*ln(PARei)+0.003*ln(rHERBei)2 +0.076 0.147*ln(PREDei)-0.527 -0.671*ln(DETRei)+0.075*ln(DETRei)2 -0.029*ln(rHERBei)2+1.703 0.366*ln(PREDei) -0.017*ln(PARei)2- 1.284 0.0068*ln(PARca)2 -0.154*ln(KHERBei)+0.015*ln(KHERBei)2+0.332 65 R* 100 100 62 99 62 97 94 99 Pr>F 0.0068 0.0018 0.0346 0.0002 0.0354 0.0074 0.0035 0.0011 Total songbird territory densitywasbestpredicted byvegetation dwelling arthropods inthe E.I.(Table 5)andwaspositivelyrelatedtopredatorsandcurvilinearly toparasitoids.Total songbird territorydensitywasalsopredicted fairly wellbyaone-variablemodel: AVIS=0.027(PREDEI) - 0.38 (R2=0.71;PO.035).Nomodel for totalbird densityin relationtoground dwelling arthropod observations was found (Table4). Territory densityofsoillife-feeding birdshadground dwelling arthropods inboth croparea andE.I. aspredictorvariables andwasfound tobepositively related tolycosid spidersinthe E.I.andnegatively relatedtolinyphiid spidersgranivorous carabids inthecrop areaand predaciousbeetlesintheE.I.(Table4).Withregardtovegetationdwellingarthropods,soil life-feeding birdterritory densitycouldbestbepredictedbyparasitoid abundance inthecrop area(which clearly isanassociationbecausethesebirdsdefinitly donot feed onthisgroup) andK-herbivores intheE.I. (Table5). 3.3.Birdfunctional groupsandrelations tofarm andE.I. characteristics Skylarkterritory densitywasfound tobepositivelyrelated tolatemowing andnegatively relatedtohighvegetation coveroftheE.I.inboth 1998and 1999(Tables 6and 7),and positivelytoorganicduration ofthefarm in 1999.IfthetwoZuidFlevoland farms were includedinthestudyarea,then Skylarkterritory densitywasalsopredictedbythespatial densityofE.I. (Table8). Finches (mainly linnet)territory densitywasfound tobepositively related to spatial density ofE.I.andplant speciesrichnessofE.I.vegetation in 1998(Table6)andorganicdurationand areaofE.I.in 1999(Table7);in 1999anegativerelationwas found topercentageof gramineous crops inthecroprotation (Table7). Motacillidae (wagtails/pipet)territory densityin 1998and 1999,was found tobepositively related tospatial E.I. features (E.I.areain 1998andE.I.density in 1999)and negatively related topercentage ofgramineous crops (Tables 6and7).In 1998itwasnegatively related tomowing frequency andin 1999alsonegatively toheight ofE.I.vegetation but positivelyto number ofdominant plant species.Ifthetwofarms inZuid Flevoland were included inthe study areathanwagtails/pippit werealso found toberelatedpositively toweed abundance whereas spatialdensityofE.I.wasnolongerincluded inthemodel (Tables 7and8). Marshbirdterritorydensitywasfound tobe exponentiallyrelated toheight oftheE.I. vegetation in 1998and 1999(Tables 6and 7)andcurvilinearlytoorganicduration in1999 (Table 7)andwas found tobenegatively related toareaandcurvilinearlytolatemowingof theE.I.in 1998(Table6). Insecti-granivorousbirdterritory density(includingskylark, finches, goldfinch andquail)was found tobepositively related tolatemowing ofE.I.in 1998and 1999(Tables 6and 7)and organicduration in 1999(Table7)andwasfound tobenegatively related tofrequent mowing andopenvegetation in 1998(Table6)andalsotoE.I.dominantplant speciesnumber in 1999 (Table 7).Ifthetwofarms inZuidFlevoland wereincluded inthe studyareathaninsectigranivorousbirdterritory densitywasalsopredicted byE.I.densityandwas found tobe negatively related tomowing frequency andE.I.plant speciesnumber (Table8). Insectivorousbird territory density (includingblue-headed andwhitewagtail,meadow pipit, reedwarbler, reedbunting andbluethroat) wasfound tobepositively related toE.I.dominant plant speciesnumber andnegatively topercentage gramineous cropsin 1998and 1999 66 (Tables6and7)andnegativelytoE.I.spatialdensityin 1999.IfthetwoZuidFlevoland farms wereincludedthentheselectedmodelincludedweedabundanceasapredictorforinsectivorous birdterritorydensity,whereasE.I.spatialdensitywasnotincluded (Table8). Totalsongbirdterritorydensitywasfound tobepositivelyrelatedtoplantspeciesnumberofE.I. vegetationin 1998and 1999(Tables6and7)andlatemowingandmowingfrequency in1999 (Table7),andnegativelytopercentagegramineouscrops,mowingfrequency andcoverofE.I. vegetationin 1998(Table6).IfthetwoZuidFlevoland farmswereincludedthentheselected modelincludedorganicdurationasapredictorfortotalbirdterritorydensity,whereasE.I.plant speciesnumberwasnotselected(Tables7and8). Soillife-feeding birdterritorydensitywasfound tobepositivelyrelatedtolatemowingand curvilinearlytoheightofE.I.vegetationin 1998(Table6)andpositivelyrelatedtoorganic durationandnegativelyrelatedtopercentagegramineouscropsandspatialdensityofE.I.in1999 (Table7).IfthetwoZuidFlevolandfarmswereincludedthennosignificant modelcouldbe found (Table8). Table 6 Multiple regression models (P<0.05) with farm and E.I. characteristics as predictor variables based on bird observations (response variables) on eight farms in 1998. The keys are in Table 5 (birds) and Table I (farm and E.I. characteristics). Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model 0.0033*(MOW)2-0.00006*(EICOV)2+0.479 0.0015«(EI100)-0.0126*(AREA) +0.0106*(EISPN) -0.094 -0.0002*(iNT)2-0.6678*(AREA) +0.1478*(AREA)2-0.1219*(MOWFRQ)+ 1.214 -0.0033*(AREA)2+0.185*(MOW)-0.0146*(MOW)2+0.0446*(EIHGT)2-0.584 0.0036*(MOW)2-0.0174*(MOWFRQ)-0.00008*(EICOV)2+ 0.841 -0.0037*(INT) +0.126*(EIDOM)- 0.1008 -0.0029*(INT) -0.159*(MOWFRQ)2-0.00007*(EICOV)2+0.026*(EISPN) + 1.23 0.0038*(MOW)2+0.309*(EIHGT) -0.187*(EIHGT)2- 0.135 78 99 99 97 95 83 98 97 Pr>F 0.0231 0.0003 0.0029 0.0163 0.0048 0.0117 0.0045 0.0011 Table 7 Multiple regression models (P<0.05) with farm and E.I. characteristics as predictor variables based on bird observations (response variables) on seven farms in Oostelijk Flevoland in 1999. The keys are in Table 5 (birds) and Table 1 (farm and E.I. characteristics). Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model 0.0001*(DUR)2+0.0035*(MOW)2+0.0059*(MOWFRQ)2-0.0059*(EICOV)+0.483 0.0088*(DUR) -0.0020*(INT)+0.0063*(AREA)2 +0.0308 -0.0068*(INT)+0.00003*(EI100)2-0.044*(EIHGT)2 +0.057(EIDOM)2-0.37 -0.0077*(DUR) +0.0006*(DUR)2+0.021*(EIHGT)2 +0.0014 0.014*(DUR) +0.036*(MOW)-0.018*(EIDOM)2+0.053 -0.00007*(INT)2-0.00005*(EI100)2 +0.198*(EIDOM)+0.666 0.0148*(MOW)2+0.253*(MOWFRQ)-0.334*(EIHGT) +0.057*(EISPN)2- 1.015 0.0002*(DUR)2 -0.002*(INT) - 0.00003*(EI100)2 +0.023 100 99 99 98 98 95 100 94 Pr>F 0.0007 0.0005 0.0119 0.0056 0.0049 0.0186 0.0009 0.0251 Table 8 Multiple regression models (P<0.05) with farm and E.I. characteristics as predictor variables based on bird observations (response variables) on nine farms in Oostelijk and Zuidelijk Flevoland in 1999. The keys are in Table 5 (birds) and Table 1 (farm and E.I. characteristics). Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model 0.0033*(DUR)2+0.000012*(EI100)2+0.0034*(MOW)2-0.00006*(EICOV)2+0.347 0.0084*(DUR) -0.000009*(EI100)2+0.0227*(MOW)-0.0751*(EIHGT)- 0.109 -0.00002*(INT)2+0.0559*(WABUN) +0.3127*(MOW)-0.0201»(MOW)2+1.122 -0.216*(MOW)+0.0138*(MOW)2-0.144*(EISPN) +0.0101*(EISPN)2+ 1.243 0.0268*(DUR) +0.0036*(EI100)-0.129*(MOWFRQ)2-0.0625*(EISPN) +0.597 -0.0024*(INT)2+0.0404*(WABUN)+0.0026*(EISPN)2+0.128 0.0158*(DUR)+0.112*(MOW) -0.0994»(EIHGT)2 -0.371 No model 67 R2 98 99 93 98 88 95 89 Pr>F 0.0015 0.0006 0.0121 0.0008 0.0418 0.0012 0.0081 3.4.Birdfunctional groupsandrelations tolandscapecharacteristics in1998 Table9ispresentingthesignificant best multipleregression models for bird functional groups,usinglandscape characteristics aspredictorvariables;semi-natural habitats included canals,canalbanks,roadverges,tallherbs,shrubs andwoodlots. Table9 Multiple regression models (P<0.05) withfarm and E.I. characteristics aspredictor variables based onbird observations (response variables) on eightfarms in 1998.Keys in Table5 (birds) and Table 1 (landscape characteristics). Birds Alau Fin Mota Marsh Insgran Insect Avis Soilf Model 0.048*(LSINT)- 0.00069(LSINT)Z-0.00011*(LSVEG)2- 0.557 0.000018»(LSAGE)2-0.031«(LSNAT)+0.0037*(LSINT)- 0.003*(LSVEG) + 0.154 -0.0067*(LSINT) -0.024*(LSVEG)+0.0005*(LSVEG)2 +0.268 0.004*(LSAGE) +0.068*(LSINT) -0.001*(LSINT)a-0.007»(LSVEG)- 0.866 -0.28*(LSNAT) +0.021*(LSNAT)2-0.0001*(LSVEG)2 + 1.065 -0.057*(LSNAT) + 0.717 0.00005*(LSAGE) +0.00005*(LSVEG)2 +0.049 R" 94 97 51 83 96 97 58 88 Pr>F 0.006 0.012 0.045 0.011 0.021 0.001 0.028 0.005 Skylarkterritorieswerecurvilinearlyrelated toalandscapewithmanygramineous crops,and negatively toalandscapewith ahighproportion ofvegetable crops.Finches (mainly linnet) territory densitywasfound tobepositively relatedtotheageofthepolder andtothe proportion ofgramineous crops,andnegatively related totheproportions of semi-natural habitat andvegetablecrops. Wagtails/pipetterritory densitywaspredicted byamarginally significant modelwhich included anegativerelationtotheproportion ofgramineous cropsinthelandscape.Marsh birdshad acurvilinearrelationtoahighproportion ofvegetable production. Insecti-granivorous birdterritory density (including skylark, linnet,goldfinch andquail)was found tobepositivelyrelated totheageofthepolder,negatively totheproportionof vegetable crops andcurvilinearly togramineous crops.Insectivorousbird territory density (includingblue-headed andwhitewagtail,meadowpipit,reedwarbler, reedbuntingand bluethroat)wascurvilinearly related toahighproportionofsemi-natural habitat inthe landscape andnegatively totheproportion ofvegetable crops.Total songbird territorydensity wasbestpredictedbytheproportionoflandscapewith semi-natural habitat andwas found to benegativelyrelated tothisvariable. Soillife-feeding bird territory densitywasfound tobe positively related tothe ageofthepolder andtheproportion ofvegetable crops. 4. Discussion 4.1. Observations incomparison with hypotheses Observations ofwagtails/pipet showedmost accordancewithhypotheses becausetheterritory densityofthisgroup (insectivores withcombined cropandE.I.affinity) wasindeed relatedto boththecrop areaandE.I.characteristics andmorepositively andmoreclearlyrelatedto vegetation dwelling arthropods (including abundantflyingspecies)thantoground dwelling arthropods.However ingeneral terms,similarobservationsweredonewithregard totheother threegroups ofskylarks,finchesandmarshbirds.Thismeansthatfieldobservations didnot provide indications for the expected E.I.preference offinches andmarshbirds andcroparea 68 preference ofskylark.Alsotheexpected associationbetween insecti-granivorous birdsand ground dwelling arthropod abundancewasnot observed. Withregardtocropareacharacteristicstherewas,according tothehypotheses,ageneral positive relationtoorganic farming duration inthe 1999observations. Ourhypothesiswas thatboth organic duration aswellasextensive croprotationwould enhancedetrital subweb prey forbirds.However anegativerelation toextensivecroprotationwas found withregard toseveralbird functional groups,andparticularly totheinsectivorous groups. Withregardto ecological infrastructure variables,observations werelargelyin accordance with ourhypotheses,because selectedmodels often includedpositiverelationsto characteristics ofimproved E.I.,particularly latemowing andplant ordominantplant species number.However somemodelshad seemingly inconsistent combinations ofcharacteristicsas for example,earlymowingwithhigh vegetation. Thesegeneral tendencies,whichhavebeendiscussed, canbeviewedinTable 10,which showstheoccurrence ofthedifferent (typesof) variablesinall selected models.Thegeneral tendencies arealsowell summarized inthebestmodels for total songbird territorydensity. Thesemodels included positiverelationstovegetation dwellingpredators intheE.I.,plant speciesnumber intheE.I., andorganicduration (in 1999)and anegative relationto proportion ofgramineous crops (in 1998). 4.2.Crop area effects 4.2.1.Foodresources inthecrop area Preference ofbirds for arthropods from theE.I.maysuggest thatbirdswereattracted away fromfields withpoor food resources (O'Connor &Schrub, 1986).Preference ofskylarksand blue-headedwagtails for field marginsonconventional farms was found byDe Snoo(1995) intheHaarlemmermeerpolderandbyRemmelzwaal &Voslamber (1996) in 50hacropplots inZuidelijk Flevoland.However, mean skylark territory densities onstudied organic farms in 1998(0.15/ha)and 1999(0.12/ha)werequitehighwhen compared tomeansin Zuidelijk Flevoland andthe Groningen claydistrict: 0.09/haand0.11/ha,respectively (Remmelzwaal& Voslamber, 1996).Densitiesofaround 0.2territories/hafound onfarms withhigh skylark abundance,correspond todensitiesofgood skylarkhabitatsinvolved instudies ofPoulsenet al.(1998) andWakeham-Dawsonetal.(1998)inGreat-Britain. Thismightbeanindication that thestudiedorganic arable crop areascontributed tobird abundance. 4.2.2. Foodresources relatedtodetritivoreandherbivoresubsystems Negativerelationstoextensive croprotation ofinsectivorous andinsecti-granivorous birds wereopposit tothehypothesis.Apparently distributions ofbirds andcarabid beetlesand linyphid spiders (involving >80%ofgrounddwellinginvertebrate numbers) didnotmatch. Explanations may involve food aswellasotherenvironmental factors, howeverinthisarticle weprimarily exploreexplanations concerning food resources.Apossible explanation might bethattheincreased detrital subweb,related toincreased carbon supply,depressesthe herbivore subweb (Wiseetal, 1999)whileherbivores arepreferred preyitems in 'chick-food' (Hald&Reddersen, 1990;Moreby&Sotherton, 1997).Thisexplanation willbe explored below. 69 Table10 An overview of the variables that were selected by significant multiple regression models based on bird territory density (response variable) withfarm and E.I.characteristics aspredictor variables aswell as arthropod functional groups as predictor variables. Key: Onthe horizontal axis birds: alau =skylark, mota =Motacillidae, fin - finches, marsh = marsh birds, insect =specialist insectivorous birds; insgran- insecti-granivorous birds; avis =total songbirds; soilf=soil lifefeeding birds; Onthevertical axis, characteristics atthefarm and at theE.I. habitat level (key see Table I);down atthe left side: ground dwelling arthropods: col=predacious beetles; lye =lycosid spiders, lin =linyphiid spiders; sism = small staphylinid beetles; carh - granivorous carabids;foli=folivorous insects; down attheright side: vegetation dwelling arthropods: Kherb—K-herbivores; detr =detritivores; pred= predators; par =parasitoids; rherb =r-herbivores; additional symbols: 'ca' =crop area; 'ei'=ecological infrastructure. 1998 1999 Factor Factor 3 s o B dur int eilOO area mow mowfrq eihgt eicov eidom eispn colca lycea stsmca linca carhca folica colei lycei stsmei linei carhei foliei JS c IS CA s X X 4> (A a ed 60 CA a X X X X '> to X X X X CA X X X X X X X X X X X X X X X X X X X X c** 3 'o CA dur int wabun eilOO area X mow mowfrq X eihgt eicov eidom eispn Kherbca detrca predca X parca X rherbca X Kherbei X detrei predei parei rherbei 3 o 6 X X .s X X CA o 6 .9 CA l-H CA C*H 'o 00 CA CA aX X X X X X X X 3 X X X X X X X X X X X X X X — X X X X X X X X X X X X X X X X X X Theobservation that Skylarkterritory densityrelatedtor-herbivore (i.e.Aphididae) abundance suggested thatthisbirdisassociated withanincreased herbivore subwebin intensivecroprotation. However aphids areprobablynotimportant food item for skylarks (e.g.Cramp, 1988;Poulsenetai, 1998)andmaytherefore indicateother(food resource) factors. Probably cropsinintensive organic farms aregenerallymorevulnerable topest outbreaks thancropsinextensive organic farms duetocropphysiology (e.g. Phelan, 1997)aswellasa lowerpredation pressure from detrital subweb-based polyphagouspredators.Thistypeofcrop vulnerability isdemonstrated intheconventional plotsofvariouscomparative studies includingvariouscropspecies (Kromp&Meindl, 1997).Timeseriesofarthropod numbersin cropedgesofconventional crops(Remmelzwaal &Voslamber, 1999)withregardtovarious cropspecies,showsimilar exponential increasesofarthropod numberswhich aretemporarily higher than arthropod densitiesingrassmargins.Hald&Reddersen (1990)also found higher arthropod densitiesinconventional cerealfieldsthan inorganicfieldsifthe exponentially 70 developing aphidsweretakeninto account.Theynotethat aphids aresupplementary preybut thattheunpredictability oftheirdensitieslimitthecarrying capacityofconventional crops. Onorganic farms inFlevoland spatialvariation ofindividual crop speciesmay compensate for theshort time intervalsof crop-specific herbivore increases.Accordingly, spatial analysis ofskylark territories (Nanetal, inprep.) showed anaffinity ofskylarksfor within-field crop borders,whichmay facilitate foraging indifferent crops andcrop edges(Wilsonetal, 1997). Theeffect ofpredationbypolyphaguouspredatorsmightbestronger onnumbers oflargesized invertebrateherbivores (K-strategists) thanonnumbersof small-sized r-strategists, becauseK-strategist populations maybevulnerable duethescarcityofhostplants,both weedy andundersown. Poornutritive quality ofadietcomprised ofmainlyr-herbivores {i.e. aphids)may alsobeinvolved (Toft, 1996).Herbivorouspreyresources onorganic arable farms inFlevolandmaytherefore includeonly asmallproportion of favourite items (sawfly and lepidopteran larvae).However, inthiscaser-herbivores mayberelevant asfood resource for insectivorousbirds. Incropsorcroprotationswhere epigeicpredators exploitdetritivores and subsequently inhibit herbivores,birdshaveto feed onthesepredators.However, food web structures inthese habitatsrepresent apoorresource for chick food. Observations ofPoulsenetal.(1998)may becoherent withourtheory: skylark chick diet andsurvival wascompared inthreedistinct crophabitats(four yearold set-aside,grasssilage andspringbarley):nestlings in set-aside received many small loadingsof small soft-bodied (i.e.herbivorousbutnoaphids) organisms whichwereabundant inthatcrophabitat;nestlingsinbothothercropsreceived larger loads includinghard-bodied organisms,particularly carabidbeetles.Inspringbarley arthropod abundance waslowest andnestling dietincluded ahighproportion of spidersthatperhaps, compensated for thelackoflargeritems;theobserved chickmortality inspringbarleywas probably causedby starvation. Examination ofarthropod communitiesprovided preliminary evidence for theseideas: detailed analysisofgrounddwelling arthropod communities in 1998(Smeding etal, 2001a) indicated thatwheatcrops inintensively managed farms, ascompared toextensive farms,had lownumbersofepigeicpredators (andhighnumbers offungivorous small staphylinids) whereaswheat cropsof farms with lessintensive (i.e.vegetable)production couldbe associatedwithanabundanceofcarabidbeetles,granivorouscarabidbeetlesandlycosid spiders.Detailed analysis ofthevegetation dwelling arthropod community onarablefarms in Flevoland in 1999(Smeding etal, 2001b)indicated thatwheat cropsinextensive crop rotationsoflongduration farms had alowabundanceofherbivores and amoderately high abundance ofdetritivores (i.e.smalldipteraspecies) andparasitoids,whereaswheatcropsof intensive croprotation farms werecharacterised by(potential) outbreaks ofr-herbivores and absenceofhigh numbersofotherarthropod functional groups. Theideaspresented correspond tothehypothesis ofPoweretal.(1996),thatpartly contradicts thehypothesis ofthepositiverelationbetweenincreasedprimary productivity and toppredation (e.g. Oksanenetal, 1996).Poweretal.(1996)found intemporal successionon riverflood plains,that food chains shorten from threetotwosteps,because inalater successional stage armoured secondary consumers inhibit food supplyofthetoppredators;in thedynamic situation ofearly successional stagetheprimaryorganisms arebetter accessible andgiverisetolonger food chain lengthsmorethantwo steps.Inmore orless stabilized farm food websduetodetrital subsidy andherbivory-resistant cropphysiology, dominant predacious invertebrates maybe epigeicpredators.Thisguild is'armoured' from abirds perspective;their'armour'mayrelatetobothhardbodies (carabids) aswell ashidingindense 71 vegetation orinthesoil,size(e.g.forwagtails) andnocturnalbehaviour (Vickerman& Sunderland, 1975). 4.3. EcologicalInfrastructure effects Territory densitiesofmost investigated bird functional groups showed thepositive effect of increased numbersofdetritivores andpredators inlatemown E.I. (Table 10).Accordingly increased arthropod abundance in latemown (uncut)vegetation, ascompared to earlymown, isreported inseveral studies (Boatmanetal, 1999;Wakeham-Dawson etal.,1998; Schekkerman, 1997;Curry, 1994).Wagtails/pipetmayhave foraged onabundant small flies. Negativerelations ofbirdstoparasitoids andK-herbivores indicated anavoidance ofearly mown E.I.becausethesegroupswererelatively abundant intraditionally managed canal banks(Smeding etal.,2001b).However, skylarks alsoshowed some affinity for openE.I., possibly attracted byhoppers,lycosid spiders,granivorous carabids andants. Apart from marshbirds,thereisatendencytoavoidhighE.I.vegetation. Thismayhavea behaviouralbackground thatthetypical arable farmland birdsprefer habitatsthat afford a goodview.Marshbirdsdidnotrelate stronglytotheaveragevalueofE.I.vegetation height becauselocal standsofreed orshrubsmay alreadybe sufficient toestablish anumberof territories. Emergent vegetations mayattractorcatch flying arthropods (Hradetzky &Kromp, 1997). Manydetritivorous dipteraand aphids inlate-mown vegetation areperhapsnot autochthonous forthehabitat. r-Herbivores density intheE.I. andcrop areawerehighlycorrelated (Smeding etal.,2001b).Thismayexplainwhymarshbirds,whichmostly stayinandaroundE.I. vegetation, couldbepredictedbyr-herbivores intheE.I.and, intensiveproduction indicating (Smeding etal, 2001b),small staphylinids inthecroparea.Densities ofmarshbirdsin emergent vegetation surrounded byarablecropsmightbepromoted byaprey 'precipitation' ofbothdetrivoresandherbivores from thecroparea. Hald&Redderson (1990)notedthat additional sweep-net sampling,includingmorebirdprey items,exaggerated thedifference between conventional andorganic crops.Accordingly catchesoffour yellowwatertrapsonfarm E(Venhorst &Smeding, unpublished data) included taxaunderrepresentedby suctiontrapping,containing 75%dipteraofwhich c.10% involved largertaxa(>2mgdryweight).Thisunderrepresented group,involving anthomyid flies, scatophagid flies, craneflies andpredacious flies mightbeimportant for various insectivorousbirds (Poulsen etal, 1998;Cramp, 1988). Soil life-feeding birdswereexpected torelatetocrop areacharacteristics. However, also association with certain E.I.characteristicswere found. This isinaccordance with impressions inthefieldthat chicks oflapwing often occurred inditches,particularly those with 'traditional mangement',wheremudand shallowwaterinnon-vegetated open ditch bottomsprovide soft ground andabundant aquaticprey,includingmolluscs. 4.4.Landscape effects Differences inbirdterritory densitiesbetween farms were alsoaffected by landscape factors. TheZuid Flevolandpolderhad ashorterlife and largerfieldswhichmeans alowerspatial density ofE.I.Territory densities ofskylarks,wagtails/pipet, linnet andlapwingrelate positively tooneorboth ofthesevariables andtherefore olderpolderswere preferred. 72 Negativerelationstolinyphiid spiderscanbeexplainedbythefact that linyphiids preferred the larger scale found intheyoungerpolder(Smedingetal, 2001a). Atthelandscape level skylarks seemedtobe associated with ahighproportion ofgramineous cropsand alowproportion ofvegetablecrops.Thiswasmoreorlessoppositetothe farmlevelobservations ofskylarksbut inaccordancewiththeexpectation from literature. Landscape level crop areasincludedboth conventional andorganiccrops.On conventional farms cerealsmayoffer thelargest food resource forbirds.However, onorganic farms other cropsthan cerealscouldberelevant for preyprovision. Accordingtoexpectations,marshbirdswereenhanced byahighpercentage of semi-natural habitatsinthefarm surroundings.Impressions inthe field werethatvicinity ofcanalswith reed stands,ponds ordense shrubs {e.g. ina2hanaturereservenear farm A) encouraged nesting ofthis functional group inthe farm E.I.However, total songbird territory density is related negatively totheproportion ofsemi-naturalhabitat atthelandscape level.Accordingly spatial analysisof skylark observations with GIS(Nanetal.,inprep.)revealed that skylark territories areclustered onfarms,particularly at somedistance from the farmyards, treelines androads.Thismayreflect thepreference shownbytypical arablefarmland birdsfor open landscapewithnodisturbance. 4.5. Conclusions Resultsofbird studies in 1998and 1999ontenorganicarable farms inFlevoland suggestthat birdterritory density isparticularly supported byorganic arable farms with intensivecrop production and improved (latemown,speciesrich) ecological infrastructure. Bird food resourcesonintensive farms maybebasedonperiodic andlocalherbivore increasesinacrop mosaic.Extensive systemsmightbemorebalanced duetothepest-control bybeneficials (i.e. polyphagouspredators) andtoalesssusceptible cropphysiology. However, inthese systems with greaterdetrital subsidized food webs(cf.Wiseetal, 1999),thehigher trophiclevels(i.e. insectivorousbirds)mightbe inhibited bysecondary consumerswhich exploittheprimary level andhave limited availability for vertebratepredators (cf.Poweretal, 1996). Cropareasonorganic arable farms inFlevoland maynotresemblethe food rich habitats observed byHald&Redderson (1990)orinset-aside (e.g. Poulsen etal.,1998)dueto perhapsintensity and/or abundanceofepigeicpredatorsthatinhibitpopulationsof soft-bodied herbivorous larvae. LatemownE.I.mostprobably offers animportant food resource, supplementing both quantitatively andqualitatively, thecroparea food resources andpossibly filling temporary gapsinfood availability. Ourobservationsprovided preliminary evidence fortheseideas;further research isrequired. 4.6. Recommendations Furtherresearchonthetopicrequiresrestricted geographical variationbetween farms. Experimental manipulation ofbirdpopulations atthe farm level isextremely expensive.The study areamaytherefore includeextremetypes ofcommercial farms, with regard to intensity andE.I.management andoneortwoexperimental (pilot)farms whichhave,for example, increased detrital subsidybased oncropresidues andorganicmanure. 73 Thesuggested importanceofr-herbivores forbirdsinthecropareaishardtotranslatein practicalrecommendations becauser-herbivores areusuallypests.Itmay therefore bea challenge for farmers andagroecologists todesign croprotationswithcontrolled herbivory in for examplemixed crops,livingmulches (Theunissen, 1994;Theunissenetal, 1997),ley cropsand grazing-resistant cultivars. Closerexamination oflocalbirddietsand foraging habitatsisrequired, assessing the contribution ofaphids,craneflies andcarabidbeetlesinbird diets,andtracing important taxa. Othercatchingmethods,preferably including adensity assessment, shouldbetried(e.g. Duellietal., 1999).Alsonon-food habitat factors (machinedisturbance andpredation) should beconsidered. Specialattention shouldbegiventotheeffect oflocal'hot spots'offood, represented by wagtails feeding ondungdeposits(e.g. Hald&reddersen, 1990)or lapwings feeding atditch bottoms. Modification byfarmers ofE.I.management isveryrewarding intermsofbird abundance andtherefore ofnatureconservation value.Inparticularbecause latemowingcontributesto bird food resourcesinearlysummer. However, managementswithcautious, frequent mowing at>10cmaboveground surface may also stimulateherbivores andpredators important for birds.Optimallymanaged E.I.mayincludeapermanent, simpledivision into some frequently mownandlatemownboundaries (seee.g. Feberetal.,1999)and also local,broad standsof tallvegetation orshrubswhich facilitate nesting ofmarshbirds (seee.g. Stoate, 1999).Reed orshrubsshouldpreferably be situated closetothepresent semi-natural habitat sothatopen space,attractive for typical farmland birdswillnotbecome fragmented (Smeding &Joenje, 1999). Acknowledgements Theauthorswish tothankthe farmers whoallowed usaccesstotheirland.Thanksaredueto AndreMaassen (Unifarm) and Clasien Lock (PRI)for technical assistance,DrA.J.Beintema (Alterra) andWouter Joenje (WU)for discussing ourwork during aoneday field visit,and BartVenhorst, BertusMeijer andJanNoorlander for arthropod measurements. Theworkat theWageningenUniversity isfunded bytheMinistry ofAgriculture,NatureManagement and Fisheries,Department ofScienceandKnowledge Dissemination. 74 Chapter 5:Effect offield margin management on insectivorous birds,aphids andtheir predators indifferent landscapes F.W.Smeding"&C.J.H.Booijb "Departmentof Plant Sciences, Biological Farming Systems group, Wageningen University, Wageningen, TheNetherlands 1 'PlantResearch International, Wageningen, The Netherlands Abstract An increased field margin area at farm level, isthought topromote vertebrate and arthropod predators and to reducepests.In afieldtrial in 1997acomparison was madebetween animal communities on four organic farms thatpossessed different amounts of ecological infrastructure (E.I.)- O n e P 3 ^ w a s situated inyoung landscape and the other inold landscape. Only specialist insectivorous birds showed aclearpositive relationship. With regard toimportant arthropod species inwheat (e.g. carabid, staphylinid and coccinellid beetles, spiders) abundance differences inrelation toamountofE.I. werenotrelated toold andyoung landscapes. High aphidophagous syrphid fly abundance and aphid (pest) densities occurred inyoung landscape farms. 1.Introduction 1.1. Agricultureandbiodiversity Biodiversity inEuropeanagricultural landscapesisdecreasing.Oneimportant solution for reversingthisbiodiversitylossistodevelopfarming systemsthatintegrateagricultureandnature conservationinterests.Organicfarmingtriestoimplementthisideabecausebiodiversityis thoughttoenhancepestcontrol(Altieri, 1994). Farm-natureplanssupportthesefarmstodevelop site-specifichabitatdiversification whichmeanstheestablishmentofanecological infrastructure (E.I.)(Smeding&Joenje, 1999).TheE.I.isdefined asthetotalofsemi-natural (aquatic,woody, tallherbandgrassy)habitatsonthefarm includingitsspatialarrangement.Habitat diversification islikelytoincreasenaturalenemyabundanceandtoreducepestpopulations (Booij &DenNijs, 1996);thismeansthattheherbivorouspestorganismsrepresentasmallpart ofthemainlynon-pestherbivore anddetritivorecommunitiesinthefarm foodweb.Theincrease ofbeneficial andharmless(prey)speciesenhancesthefood availabilityforthevertebratespecies onthefarm(e.g. Moreby&Sotherton, 1997; Hald&Reddersen, 1990),whichareof conservationinterest. 1.2. Farmecologicalinfrastructure PracticalrecommendationstooptimizetheEcological Infrastructure often relyonexperienceand commonsense.Detailedstudiesaboutkeyspeciesareavailable,e.g. skylark(Wilsonet ai, 1997)andpartridge(Potts, 1983),however,itisdifficult tocombineandextrapolatethis knowledgetofarm practiceandtranslateittoactionsofthe farmer. Ourstudywasintendedtocontributetoasystemsapproachthatlinksinformation ontheecology ofspecies(groups)withfarmtopographyandmanagement.Therefore weundertooka simultaneousexamination ofseveralintegrationlevels(landscape,farm andhabitat/field) and animalspeciesgroups.Farmandfaunameasurementswhicharebotheffective inthefield(Den Nijsetai, 1998)aswellasexplanatoryfactors infuture theorywereselected. 75 Inafieldtrialin 1997acomparisonwasmadebetweenfourcontrastingorganic farmsthat possesseddifferent amountsofestablishedE.I.andmightserveasgoodexamplesfortheabove theory.Itisprobablethattheeffect ofequalefforts bythefarmerwoulddiffer between landscapes;abiodiverseneighbourhoodmayoverruleoramplify theeffect. Therefore onepair oforganicfarms wassituatedinayoung(culture) landscapeandanotherpairoforganic farmsin anold(culture)landscape;oldlandscapeisassumedtobemorebiodiverse.Ourhypothesiswas thatanincreasedE.I.wouldbeassociatedwithmoreinsectivorousbirds,morearthropod predatorsandareducedpest infestation. 2.MaterialsandMethods 2.1.Studysites Theresearchwascarriedoutonfour different organicfarms(indicated inthetextasY-,Y+,Oand0+) onclaysoilsinApril-August 1997.Twofarmsweresituatedintheyounglandscape (=Y)ofthepolderZuid-Flevolandwhichwasreclaimedin 1968.Theothertwofarmswerepart ofanoldlandscape(=0)neartheriversinthecentreofTheNetherlands.Ineachlandscape farmswithasmallE.I.(=-)andafarmwithagreaterE.I.(=+)wereselected.Withineach farm winterwheatfieldswerechosenasarepresentativecropforarthropodandarableweed measurements.Cerealaphidswerechosenasanexampleofapest. ForDutchstandardsallstudied farmscanbeconsidered asoldorganicfarms.FarmsY-andY+ startedin 1985onanexperimentalreclamationareawhichneverreceivedpesticides.FarmY+ joined agroupof 10'innovation'pilot farmsin 1993 whichimpliesthatallditcheshave adjacent threemeterwidegrassstripsandthatditchvegetationincludesseveralartificially introduced indigenousplantspecies(Vereijken, 1998). FarmO-convertedtoorganicfarming practicein 1980;itsintensiveproductionisfocussed oncabbageandleek;oldhedgerowsweremaintained, mainlyatthebordersofthefarm.Farm0+ wasrunbetween 1971-1995aspartofasecondary schoolforbiodynamicfarming; extensiveboundariesincludinghedgerowswerecreatedduring thisperiod. 2.2. Samplingandmeasurements 2.2.1. Landscape Landscapeparametersweresampledinacirclearoundthemathematicalcentreofthefarm.The radiusofthiscirclediffered betweenthefour farmsbecauseitincludedasectionofthefarmand anextra200mfromthefarmborder;the200mdistanceapproximatestothehomerangeof severalsmallmammalsandsongbirds.Insidethecircle,theareaofdifferent agricultural,seminaturalandotherhabitatswasmeasured.Thesemi-natural aquatic,woody,tallherbandgrassy habitatsweredefined asE.I.Thescaleofthelandscapewasdeterminedbymeasuringthetotal areas("blocks')ofinterconnected agricultural fields. 2.2.2. Farm Thelimitsofthestudyareawereequaltotheadministrativebordersofthefarmbecausethisis theunitarysystemundercontrolbythefarmer (Swift &Anderson, 1993).Theareasofseminaturalhabitatsweremeasured, asforlandscape. Thespatialarrangement oftheecologicalinfrastructure wasexpressedbythepercentageofthe farmwhichlaywithina 100mdistanceoftheecological infrastructure. Theinfluence ofboundariesontheabundanceoflargecarabidbeetlesandspidersprobablydoesnotexceed 100m. 76 2.2.3. Vegetation Vegetationstudiesincludedboundariessurroundingthecrops.Theherblayerwassampledin onemeterlengthsatintervalsof25-100mbetweensamples,dependingonthelengthofthe boundary.Parameterswere:cover,maximumheight,plantspeciesanddominantplant species (whichdetermine 80%cover). Weedspeciescomposition inwinterwheatwasrecordedbylistingthespeciesin40samplesof 0.25m ineach field. 2.2.4. Birds Territorymappingofbirdswasdonethreetimesatthebeginning andtheendofMayandthe beginningofJune,usingthemethoddescribedinVanDijk (1993).Breedingbirdsweregrouped accordingtothreefood types:insectivorous,insectivorous/granivorous andsoil life-feeding. 2.2.5. Arthropods Weeklysamplesweretakenoneachfarm inwinterwheatbetween29Apriland24July.Ineach winterwheatfield fourrandomplotsof 10by20mwerelaidout,inwhichthreepitfall trapsand ayellowwatertrapwereplaced.Aphidswerecountedon80to200tillersperplot,dependingon theexpectednumberofaphidspresent.Thecarabidandstaphylinidbeetlesandspiderscaughtin pitfall trapsweresortedintosizecategories;syrphidflies andcoccinellidsinthewatertrapswere determinedtospecieslevel. InSeptemberthreesuctionsamples(3minutesin 1 m2)werecollectedinadjacent boundaries includingatallherbandgrassyandashrubsample;herbivorousbeetles(curculionidsand chrysomelids)weredeterminedtospecieslevel. 3.Results 3.1.Landscapecharacteristics 3.1.1. Farmsurroundings Theyounglandscapewasdominatedbyagriculturallanduseandhadlargeblocksofcontinuous agriculturalland(Table 1).Thepercentagesemi-naturalhabitat appearedtobeunaffected by landscapetype. 3.1.2. Farmandits habitats Croprotationinyounglandscapetendedtoincludefewer extensivecrops(cerealsandley pasture)(Table 1),howeverfarm Y-includedarelativelylargepercentageduetoitslargesize. Wheatyieldswerehigherintheyounglandscapewhereasarableweedsinthiscropweremuch moreabundantanddiversintheoldlandscape(Table 1).Farmsinyounglandscapehadalarger cropareathatwasremotefrom theboundaries(Table 1).Boundariesinthepolderincludedmore aquatichabitat(ditchesandbanks)andintheriverregionincludedmorewoody(hedgerow) habitat.Thestructurediversityandspeciesrichnessoftheboundaryvegetationappearedtobe unaffected bythelandscapetype(Table1). 77 Table 1 Characteristicsoffourfarms inyoung (Y) andold(O)landscapewithsmall(-) orincreased(+)E.I.withregardto landscapeandhabitats. Y- Y+ O- 0+ Landscape %agricultural landuse block size (average)(ha) % semi-naturalhabitat 71 23 27 94 26 4 54 3 40 52 2 18 Farm farm area(ha) % cereals/leypasture incroprotation % farm areawithin 100mrangeofE.I. % semi-natural habitat=E.I. 10 50 61 1.2 55 29 72 2.6 22 50 81 1.7 28 75 100 5.8 Crop no.ofweedspecies/0.25 m2 3.2 1.6 5.4 5.1 Boundary no.ofplantspecies/m (average) 7.6 11.4 9.0 9.9 3.2. EffectsofEcologicalInfrastructure 3.2.1.Younglandscape CharacteristicsoffarmY+(2.6%E.I.)incomparisonwithfarmY-(1.2%E.I.)were:amore diverseboundaryvegetationandlessweedsinwheat(Table 1);ahigherdensityandspecies numberofbreedingbirdsduetotheoccurrenceofspecialistinsectivoresintheboundaries(Fig. la);aslightlygreaterabundanceofmostpolyphagouspredatorgroupsinwheat(carabids, staphilinidsandlycosid spiders)(Figs lb and lc),whereasaphidophagous syrphidsand ladybirdswereslightlymoreabundantinwheatonfarmY-(Fig. lc);similarhighaphid abundanceinwheat(Fig. Id);ahigherspeciesnumberandsimilar(low)abundanceof herbivorousbeetlesinboundaries. 3.2.2. Oldlandscape Characteristicsoffarm0+ (5.8%E.I.)incomparisonwithfarm O-(1.7%E.I.)were:amore diverseboundaryvegetation(Table 1);ahigherdensityofspecialistinsectivorousbirdsanda lowerdensityofmixedinsecti-granivorousbirdsresultinginalowertotalbreedingbirddensity (Fig. la);lowerabundanceofpolyphagousaphidpredatorsinwheat(carabidandstaphilinid beetlesandlinyphiid spiders)(Fig. lb);monophagousaphidpredatorabundancewerevariable: moresyrphids,lessladybirds(Fig. lc) andlesslacewings;similarlowaphidabundanceinwheat (Fig. Id)apartfrom anearlymoderatepeakofMetopolophium dirhodum; ahigherspecies numberandabundanceofherbivorousbeetlesinboundaries.Theabundanceofsyrphidscould havebeenunderestimatedbecausetheyellowwatertrapscompetedwithnumerous flowers (DenNijsera/., 1998). 3.2.3. Relationshipswith landscapetypes Increasedecologicalinfrastructures ontwoofthefour farmsintwocontrastinglandscapetypes involvedadoubledpercentageofsemi-naturalhabitatsandamorediversevegetation(Table1). ThispromotedinbothlandscapesspeciesthatstronglydependontheE.I.itself(insectivorous birdsdensityandherbivorebeetlesdiversity).InthecroponlyabundanceoftheaphidR. dirhodum seemedtoincrease(Fig.Id).Adecreasewasfound withregardtotheabundanceof coccinellids(Fig.lc)andthedensityoftheaphidSitobion avenae(Fig.ld).Howevermost fauna parametersthatwerestudieddidnotshowarelationship.Abundanceofpolyphagousaphid predatorsonfarmswithincreasedE.I.decreasedinoldlandscapewhereastheyincreasedin younglandscape(Fig.lb);aphidophagoussyrphidsshowedthereverse(Fig.lc). 78 a. Birds: number ofterritories perha 0.8 0.6 0.4 0.2 0 Y+ • insect feeding ETP o- o Hinsect/seed feeding b. Polyphagous predators: total no.in pitfalls 12000 8000 4000 n±± Y+ - 1 0+ O ICarabidae HLycosidae •Linyphiidae D Staphylinidae 600 c.Aphidophagouspredators:totalno.inyellow watertraps 400 200 HbzLJHbl3__JBS3_: Y- Y+ IaphidophagousSyrphidae O- 0+ DCoccinellidae d.Aphids: sum of the average no.per tiller 75 50 25 SEfcE Y+ iMetopolophium dirhodum Oo+ OSitobion avenae Fig. I. Occurrences of birds (a),polyphagous predators (b),aphidophagous predators (c),and aphids (d)on four farms: Y=young landscape; O =old landscape; - =small ecological infrastructure; += large ecological infrastructure. 79 4.Discussion Onlyobservationsofspecialistinsectivorousbirdsandintheyounglandscapealsopolyphagous predatorssupportedourhypothesis.Fewparallelsbetweeneffects intheoldandyoung landscapeswerefound. Howcanthesecontradictoryresultsbeunderstood?Inourattemptto giveanexplanationwefocusonsoilinvertebratesandweedabundancewhichareonlygroups amongseveralothers.However,thesegroupsarelikelytoinfluence numbersofbirdsand predatoryarthropods. 4.1. Younglandscape Soilsinthepolderlandscapeareknowntocontainfewearthwormsandprobablyhavealower soilmeso-andmacrofaunabiomassthanoldlandscapes.Thisisinaccordancewiththeobserved lowdensityofsoillife-feeding birds.Thelowabundanceofarableweedslimitsdependent foliar herbivoresandgranivores.Thesefactors leadtoacrophabitatwhereaphidsbecomean importantcomponent inthesummerdietofpolyphagouspredators(Booij &DenNijs, 1996). Severalauthorsreportthispredominanceofaphidsinconventionallymanagedwheat(Moreby& Sotherton, 1997; Reddersen 1997). PredatorcountsonfarmY+suggestedaninfluence ofincreasedE.I.butitsareamayhavebeen toosmallanditsdistancefromfield centrestoofartohaveastrongeffect; moreoverweed abundanceandahighpercentageofcereals/leypastureonfarmY-offered bettercircumstances forgrounddwellinginvertebratesascomparedtofarmY+. 4.2.Oldlandscape Cropsintheoldlandscapecontainedmoreweedsandprobablyahighersoilinvertebrate biomass.FarmO-hadahighweedabundance;itsintensivevegetableproduction causedahigher generalfertility levelofthefieldswhichmayhaveaquantitativeeffect onsoilinvertebrates. Thesefactorscouldexplainthehighabundanceofthepolyphagouscarabidbeetles(comparable withtheyounglandscapenumbers)andlinyphiidspidersinspiteoftheabsenceofaphids.Also theapparentlyhighabundanceofinsectivorous/granivorousbirdsatfarm O-supportsthisideaof abundantfoodavailabilityinthefields.TheserequirementspossiblyoverruletheE.I. influence oncropcommunitiesinthegrowingseason. 4.3. Improvingthehypothesis Inthelightoftheseresultsweconcludethatthehypothesisshouldalsoconsidercrop factors includingcropdiversity(e.g.croprotation,weeds)andsoillifecharacteristics.Ideally comparativeresearchonE.I.influence shouldberestrictedtofarmswherethesecharacteristics aresimilar.Thehypothesiscouldonlyworkonfarmswithintermediatelevelsofalternativeprey onthefields (associatedwithsoillife andweedsorintercrops)andwithboundariesthatarenot toofarfromfield centres.Inourstudyin 1997itseemedthatanimalcommunitiesinthecrops wereindependentfromE.I.Inthepoldertheintensivelycroppedfieldswereprobablytoolarge tobeinfluenced bytheE.I.whereasintheriverregionthefields alreadyhadahighlevelof alternativepreyrelatedtocropfactors.Withabundantalternativepreycausedbycrop factors (whichmightbeundesirableforthefarm,e.g. weeds)asmallerE.I.mayalreadybesufficient to maintainbiodiversity. 80 Acknowledgements Theauthorswishtothankthefarmers whoallowedusaccesstotheirland.Thanksaredueto ClasienLock(PRI)andAndreMaassen(Unifarm) fortechnicalassistance,Jan-PietZijpand ElkeBoesewinkel forarthropodmeasurementsandLoesdenNijs forassistanceindesigningthe experiment.TheworkattheWageningenUniversityisfunded bytheMinistryofAgriculture, NatureManagement andFisheries,DepartmentofScienceandKnowledgeDissemination. Chapter 6:Aconcept offood webstructure inorganic arable farming systems F.W. Smeding*&G.R. deSnoob "DepartmentofPlant Sciences, Biological Farming Systems group, Wageningen University, Wageningen, TheNetherlands b CentreofEnvironmental Science, UniversiteitLeiden, Leiden, The Netherlands Abstract Aproposal for adescriptive ortopological farm food web isderived from field observations and from references inliterature.Important themes in the food web theory aretentatively applied tothispreliminary model, explaining differences between localfarm food web structures andhow they arerelatedto farm and/or ecological infrastructure (E.I.) management. Predictions aremade for four different farm food web structures for extremes of farm and environmental gradients corresponding tothe length of organic duration and amount/quality of E.I.The implications with regard tofarming practices andnature conservation arethat both organic duration and the amount/quality ofecological infrastructure may contribute toecosystem services and nature conservation. However, an optimisation ofthe farm food webwithregard toecosystem services, may possibly run counter tonature conservation goals. 1. Introduction 1.1.Theproblem ofbiodiversitylossin agroecosystems Speciesdiversity ofindigenousplantsandanimalsonfarmland isdecliningdramatically due toagricultural intensification (Paoletti, 1999;Wood &Lenne, 1999;Vandermeeretal.,1998; Swift &Anderson, 1993).Amongst thosethataregreatlyconcerned aboutthisbiodiversity loss areagriculturists, ecologistsandmembersofthepublic.Nature conservation organisationsusuallyaddresstheintrinsicvalueofbiodiversity andtheirviewpoint is translated intonationalprograms for speciesandhabitat conservation (e.g.inThe Netherlands:Baletal, 1995).Agroecologists stresstheeconomicvalueofbiodiversity, relatedtoitsecological services,e.g. pest control andbioticregulation ofsoilfertility (Altieri, 1994, 1999;Paoletti, 1999;Pimenteletal, 1995).Biodiversity losshasbeenthought toresult inartificial ecosystems,requiring constanthuman intervention and costlyexternalinputs. Ecosystem servicesmightbesustained orimprovedbyageneral,indiscriminate,high species diversity (Altieri, 1994;Paoletti, 1999)orbyafew essentialcomponents ofthelocal biodiversity, asdetermined bysitecharacteristics (Vandermeer etal, 1998;Almekinderset al, 1995).Functional redundancy ofspeciesmeansthatnot all specieshaveevident significance for ecosystem services(Duellietal, 1999).However, itcanbe arguedthat agriculturehas,toacertain extent,responsibility for allspeciesand communitieswhichcoevolvedwith farming during around 10,000years(Wood &Lenne, 1999),irrespectivetheir utility. 1.2. Multi-species agroecosystem research One important solution for the reversal of the loss ofbiodiversity in agriculture of the industrialised countries is the development of farming systems that are economically based on 83 utilisationofbiodiversity andthat harbour,partly duetoincreased biodiversity, conservationworthy species.Thisideaiscompatibletotheconcept ofmulti-species agroecosystems (Vandermeeretal, 1998;Altieri, 1994, 1999;Almekindersetal, 1995;Swift &Anderson, 1993). Research aimed atthisconceptrequires anappropriate approach;threecriteria,whichtake into accountthestudied objects andenvironmental variables,mightbeessential.Firstly,the research shouldapplymethodsthat areappropriate forhigher levels ofaggregation andavoid reduction ofthesystemthroughemphasisonvariablesof lower levels (Almekinders et al, 1995).Secondly,investigations should addressreal farming systemsbecause biodiversity, relevant for apparent ecosystem services,mightbe site-specific (Vandermeer etal, 1998)and maynotbeobservableinsmall 'isolated' subsystems,orforeseeable by abottom-up approach. Preferably study areasshouldincludeobjects that express functioning ofecosystem services (Brown, 1999a).Thirdly,assessed variablesshouldbeclearly related toboththe structural andthedailydecisionsofthe farmer sothattheoutcomescanbetranslated into farming practice andpolicy {e.g. Vereijken, 1997;Kabourakis, 1996;Park &Cousins, 1995;Smeding &Joenje, 1999). Recent advances inresearch onfood webs(Polis&Winemiller, 1996)offer asuitable approach forbiodiversity studies athigher levelsof aggregation (Pimm,1991; Gezondheidsraad, 1997).This articletherefore examinestheperspectives ofafood web approach forresearch that aimsatmulti-species agroecosystem development. 1.3. Foodwebapproach 1.3.1. Definitions Definitions andgeneral information onfood webshasbeen examined extensively inthe volumeeditedbyPolis&Winemiller (1996);someoftheirmainpoints aresummarisedhere. Afood webisdefined asanetwork ofconsumer-resource interactions among agroupof organisms,populations,oraggregate trophicunits.Speciesareusually aggregated in 'trophospecies' or functional groupswhich essentially shareresources andpredatorsbut usuallymorecriteriaareusede.g. life historytraits.Guildsaretrophospecies ofahigher order, andusually includeseveralrelated functional groups. Inafood webdiagram functional groups arearranged introphic levelswhichhavethesame number ofsteps('chainlengths') awayfrom thebasalresourcesplants ordetritus.A descriptiveor'topological food web'depicts species and feeding relations;ina'flow web' components andrelations arequantified astonumber orenergy flow. Themost elaborate food webrepresentation isa'functional web'that alsorevealstherelative strength ofrelations. 1.3.2. Researchonfarmfood webs Traditional studieson farmland communities often included considerations ofthetrophic structurewhich indirectly addressed local food webs.Examplesofthiskind of studies arethe comprehensive empirical studybyPotts&Vickermann (1974),including awiderangeof invertebrate andvertebratetaxapresent inwheat cropsinWest Sussex,UK,orthe extensive surveyofthetrophicstructure ofabove-ground insectbiomassinvarious agricultural landscapesbyRyszkowski &Karg(1991)andRyszkowski etal. (1993). Most studiesdirectly addressing food webswererestricted toapartofthe farmland community, involving asection oftheherbivore food (sub)weborasection ofthedetrital (sub)web,for examplestudiesofpest-predator complexes (examplesine.g. Wood &Lenne, 1999;Kromp&Meindl, 1997)orthestudiesof food requirements offarmland birds 84 (reviewed byPoulsenetal, 1998).Someofthesestudiesprovided clearconceptual advances. ForexampleAndow (1988)hypothesised 7'primitiverelations'(i.e.food web structures) amongweeds,crops,herbivoresandpredators.Comprehensivetopological foodwebsof arablecropping systems,includingdetrital andherbivore subwebs,werefirst developed in 1977forrice,inthecontext ofIntegrated PestManagementprogrammes (e.g. Cohenet al, 1994;Schoenlyetfa/., 1996). Amajorbreakthroughinagroecological applicationoffoodwebtheory,werestudiesonthe detrital subwebsinarablecrops(e.g. DeRuiteretal, 1993,1995)andgrasslands(e.g. Hunt etal, 1987),including alsoanalysesofnutrient andenergyflows. Progressin scientific understanding offoodwebsisexpandingintoagroecosystems asisdemonstratedbyseveral recentreview articles,for example:detrital subwebcontrol oftheherbivore subwebby influencing vegetationperformance (Brussaard, 1998)orbyincreasedpredatorpressureon herbivoresduetoexternally subsidised detrital chains(Wiseetal, 1999);and interference betweenpredacious functional groups,causing 'trophiccascades'intheherbivore subweb (Tscharntke,1997). 1.4. Objectives However, despitetheabove-mentioned advances,thereis,toourknowledge,no comprehensive farm food web available for arablefarming systems.Sucha'topological' food web,oramoreelaborate'flow' web,mayenable asynthesisof fragmented dataontaxaand habitats,andcouldsubsequently form thefoundation ofagroecological farming system research (e.g. Swift &Anderson, 1993;VanKeulenetal, 1998)aswell asapplied agroecosystemplanning (Smeding &Joenje, 1999;Visser,2000). Theobjectives ofthisarticleare: -toproposeasimplified topological farm food web,encompassingbothherbivoreanddetrital subwebsandtheirinterrelations,asoccurring atthe farm levelof aggregation; -todemonstrate,usingbothempirical dataandtheory,howthispreliminary food webmodel couldbeusedtorelatetheabundanceoffunctional groupstofarm management; Acasestudywillbeusedtomeettheseobjectives. 2.Methods and materials 2.1.Researchareaanddelimitation ofthesystem 2.1.1. Organicarablefarms in Flevoland Theagroecosystem ofarablefarms inFlevoland iswellstudiedbecause ofseverallarge experiments(e.g. Booij &Noorlander, 1992;Booij, 1994;Brussaardetal, 1988,1990;De Ruiter etal, 1993,1995;Lantinga &Oomen, 1998;Smeding &Joenje, 1999;Remmelzwaal, 1992;Remmelzwaal &Voslamber, 1996;Vereijken, 1989,1997,1998).Flevoland consistsof threepoldersthatwerereclaimedbetween 1940and 1968andaredominatedby agricultural landuse.Thelandscape isflat andopenwithwoodlotsconfined to farmyards, villagesand mainroads.Thepredominant soiltypeiscalcareous clayofmarineorigin. Organicfarms may function asastepping stoneontheroadtodeveloping multi-species agroecosystems (e.g.Stobbelaar &VanMansvelt,2000;Vandermeer, 1995)andwere therefore chosenasobjects forthecasestudy.Around 75organicfarms aresituatedin Flevoland including farms withimproved ecological infrastructure, resulting from a 85 prototyping researchproject (Vereijken, 1997, 1998).Thecasestudy isbased on empirical dataof 17organic farms andoneintegrated farm, and literature concerning around 10 organic,integrated andconventional (experimental) farms. Croprotationsoforganic arable farms inFlevoland includesixormoreyears.Commoncrops arespringandwinterwheat (10-35%),leypasture(0-20%),traditional lifted crops (potatoes and sugarbeet)(10-35%) andintensivevegetable crops (25-70%).Major vegetable cropsare onions,peas,sweetcorn,runnerbeans,carrot andvariouscabbages.Ploughing isgenerallyat 25-30cmdepth.Theecological infrastructure (E.I.)(Smeding &Booij, 1999)onarable farms inFlevoland mainlyconsistsof linearherbaceous boundaries ofcanalbanks andvergesalong tracks androads (Smeding &Booij, 2001).Thecasestudy isbased onempirical dataof around20organic farms. 2.1.2.Delimitationofthesystem Thefarming systemispositionedbetweencommonlyrecognised aggregation levelsofhabitat and landscape andmaytherefore betoosmalltobeconsidered asan(agro) ecosystem. However Swift &Anderson (1993)considerthe farm asthebasicunit in studiesofsystem functioning inagricultural systems.Thefarm levelmighttherefore beconsidered as aggregation level intheecological sense.Accordingly,Bockemuhl (1986) arguesthat taking localecological andhistorical factors intoaccount infarm management canconsolidate the systembordersofafarm unit. Thesecondcriterion for spatialdelimitationoftheconsidered systemisthatitmatchesthe spacerequiredby awell-defined food web.AccordingtothesecriteriaCousins(1988) defined theEcosystem TrophicModule:theETMisbased ontheterritory sizeofthetop predator.Resident toppredatorsonarable farms inFlevoland areKestrel (Falco tinnunculus) and Stoat {Mustela ermined) (Remmelzwaal &Voslamber, 1996).Theirterritory sizes correspond tothescale andsizeofthestudied farming system. 2.2.Generaldescription ofthetopologicalfarmfood web Thetopological food web,includingpreliminary flow webcharacteristics,ofaFlevoland organicarablefarm wasdeveloped usingthe following sourcesof information: - empirical data from farmland speciesinFlevoland includingdata from ourownresearch inFlevoland (references mentioned above andSmeding etal, 2001a,2001b;Smeding& Booij, 1999,2001; Smeding,unpublisheddata); - literatureondiets andpredatorsofthetaxaobserved in Flevoland; - publications ofresearchconcernedwith farmland speciesinarablecrops andfield margins inWestern Europe. Thespecies (-groups) were listed inafood webmatrix.Functional groups andguildswere assembled accordingtocommonly accepted criteria (Polis&Winemiller, 1996;Brussaard, 1998).Theexamplesofassemblages from theliteraturewerefollowed ifpossible(e.g. Brussaard etal, 1997;Brussaard, 1998;White, 1974).Sometaxamaybelongtomorethan onefunctional groupbecauseofshifts intheirlifehistorytraits. Thebiomassofthetrophospeciesreflects their ecological functions (Ryszkowski etal., 1993);biomass estimations aretherefore appliedtoillustratetherelative importance ofgroups andinteractions inatwo-dimensional diagram ofafarm food web.Rough estimations,ina tenfold orderofmagnitude,werebased ontheavailable literature,preferably withdata from organic farms inFlevoland, organic farms ingeneral (e.g. Kromp &Meindl, 1997)or unsprayed crop edges(e.g. Boatman etal.,1999).Themeanbiomassofarthropod taxa observedby Schekkerman(1997)wasusedtorelatedensity datatobiomass.Relative importancewas assessed toderiveafoodwebdiagramfromthemorecomplex food web matrix.Thefarm food webdiagramwasdrawninafashion similartothe food webdiagrams ofOksanene/a/. (1996). 2.3.Relatingthefarmfood webtofarmmanagement Therelationshipbetween food web structure and farm management wasexploredby comparing four management typesoforganic arablefarms inFlevoland: short organic durationwithoutimproved ecologicalinfrastructure (E.I.),shortorganicdurationwith improved E.I.,longorganic durationwithout improved E.I., andlongorganic durationwith improved E.I.Thesefourbasicfarmtypeswereconsideredtorepresenttheextremesoftwo different gradients (cf.HoltinPolis&Winemiller, 1996)withregard toduration oforganic farming practice andqualityoftheecological infrastructure. Inaddition, adistinctionwas madebetween longduration farms withimproved E.I.with extensive and littleherbivory in thecroparea.Thus intotalfivefood webswere constructed. Organic farming durationwaspresumed torelatetothe amount ofinputoforganicmatterin thecropareasoil.Thisinputincludesorganicmanure,compost andcropresidues ofin particular,thegramineous crops(leypastureand cereals).Additionally,organicdurationalso relatestoanincrease ofthecropdiversity aswellastheweed diversity.Theeffects ofbothan increased inputoforganicmatter and crop/weeddiversitymay accumulateoveryears(Hald &Reddersen, 1990;Idinger &Kromp, 1997). Thequality('improvement') oftheecological infrastructure relatesparticularly tovegetation structure anddiversitywithintheboundary, and islargely determinedbythemowingregime. Mowingwith afinger-bar mower after June 21st, seemstobeoptimal for arthropod abundance anddiversity inFlevoland,whencompared tothetraditionalmanagement ofmore frequent mowingwithaflail mower(Smedingetal.,2001b).Inadditiontothevegetation features, E.I.qualityrelatestothedimensions offield margins and consequently tothe proportionofsemi-natural habitat onthetotal farm area. Performances of farm food web structures ofthe four theoretical farms werederivedby roughlyrelatingthe available detritusandplantresourcestotheabundance ofdetritivore and herbivore functional groups,respectively. Anabundance offunctional groups atthehigher trophiclevelwasassumedtobeprimarilydeterminedbypreyabundance ('bottom-up'). However'topdown'control andhorizontal effects (i.e.competition) werealso considered, withreference totheevidenceinliterature(Wiseetal.,1999;Tscharntke, 1997;Poweretal., 1996;Booij &DenNijs, 1996).Analogous totheapproachofFretwell (1977),whocoined thetheoryonpredator andresource limitation,the four presented hypothetical food web structureswerebasedonexpertjudgementwithreference totheory from literature and empirical data. 3. Results Theresults sectionincludesthreeparts: - anoutlineofthetopological foodweb; - consideration ofthe effect of farm management onthe food web structure (i.e.relative abundanceoffunctional groupsandstrengthoftheirinteractions); 87 anillustration ofthepredictionswith empirical datafromarable farms in Flevoland. 3.1. Topologicalfarmfood webonorganicarablefarms inFlevoland Becauseoffrequently occurring omnivoryandintraguildpredation,trophiclevelsare difficult toassessinthefarm food web.Itistherefore convenient tomakeabroad distinction among four aggregate subsystems (Table1): - aprimaryguildofherbivores; - aprimaryguildofdetritivores; - anintermediatelevelofmacrofaunapredatorsofinvertebrates; - atoplevelofpredatorsofvertebrates. Thecomposition ofthesefour aggregate subsystems isdiscussedbelow, andalsosome remarkswillbemadewithregardtotherelativesizeandtheextentoftheenergy flow throughtheherbivore anddetritivorebased food chains. Table1 Thefood webmatrix of thefarmfood webonanorganic arablefarm inFlevoland (TheNetherlands); inrows are theresources andpreyfunctional groups respectively, incolumns are thedetritivores, grazers and predators, as represented by thesamefunctional groups; I = interaction and 2 =strong interaction (according toboth observations and the literature references). Thelinesrepresent theseparate resources and thefour aggregate subsystems (detritivores, herbivores,predators of invertebrates and thetop predators). Subsystem 1 primary prod. 2 primary prod. 3 primary prod. 4 primary prod. 5 detritus 6 detritus 7 detritivores 8 detritivores 9 detritivores 10 herbivores 11 herbivores 12 herbivores 13 herbivores 14 herbivores 15 herbivores 16 predators 17 predators 18 predators 19 predators 20 predators 21 predators 22 predators 23 toppredators Resource or functional groups roots leafs and stems flowers of dicots seeds crop-residues, litter (C/N high) slurry, stable dung (C/N low) earthworms microbivore predators detritivorous arthopods rootherbivorous arthropods invertebr. flushfeeders (r) invertebr. senescence feeders (K) specialist anthophiles granivorous arthropods herbivorous vertebrates epigeicpredacious beetles wandering andweb spiders vegetation dwelling arthropods parasitoids soil-life feeding vertebrates insecti-granivorous birds specialist insectivorous birds raptors,mustelids, opportunists 7 1 2 2 8 1 2 9 10 11 1 2 1 2 1 1 1 1 2 1 1 16 17 18 19 20 12 13 14 15 21 22 23 1 1 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 X X X X X X X 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 1 1 1 2 1 2 1 1 X 1 2 1 2 1 1 1 X 1 X 1 X 1 1 1 1 X 1 X 1 1 2 1 1 1 2 1 X X X 1 2 1 1 1 1 X 3.1.1.Herbivoresubwebprimaryguilds Guildscanbeassembled accordingtotheexploited partoftheplant:roots,greenmaterial (leafs and stems),flowers and seeds(DeSnoo&Canters, 1988;Crawley, 1983)(Table1). 88 Therootherbivorous guildbelongstothesoilbiota(Brussaard, 1998)anditmainly includes herbivorous nematodes,mitesand insect larvae.Nematodes maydeterminethe amountof rootherbivory onfarms (Wardleetal, 1999).Howevernematodes andmites aresomuch interlinked withthemicropredator food web(presented below)thatweconsidered themasa component ofthat assemblage.Rootherbivorous arthropods inarable agroecosytemsare mostlypolyphagous larvaeofDiptera, Coleoptera andLepidoptera. Their food alsoincludes seedsand seedlings(Gangeetal, 1991)(Table 1).Feedingondetritusmay alsobe significant insometaxa(Strongetal, 1996).Theroot-herbivore guildbiomass(Table2)inthe farm food webisgenerally largerthanthebiomassofalltheaboveground herbivores (Tscharntke &Greiler, 1995;Wardleetal, 1999),particularly when leatherjackets (Tipulaspp.)are enhancedbygramineouscrops. Table2 Estimates of thebiomass magnitudes (kgdry weightper ha)offunctional groups at organic arablefarms in Flevoland;theestimates are average values withregard toafarm of around 40hawith 5% ecological infrastructure and 30%gramineous crops. Sources: (a) Van derBurgt, 1998; (b)De Ruiter etal, 1993,1995; (c)Kromp &Meindl, 1997;(d)Schekkerman, 1997;(e)Smedingetal, 2001b; (f)Buys etal, 1996;(g)Hospers, 1991; (h)Booij, oral communication; (i)Remmelzwaal & Voslamber,1996; (k)Lange etal., 1994;(m)Smeding & Booij, 2001. Functional group earthworms microbivore predators detritivorous arthopods root herbivorous arthropods flushfeeding folivores senescense-feeding folivores specialist anthophiles granivorous arthropods herbivorous vertebrates epigeic predators oligophagous predators parasitoids soil life-feeding vertebrates insectivorous birds top predators Range of biomass 10 1000 0.1 1 0.1 10 1 100 1 100 0.1 10 0.001 0.01 0.01 1 0.01 0.1 0.1 10 0.01 1 0.001 0.01 0.01 0.1 0.001 0.1 0.001 0.01 Reference a b c d c c,e f,g h i,k c,h c,e e i,m i,m i Folivores canbesubdivided intotwoinvertebrate assemblages(Table 1):flush and senescence feeding folivores. Theflush feeding folivores (White, 1978) feed onyoungtissues with lowC/Nratio and lowfibrecontent. Thecharacteristic modesof feeding areusually sucking,boring andmining (Crawly, 1983).Theyhave asmallbodysize,afast development andgood dispersal abilities. Senescence feeders feed onmatureplanttissues. Originally White (1978)had defined this group as feeding ontissuesthathaveincreased nitrogen levels causedby stress orageing. Inthis articlewealsoinclude folivores which feed onpresumably healthymaturetissueswhich couldhave ahigh C/Nratio.Characteristic modes offeeding are clipping,holingorremoval (Crawly, 1983).Senescence feeders tendtohaveaslower development oralargerbody size(Crawley, 1983)andpossess,related toamore sedentary behaviour, defensive traitstopredation (Poweretal, 1996).Theflush feeders largely determine thebiomassofthe folivorous guildsonthe farm; andtheir exponential increase, dependant onhowsusceptiblethecropis,andonweather conditions,may temporarily determinetheaboveground herbivore biomassonthe farm. 89 Theanthophiles guild(Kevan, 1999)involvesinsectswhich aredependant on flowers intheir entirelifecycle(specialists) oronly intheadult stage(non-specialists). The former are particularlybees,either solitary (Tscharntke etal, 1998)orsocial(Svensson etal, 2000). Thelatterareinsectswhoselarvaecanbeherbivorous (e.g. butterflies andmoths),predacious (e.g.syrphid flies, cantharidbeetles),parasitoids,ordetritivorous (e.g. anthomyid flies). Specialist anthophilebiomass,which, inFlevoland, mainlyconsistsofbumblebees,issmallin comparisonwiththebiomassofotherherbivorous guilds(Table2). Theaboveground granivores guild involvesinsects,birds andmammals.Becauseofthe difference intheirlife history,vertebrates areplaced inother functional groups.The granivorous invertebrate functional groupincludethecarabidbeetlegeneraAmaraand Harpaluswhicharenotoriousgranivorous (aswellasbeingomnivorous);and other granivorous insectslikeweevils andlygeidbugswhicharemainlyoligophagous (Westerman, inprep.). Herbivorous vertebrates onthe farm mainlyinvolverodentsand afewbird species(e.g. pigeon andhouse sparrow).Theirlargebody sizeanddigestive capabilities allowthemto feed onawiderangeofplanttissues.Thediet offor examplethewoodmouse,anabundant speciesinFlevoland field margins,alsoincludes animalfood (invertebrates,bird eggs) (Langeetal, 1994).Seedsareanimportant component inmixed dietsbecause oftheirhigh nutritionalvalue. 3.1.2. Detritalsubwebprimaryguilds Thedetrital food webcanbedivided intothreemajor divisions (Brussaard etal, 1997; Brussaard, 1998;Wardleetal.1999):themicropredator food web,saprovorous arthropods andthesoilengineers (i.e.earthworms). Themicropredator food webisinfact acomplex system initself(DeRuiteretal, 1993, 1996;Brussaard, 1998)comprisingbacteria-based and fungi-based compartments.Primary consumersaremicrofauna likeprotozoa andnematodes;topspecies are micropredators comprised ofmesofauna mites(Acari) andspringtails (Collembola).Because ofrespiration lossesbyseveralprecedingtransfers, thebiomassofmicropredators isrelatively small (Table2). Thesaprovorous arthropod guildinvolvesmeso-andmacrofauna which feed directlyonplant debris andonmicroflora whichdevelopsondecayingtissues.Largespringtails, Diptera larvae (e.g. Chironomidae, Sciaridae) and staphylinidbeetleadultsand larvae areimportant groups(Sinnigeetal, 1992;Weberetal, 1997;Frouz, 1999;Bohac, 1999).Taxonomic composition ofthisguild isaffected bysubstrate quality,for examplethenitrogen(Bohac, 1999)andsugarcontent (Weberetal, 1997). Theengineersguild (Brussaard, 1998),althoughprincipally saprophagous, eatsbulk-soil whichmayalsoincludeotherkindsoffood (microflora, seeds).Themajor characteristic of thisguild istheircapability ofsoildisturbance.Although earthwormsplay aminor direct role insoilmetabolism,theirbiomassmaypredominatethetotalbiomass ofdetritivorousmesoandmacrofauna inarablefields(Table2). Insemi-naturalhabitatswith apermanent litterlayer,itmightbeconvenient to distinguish withinthesaprovorous guild,anepigeicdetritivore functional groupthatinvolvesin particularwoodlice (Paoletti &Hassal, 1999),diplopods (Sinnige etal, 1992),slugsand snails.Thisgroup alsoexhibitstransitionsfromherbivoroustodetritivorous traits,for exampleabundant slugsfeeding onsowthistlesthathadbeenweeded outofthe croparea, 90 andplaced inthecropedge(Smeding,unpublished data).Forreasonsofsimplicity,this articledoesnot distinguishthisgroup. 3.1.3.Predatorguilds Sixdistinctivepredatorfunctional groupsorguildsrepresent ashift inemphasis from detritivoretoherbivore subweb: - Epigeicpredaciousbeetlesincludingpolyphagouscarabidandstaphylinidbeetles; - Spiders,bothwandering andweb-building spiders,that areground and facultatively vegetation dwellingpolyphagouspredators; - Vegetation dwelling arthropodpredators includingpolyphagous species (e.g.cantharid beetles,myridbugs) andoligophagous species.Oligophagous speciesincrops are often aphidophagous (e.g. ladybirds,syrphid flies)butnotalwaysso,for examplepredacious Diptera(e.g. Empididae,Dolichopodidae) which feed onsmallDiptera andHymenoptera; - Parasitoids (mainlyHymenoptera)whichdonotonlyexploit,asisoften thought,aphids andlepidopteransbut also,for example,detritivorous Diptera (Potts &Vickerman, 1974) orspiders (Topping &Sunderland, 1996); - Insectivorousbirds including twofunctional groups:specialist insectivores thatare capableofcatching flying insects;insecti-granivorous specieswhichconcentrateon feeding amongthevegetationoninvertebrates andseeds; - Soil life-feeding vertebrates,includingbirds(e.g. lapwing and starling) andmammals (e.g.moleandshrew). Forreasons ofsimplicity itisconvenient tocombinethepredacious beetles and spidersina guildof'epigeic polyphagouspredators'(e.g. Poehling inBooij &DenNijs, 1996).The epigeicpredatorshaveakeyposition inthefarm food web,inthatthey exploitboththe herbivore andthedetrital subweb(Sunderlandetal, 1996;Kromp, 1999;Wiseetal, 1999). Soalthoughtheybasically depend onthe abundanceofthesoilmesofauna, e.g. springtails (Potts&Vickermann, 1974;Holland &Thomas, 1997)theyalsotemporarily exploitthe increased herbivorepopulation inthesummer(Wiseetal, 1999;Schoenlyetal, 1996),and somightprevent outbreaks ofr-herbivores ifthesepopulationsbuild up slowly(Burn, 1988). Insectivorousbirds alsoexploitbothsubwebsbut arelessnumerous,comparedtotheother predator groups.Compared tootherpredacious groups,epigeicpredators may achievethe highestbiomassinarablefarm food webs(Table2). Intraguildpredation, includinghyperparasitismandcannibalismprobably stronglyaffects the abundanceofindividualpredator guilds(e.g. Tscharntke, 1997;Sunderland etal, 1996). Examples arethepredation ofalreadyparasitised aphidsbyvegetation dwellingpredators, carabidbeetles feeding onspiders,orinsectivorousbirds feeding onadult syrphid flies.Birds probably consumerelatively morearthropodpredatorsthanprimary invertebrates when comparedtotherelativeabundanceofthesepreyspecies,becausetheymayprefer larger individuals. Since epigeicpredatorscanhideunderthesoil surface orhavenocturnal behaviour (carabid beetles),vegetation dwelling arthropods areanimportant prey forbirdson arable farms. Haematophagous (bloodfeeding,parasitic)andscatophagous (dungfeeding) insectsand scavengers aresmall functional groups(e.g. Potts&Vickermann, 1974;Weberetal, 1997) thatexhibittransitionsfrompredacioustodetritivorous traits.Thisguildwhich feeds onthe produceofvertebrates maycontribute significantly tothepreyofinsectivorousbirds (e.g. the swallow).Thiscould occurwherecattlearetemporarily grazing onleypasture orinthe stable,orwhendungisstoredon farm headlands (Hald&Reddersen, 1990;Smeding, unpublished data).Forreasonsofsimplicity wearenotconsideringthese functional groups. 91 3.1.4.Thetoppredatorguild Toppredators arethevertebrateswhich aretruecarnivores(e.g. kestrel,barnowl,weasel, stoat)oropportunistic omnivores(e.g. carrioncrow).Theircommoncharacteristicisthe abilitytopreyonothervertebrates andtheirpreference forpreyofalarger size.Sometop predators,whichvisitthe farmbychance,belongtothefood web attheregionor landscape level(e.g. henharrier,blueheron,andgulls).Theabundance ofherbivorous vertebrates stronglydeterminestheresource availability for thetruecarnivores (Plesnik &Dusik, 1994). ThebreedingdensityofkestrelsinOostelijk Flevoland, intheyears following reclamation, relatedpositively totheirfood supplywhichwasmainlycommonvoles.However, nestling mortality wasnot affected byadecreased voleabundance asthenestlings could alsobe fed withchicks,inparticularthoseofstarlings(Cave, 1968). 3.1.5.Therelativesizesofherbivoreanddetritivoresubsystems Asinmostterrestrial ecosystems,thefarm foodweb consistsofaherbivore subweb anda detrital subweb(Odum, 1973;Polis&Winemiller, 1996).Food chains inthetotal farm food webmay,bychance,achievealengthof9steps.Howeverthenumberoffunctional trophic levels(Poweretal, 1996)ismuch less,presumably approximating thecommonchain length of4(Winemiller &Polis,1996). Inagroecosystems thedetrital subwebisexpected tobemuch largerthan theherbivore subweb intermsofbiomass andspeciesdiversity (Wardleetal, 1999; Swift &Anderson, 1993).Thiscouldbeexplained from theviewpoint ofresourceavailability.Inmostnatural systems,onaverage,about 10%ofnetprimaryproduction(NPP)isgenerallytakenby herbivoresandabout90%bydecomposers; insectherbivores consumeusually lessthan 1% ofNPP,whereasruminants caneasily assimilatemorethan 10%(Crawly, 1983;Edwards& Wratten, 1980).Onarablefarms theaverageherbivoreconsumption might alsobelessthan 1%becauseharvestingremoves alargeproportion ofNPPandherbivory isinhibited byboth thedirect andindirect measuresofthe farmer. However evenasmallamount ofconsumption maycausegreatdamagetotheplant (Tscharntke &Greiler, 1995;Crawly, 1983)and therefore involvelargeeconomicloss. Incontrasttotheherbivore subweb,thedetrital webreceives extra food intermsoforganic manure,organicwastes andcropresiduesofboth allochthonous and autochthonous origin. However 90-95%ofenergyindetritusisusedbytherespiration ofsoilmicro organisms (Swift &Anderson, 1993).Consequentlythebiomass ofthemesofauna (i.e.thetop organisms ofthemicropredator food web)isamazingly small(DeRuiteretal, 1993,1995) (Table2)comparedwith,for example,earthworms.Therelativedifference betweenthe biomassofmacrofauna (i.e.largeinvertebrates) ofthedetritital subweb compared tothe macrofauna oftheherbivore subwebmaytherefore notbeverymarked. Inotherwords: althoughthesizeatthe food webbasemaydiffer extremelybetweenboth subwebs,the quantitative difference seemstobemuchsmaller atahigher trophic level.Thissupposition is supportedby studiesofRyszkowski etal. (1993)onthe aboveground insectbiomassin several agricultural landscapes:herbivore subwebbiomass (including alsothe adultsofroot herbivorous larvae)wasgenerally largerthanthebiomass ofinsectsoriginating from the detritivore subweb.However, comprehensive dataonthissubject arescarceand couldbe biasedbyseasonal andannual effects. 92 3.2.Farmfood webstructurerelatedtofarmmanagement Inthetextbelow,thefivefood webstructures arepresented and illustratedwithfood web diagrams.Firstly,attention isdrawntothecrop areacontributionstothe farm foodweb; contrastingthe food webofashort organicduration farm and lowE.I.quality(typeA;Fig. la),withthefood webofafarm with longorganicduration and lowE.I.quality(typeB;Fig. lb).Nexttheeffect ofimprovedE.I.(i.e. withanincreased area andvegetationdiversity)on the farm food webisconsideredbycontrastingtheabovetwomodelswithout improved E.I. withshortandalongduration farmswithimprovedE.I.(typesCandD;Figs, lc and Id). 3.2.1.Shortdurationfarm withoutimprovedE.I. Thefarm food weboftypeA(Fig. la)represents arelatively smallandlowfood web structure.Thefood web islargelydeterminedbythedetrital food web,however soilmesoandmacrofauna densities arelowwhencompared tothelongduration farms (typesBandD). After theconversion toorganic farming herbivore densitiesincropsmay initiallyremain low. However, cropsmaybecome susceptibletoherbivorybecausethefarm hastoadapttoa changed fertility management andtheepigeicpolyphagouspredatorpressureisrelatively weak.Incasesofunbalanced luxuriousdevelopment ofthecrop,herbivores, (including senescencefeeding folivores, flush feeding folivores androotherbivores)mayrapidly establish inthecropand inducetemporarilyhighvegetation dwellingpredatordensities. Characteristics oftraditionallymanaged E.I.are: - ahighabundance offoliar herbivores related totheprolonged vegetative development of thegramineous sward; - epigeicpredatorsthat areattractedbythewarmmicroclimate ofsparsevegetation; - herbivores (e.g. granivores)relatedtoannualorruderalplantsindisturbed swards; - specific detritivorous arthropod taxarelated torelatively easily decomposable cuttings. Arthropod communities oftraditionallymanaged E.I.probably havelessinfluence onthecrop areathanarthropodcommunitiesofimproved E.I.,becauseofamorerestricted food supply (bothquantitative andqualitative), andconsequently lowerdensities aswell asareduced varietyoffunctional groups. Vertebratepredatorsmaybemainlybirds feeding onsoilorganisms(e.g. lapwing)and foraging insectivorousbirds,exploiting accidentalherbivore outbreaks(e.g.swallows feeding aboveinfested crops).Forinsectivorousbirdstraditionallymanaged E.I.mayoffer a useful butlimitedquantityof food. 3.2.2. Longorganicdurationfarms withoutimprovedE.I. Thefarm food weboftypeB(Fig. lb) compared totypeAischaracterised byanincreased detrital webinthecrop area.Particularly densitiesofsaprovorous arthropods and earthworms mightbe increased whenthisiscompared to short duration farms (e.g.Heimbach &Garbe, 1996;Idinger etal, 1997).Theincreaseofthesegroupsmay support, inparticular, epigeic predator functional groupsbutalsosomevegetation dwellingpredators likeEmpididaethat feed onsmallDiptera. Longduration organic farms mightpossess arelatively diverse populationofpotentialcroppestsandweedherbivores,duetotheaccumulated effect of increased crop andweed diversity (Hald&Reddersen, 1990;Moreby &Sotherton, 1997). 93 Toppredators Epigeic predators 1 Wv"" Oligophagous predators \ Parasitoids- ., -Vy Earthworms Microbivore predators Saprovorous arthropods Detritus \ Flushfeeding herbivores Root herbivores Crop plants Senescence -feeding herbivores Weeds Anthophiles Granivores Perennial plantsE.I. Fig. la. Predictedfood webstructurefor anorganic arablefarm withshort organic duration, without an improved ecological infrastructure. Thicklines indicateprobable cases ofstrong interactions. Continuousthin linesrefer to interactions of intermediate strength. Dotted lines referto interactions of minor importance. Boxes with thicklines indicate a relatively high quantitative importance of thefunctional group within thefarm food web. Toppredators Soil lifefeeding vertebrates Fig. lb. Predictedfood webstructurefor anorganic arablefarm withlong organic duration, butwithout an improved ecological infrastructure. Symbols as inFig. la. 94 Vertebrate herbivores However,therelationshipsbetween andwithinpredator andherbivoreguildsmay alternate betweentwoextremetrophic structures.Figs. Id and le illustratethis alternation withregard tothecropareaof farm typeD.Theextremesdependontherelative strengthofpredation pressurebythepolyphagous epigeicpredators andthedegreeofpest susceptibility ofthecrop (VanEmden, 1988),whichisrelated toweather, soilnutrients,soilorganicmatter levels (Phelan, 1997)andinteractionbetweencropandintercrop/weeds (e.g. Theunissen, 1994): - Ifepigeicpredator abundance isrelatively loworifcrops aresusceptible toherbivory,the flush feeding herbivoresmaybecomeapest (Fig. lb).Herbivores support adiverse predator systembecauseneither epigeicpredatorsnoroligophagouspredators are dominant. This systemmaycontrolincreaseofsenescence-feeding herbivoresbutnot outbreaksofthemorevigorous flush feeding herbivores (e.g. aphids).These situations mayoccurmorefrequently inintensiveorganiccroprotations; - Ifepigeicpredator abundanceishighorthecropnotsusceptible,then allherbivores and connected epigeicpredatorsmight depressoligophagouspredatornumbers.Epigeic predatornumbers areprobably limitedby food shortages(DenNijs etal, 1997;Booijet al, 1997)andmaytherefore exertapotentiallyhighpredationpressureontheherbivore subweb,aprinciple referred toas'allochthonous energy subsidyviamultichannel omnivory'byWiseetal.(1999).Herbivoreshigher inthecropcanopymay experience lesspredation pressure (Kromp, 1999)andmightbepreyeduponmainlybyparasitoids. Parasitoids maybereleased from interference byoligophagouspredators (cf.Tscharntke, 1997),orhavebetter abilitiestocopewith lowdensitiesofprey (cf.Powell &Nickless, 1996).This food web structure mayoccurmore frequently inextensiveorganic crop rotationsduetolargedetritusresources andsparsercrops. Withregardtovertebratepredators,increased densitiesmayoccur insoil life-feeding and insectivorousbirdswhencompared to farm typeA.However, inparticular, the situationwith increasedherbivory inthecropareamaysupport insectivorousbirds,becauseherbivores are anessentialcomponent ofnestling diets(Poulsen etal, 1998;Hald&Reddersen, 1990), whereasthenumerous epigeicpreyitemsarehiddenbynocturnalbehaviour (Vickerman& Sunderland, 1974),or shelteredbyphysical structuresorprotectedbylowpalatability(e.g. toohard for thechickstoeat).Therefore thefunctional food chain lengthofthefarm food webmayget shorterwhen epigeicpredatorspredominate anddepresstheherbivore subweb, andreducefood availability for insectivorousbirds.Accordingly,Poweretal.(1996) hypothesised that food chainsmay shorten inasuccession from thepioneer stagetoan established community duetotheincreasingly armoured features of sedentary taxaatthe2nd or3rdtrophiclevel. Herbivorousbirdandmammalnumbersmay alsobesupportedby anincreased seed availability ofweeds andcerealsonlongduration farms. Asmalltop-predation layermay subsequentlybebasedonanincreaseofherbivorous andinsectivorousvertebrateabundance. 3.2.3.Shortdurationfarms withimprovedE.I. Thefarm food webofashortduration farm with animproved E.I. (TypeC;Fig. lc)will combinetherelatively smallfood webinthecroparea(occurringonfarmtypeA)withan increased andmore functionally diverse food webinthe field margins.Theresulting food webstructuremaybecomeextended andmore satiated. Theeffect ofimprovedE.I.onthe farm foodwebstructureismost significant withregardto resources andconnected functional groupsthat arelackingor scarceinthecrop area: flowers, seeds,anthophiles, granivores andsenescence feeding herbivores. Specific taxaof detritivorous arthropods aresupportedbythevarietyoflittertypes.Both increased arthropod numbers,aswellasvariedvegetation structure, supportvegetationdwellingpredators. 95 Primary functional groups andinvertebratepredatorsmaydispersefromthe E.I. intothecrop (Sotherton, 1994, 1995; Lys&Nentwig, 1992). Vertebrate functional groupsincludespeciesthatbypreference resideintheE.I.,feeding on thelocallypresent seedsand arthropodsbutprobably alsoonimported flying insectsthat adheretotallvegetation. 3.2.4. Longdurationfarm withimprovedE.I. Improved E.I.probably addssimilarresourcestothefood webofalongduration farm (Type D;Fig. Id)astothefood webofashortdurationfarm (TypeC;Fig. lc).However,onalong duration farm theaddition ofherbivore subweb functional groupsmay further satiatethe food webstructure andcausecumulative effects. Thegreatertheamount andvarietyofresources could,for example,giveabetterabsorptionbythefood weboffluctuations orinterruptionsin thefood supply,duetooperations inthecroparea.Inparticular,populationsoflargemobile arthropod predators,insectivorous birdsandtoppredatorsmightbesupported and stabilised byimproved E.I.Foodwebsoffarms including somedegreeofherbivoryoncropsandweeds (Fig. le), arelikelytosupport moreinsectivorous birdsandtoppredators than farms with depressedherbivore subwebsduetoabundantpolyphagouspredators orherbivore resistant crops(Fig. Id)(asexplained inparagraph 3.2.2.).Incropareaswith littleherbivory, insectivorousbirdsmayhavetodepend moreonimproved E.I.for highquality sourcesof prey. Soil lifefeeding vertebrates Earthworms Microbivore predators Saprovorous anhropods Detrims Crop plants Weeds Perennial plants E.I. Fig. !c. Predictedfood webstructurefor anorganic arablefarm withshort organic duration including an improved ecological infrastructure. Symbols as inFig. la. 96 Soil lifefeeding vertebrates Crop plants Weeds Perennial plants E.I. Fig. Id.Predictedfood webstructure affected by increased detritalsubsidy,for anorganic arablefarm with long organic duration including an improved ecological infrastructure. Thefood webstructure expresses the indirectlyinhibiting effect of detritalsubsidy onthe herbivore subsystem. Symbols as inFig. la. Toppredators Soillifefeeding vertebrates Cropplants Weeds Perennial plants E.I. Fig. le. Predictedfood web structure affected byan r-herbivoreoutbreak,for an organic arablefarm with long organic duration including an improved ecological infrastructure. Thefood webstructure expresses the 'bottom up' effect of increased herbivorousprey availability. Symbols asinFig. la. 97 3.3.Supportfrom empiricalresearch onorganicarablefarms in Flevoland Resultsfromempiricalresearchonarable farms inFlevoland givesomesupporting evidence for themodelspresented above.Observations ofthe four farm types showed: - shortorganicduration farms (typeAandC)had inthecrop arealowdensitiesofallthe functional groupsofvegetation dwelling arthropods or,inmoredenseluxurious crops,high densitiesofsenescence feeding folivores associated withincreased predator abundance (Smeding etal.,2001b).Bird densitiesonthese farms were low compared tootherfarm types (Smeding &Booij,2001); - longorganicduration farms (typeBandD)hadinthecrop areatwo distinctive compositions ofvegetation dwelling arthropods:onewith abundant flush feeding folivores related tointensivecroprotation, andanotherwithmoderately abundant detritivores and parasitoidsrelated toextensive croprotation(Smeding etal.,2001b).Accordingly epigeic arthropodshad alowabundance inlongduration farms withintensive croprotation (Smeding etal.,2001a)ascompared tofarms with alessintensivevegetableproduction. However, evidence for increased epigeicpredator abundanceonlongduration organic farms with ahigh proportion ofgramineous crops,wasnot found, becausethesewerenotwell represented in the studyarea; - longduration and improved E.I. farms (typeD),includingmainly intensive vegetable producing farms, hadthehighest territorydensitiesofinsectivorous birds,probably relatedto bothE.I.andcropcharacteristics (Smeding &Booij, 2001).Insectivorousbird abundance seemedtobenegatively correlated tomoreextensive croprotations; -improved E.I.borderedbylargeconventionally managed cropplots (resembling type C)had highdensitiesofinsectivorousbirdterritories andsupported alsoherbivorous mammals (Remmelzwaal&Voslamber, 1996). 4.Discussion 4.1. Onthevalidation ofthemodel Inthis articleweproposed atopological farm food web(basedonthe farm food webof organic arable farms inFlevoland, TheNetherlands) andrelated this food webtotwo important farm traits:theduration oforganic farming andthe amount of ecological infrastructure. Thisexerciseledtothedistinction offourbasic food web structures.An additional subdivision couldbemadebasedonthe levelofcropherbivory in long-duration organic farms. Itmightbeclearthat theoutlinedresponses ofthefarm food webto farm management werebased onamixof field evidence,theory andinterpretation. Theabove presented empirical dataillustrate thefood webbut areprincipally not applicable as validation,becausethetheorywaspartlyinspired bythesamedata.Furtherresearch is required tovalidate ourmodel food webs.However, wethinkthatthe ideasthat havebeen presented, despitetheweaknesses intheirvalidation,providevaluable hypothesesand incentives for further research. 4.2. Integration ofecosystem servicesandnature conservation Thedurationoforganic farming aswell astheamountofecological infrastructure affect the farm food web.Bothvariables areuseful for implementing theintegration of ecosystem services(Altieri, 1999)andnatureconservation-centred aims.However, the effect ofduration doesnotalwayscoincidewiththe effect ofamoreextensivecrop rotation (i.e.theproportion ofgramineous cropinthecroprotation),sincecurrentorganicpractice could includevarious 98 degreesofintensity.Foodweb structuresmaydiffer significantly between extensiveand intensive longduration organic farms; difference in'intensity' amongorganic farms involves inputofC(particularly cropresidues andstrawinmanure) aswell asweedcontrolandcrop performance duetonutrient availability. Theresultsofthis article suggestthat food websthat supportbeneficials (i.e.thepolyphagous epigeicpredators)maynotnecessarily supportconservation-worthy species like insectivorous birds.Longdurationorganicfarmswithanintensivecropping systemaswellasanimproved E.I. seemtocombinetogether,toareasonable degree,boththeaimsofecosystem services andofnatureconservation. However, ifthesesystemsweretobeoptimised, theincreased employment ofbeneficials mightruncountertonatureconservation aims.Anincreased efficacy ofweed control inthefuture, might also further diminish the food resourcesinthe organiccrop areaavailable for thesebirds. Thepresented modelsofthe farm food web showedthepositive effect ofE.I.onnature conservation aims.Thiseffect mayoccurrelatively independentlyfromorganicduration.It must,however,benotedthat shortduration farms arenotthesameasconventional farms, wherepesticide and fertiliser drift mighthappen (DeSnoo, 1995).Indirect effects ofE.I.on 'ecosystem services'inthecropareacouldbepresumedbutmaybelessevident thanthe effects ofE.I.onconservation-worthy species atthe farm level. 4.3Recommendationsforresearch Hypotheses of further researchmightconcentrate ontheeffects ofincreased detritus supplyin the farm food web(e.g. Wiseetal, 1999),theimportance ofdetritivorous mesofauna for epigeicpredators(e.g. Holland &Thomas, 1997;Idinger &Kromp, 1996)andtherelation betweenherbivory andhighertrophic levelsofthe farm food web (e.g. Poulsen etal.,1998; Tscharntke &Greiler, 1995).Applied researchbased onfood webmanagement, may address themanagement ofcropresidues andothernon-harvestablecomponents (NHC)(Vandermeer etal.,1998)aswellasthepossibilities forcontrolledherbivory inlivingmulches,leysetc. (e.g.Theunissen, 1994, 1997).Itwouldbeworthwhiletolinkthefarm food webmodel,as proposed inthis article,toafarming system model(e.g. Oomen&Habets, 1998;Wolfert et al, 1997)whichcanbroadly estimatetheresource availability ofvariousdetritus andplant tissuequalities,basedon farm managementtraits. Finally, alsothespatial distribution ofresources for functional groups shouldbe addressed (e.g. Topping, 1997;Kreuss &Tscharntke, 1994)aswellastheeffect ofphysical disturbance andshelteronmortality (e.g. DenNijs etal, 1996)orbirdnesting success (e.g.Wilson et al, 1997).However,accordingtoauthorities infood webresearch(Polisetal, 1996),when referring tothecurrent stateofknowledge,careisneeded sothat thecomplexfieldstudy scenario isnot entangled withthemethodology usedbytheresearcher. Acknowledgements TheauthorswishtoexpresstheirthankstoWouter Joenje andKeesBooij for discussingthe articleandsuggestingappropriatereferences andArienavanBruggen for commenting onthe manuscript. Thework attheWageningen University isfunded bytheMinistry ofAgriculture, NatureManagement andFisheries,Department of Science andKnowledge Dissemination. 99 Chapter 7: Farm-Nature Plan: landscape ecology based farm planning F.W. Smeding3&W. Joenjeb "Department ofPlant Sciences, Biological Farming Systems group, Wageningen University, Wageningen, TheNetherlands b Department ofPlant Sciences, Cropand WeedEcology group, Wageningen University, Wageningen, TheNetherlands Abstract Aprocedure ispresented for restyling the lay-out and management of farms in order to increase the biodiversity inthe agricultural landscape aswell asthe sustainability farming. Theprotocol for the development ofan onfarm nature management plan uses landscape ecology characteristics, localbiotic and abiotic data andpotential, aswell asthe farming system data and farmer's personal interests. Itmay also enhance the farmer's interest and understanding ofagroecological pattern andprocesses and amore conscious approach to elements ofnature on the farm, whichmaybethe startingpoint inecologising agricultural practice. 1.Introduction Theintegration ofnatureand farming isanimportant issueinscientific aswell aspolitical circles ofindustrialized European countries,inthe first place,populations ofmanyplantand animalspecies associatedwithagriculturallandaredeclining inmany Western European countries.Changes inagricultural land-use areoften suggested asthemaincauseofthis decline (e.g. Wilsonetal, 1997;Fuller etal, 1995;Andreasen etal, 1996).These changes haveconcomitantly had aneffect atthe landscape-level, resulting inalossof landscape differentiation inEurope (Baldocketal, 1993). AttheIUCNconference 1992onbiodiversity inRio deJaneiro,most European governments committedthemselves toimplementing biodiversity conservation measures.InThe Netherlands,thesecommitments arenowbeingtranslated intodeeds.Agriculture,the landuseaccounting for about 50%ofthecountry'sarea,isnot excluded from theseefforts to conservebiodiversity, sincetheoccurrence ofmany species andcommunities isrelatedto farmland and farming practices. Apart from itsintrinsic value,biodiversity hasafunction inanumber ofecologicalprocesses highlyrelevant for food production. These'life support functions' ofbiodiversity include for examplethesoilnutrient cycles(Brussaard, 1997)andregulation ofpestsbymeansof biological control (Altieri, 1994).Agro-technology hasbroadly increased theindependence of these functions atthecostofhigh inputsof fossil fuel, artificial fertilizers andpesticides.The concept of'sustainable' agriculture aimstore-establish anequilibrium: life support functions andtechnology shouldbe farm attributes ofequalimportance.Here,theintegration of farming andnaturecomesintoplay. Frombothperspectives -theintrinsic and functional valueofbiodiversity in agriculturethereisastrongneedtodevelop farming systemsthatincludebiodiversity (Almekinderset al, 1995;Vandermeeretal, 1998).These ideasareparticularly manifest inthecurrent practice oforganic farming (EEC, 1994).Thestandards for organic farming guarantee safer conditions forbiodiversity development bybanningtheapplication ofpesticides and artificial 101 fertilizer application andbyencouraging longcroprotation andmoderate stockingrates. Nevertheless,organic farms also lack aclearperspective when itcomestointegrating nature onthe farm. Inthisarticle,wearguethatthe integration offarming andnatureinthecontext ofa sustainable agriculture (including themanagement andconservation ofbiodiversity),should comprisetwolevels:thelandscape level(100-1000ha)andthefarm level(10-100ha) (Table 1).Asregardsthelandscape level,there shouldbecoherence,between the structureand distribution ofthenon-productive (green)habitatsonthe farm andinthe surrounding landscape.Thereason isthatconditions supporting biodiversity onthe farm are strongly related toprocesses andstructures atthelandscape level.The first question therefore, is:what aretheimplications ofthis landscape-level focus for farm-nature? Atthe farm level,these greenhabitatsshouldbeclearly andpurposefully integratedwith farm management. Onlyif habitat structures anddistribution arecompatible with(orbeneficial to)the agricultural production, willtheybeabletosurvive and,asaresult,bioticcomplexity beabletoincrease. Thesecondquestion tobeaddressed is:what doesthisfarm-level focus imply fornatureon thefarm? Thethirdquestionisanextension oftheprecedingones:howcanthese implications beworked out forreal farms,e.g. ina'Farm-NaturePlan'?How can farms actuallybe're-styled' inordertoachieve abetter coherencewith landscapepatternsand processesand abetter adjustment of farming tonature? Theoutlinesofaprocedure for such anon-farm implementation willbepresented. Thisprotocol for aFarm-NaturePlanis currentlybeingtested inDutch agriculturalpractice,mainlyonorganic farms, without subsidiesonavoluntarybasis. 2.Farm inthe landscape Thequestionofwhy this'coherence'between thegreenhabitat's structure anddistribution on the farm and atthe landscape level issoimportant forthebiodiversity canonlybe approached atlandscape ecology level andhastoinclude agroecosystem functioning. Atthebeginning ofthiscentury,traditional farming wasbroadly inaccordancewith landscape ecologycharacteristics andprocesses.Thetechnical and economicconstraintsto farming weredirectlyrelated tolimiting natural resources andconditions.Crops,livestock, tillageandmanuringhad aspatial distribution reflecting theprevailing abiotic conditions. This land-usepatternresulted inagradient inuseintensity andproductivityfromthe farm settlements onwards.Inadditiontothisspatially differentiated land-use,theuseofeach area wasconsistently the sameovertheyears,i.e. constancy ofprocesses.Thistraditional land-use resulted inahighbiodiversity (Westhoff etal, 1970;VanLeeuwen, 1966).However, increasingly and especially since 1950improved technology andwelfare allowed agricultural land-usetogain independence from natural resources andtheincreasing inputsof artificial fertilizer andmechanisation have levelled outthehabitat variation.Nevertheless, modern agricultural landscapes stillharbour abiotic andbioticdiversity. Thisvariation often refers to vital ecologicalprocesses,particularly related totheeco-hydrology(Everts &DeVries, 1991). Thedata from plant andanimal speciesinventories areextremely valuable. Because vegetation succession and species immigration mostlytakedecadestobe accomplished (Van Dorp, 1996;Hermy, 1994),itisdifficult toconclude thepotential suitability ofalocation for certain species.Therefore, structures andprocesses atthesurrounding landscape levelhaveto beused asreferences andresources forbiodiversity atthe farm level. 102 TableI Important structures andprocesses (italics) on thelandscapeand thefarm levelsas related to ecosystem components. Component: Landscape level (reference): Climate exposure to sun andwind, mesoclimate Soil soil type, inclination, soil/height transitions {soil formation) managing nutrient and organic matter status, tillage, disturbance Water catchment area (river),water transport: inundation, seepage, infiltration, leaching or accumulation minerals, land-use planning ditches, drains,ponds, wells,water management Physical structures (man-made) Farm level(field ofoperation): roads andbanks,dikes,urban zones, construction shade, shelter, erosion, deposition buildings,tracks,fences, dumps/piles, transports of matter, construction Vegetation present communities (including forest, nature reserve),succession, population dynamics, dispersal pastures,arablecrops,weeds,vegetation of linear habitats, dispersal, management and control Fauna vertebrates andmigratory invertebrates, migration,population dynamics present species, domestic animals, dispersal,population dynamics Howcanpattern andprocess atthelandscape level(Table 1)be assessed inordertoachieve suchcoherencebetween thehabitat infrastructure offarm andlandscape? Ifwe look atthe landscape levelthere arethree ecological keynotestobe addressed: - Similarity: thepromotion onthe farm ofplant andanimalpopulations already occurringin theregion,mosteffectively enhancesthefarmbiodiversity. Semi-natural (green)habitat types found inthesurrounding landscape couldbepresent orconstructed orreinstatedon thefarm; afarm inanopen landscape couldhaveasolitarytreeorsomeshrubs,butis better notplantedwithwoodlotsorhedges; - Connectivity: ecologically related habitats (wet,wooded,herbaceous) shouldbeconnected orbelocatedwithin acertaindistanceinordertoguarantee aminimumterritory size withinthereachofdependent animal species (Opdametal.,1993);theon-farm green habitats should linkupwiththehabitatnetwork present inthe surrounding landscape; - Variationpotential: thevariation insoil andhydrological conditions atthe landscape level aswell astheprocesses atwork onalandscape scale acting asagents for variation {e.g. causinggroundwater seepagezones,flooding) shouldbeutilizedinplanninghabitat arrangement andhabitat management atthefarm level. Ifthesethreekeynotes areaddressed onanumber ofcontiguous farms,theircommon landscape context will leadtocompatible greeninfrastructures thatwillpositively influence eachotherandmayalsorestorecharacteristics ofthelandscape.Thissynergyorpositive feedback mayhavethecharacter ofarestoration,but includes economically feasible farming. Whenthethree landscape levelkeynotes areappliedtothe ecosystem components atthe farm level,anumber ofrecommendations canbeidentified (Table2): - Climate:general exposuretosunandwind,rainfall arethesamefor farm andlandscape; 103 Soil:different soiltypes andtransitionsmay extend intothe farm area,which couldbe expressed bybotanical composition; thiscanbe enhanced by applying special management onselected (promising) habitats (e.g. establishing grassy strips,removing biomass after mowing); Water:influx ofnutrient-rich orpolluted water from thesurrounding areamay strongly influence on-farm habitat conditions;this shouldberestricted ifpossible;differences in groundwater quality extending intothefarm areacouldbe expressed inthe local species composition (Everts &DeVries, 1991);deepening ofaditch orconstruction ofapond shouldbe linkedwiththe surface-water network;distancesuptoc.300menable amphibians todisperse; Vegetation:woody elements (hedgerows,woodlots,individual shrubsandtrees),canbe planted toexpandthewoodynetwork orreinforce existingpatternsor isolated woody elements inthe landscape;management ofwoody,dryorwet herbaceous vegetation shouldrefer toexamples inthesurrounding areathat demonstrate subsequent developmental stages and species-rich communities; Fauna:measures for thepromotion ofcertain speciescould focus onresident (vulnerable) species;toavoiddisturbance oflargespecies,particularlymeadowbirds,these efforts couldbestbeatleast200mawayfrom settlements andmainroads. 3. On-farm nature Theprevious sectionconsidered thecoherence inpattern andprocessbetween the farm and landscape andrecommendations werederived forthefarm. Now,wewill emphasizepattern andprocess atthe farm levelproper, including therelated activities andmanagement. The challenge here istoestablish anexplicit linkbetweenthe farming measures and thedesired developments infarm nature. Anumber ofstructures andprocesses atthe farm levelcanbe important. Features atthe farm levelaresummarized inTable 1.Howcanthesestructures andprocessesbeassessedand addressed inaFarm-Nature Plan?Herewewill use four farm-ecology keynotes comparable tothethreekeynotes atthe landscape level: - Surfacearea: acertainpart ofthe farm areashould comprise green (i.e.semi-natural or extensively managed)habitatsand serve asarefuge and asourceofvariation. Inanumber ofcases anareaof5%ofthe farm hasbeenrecommended (Vereijken etal, 1994); - Connectivity: similarhabitatsonthefarm (wet,woody,herbaceous) shouldbeconnected orlocatedwithin acertaindistance inordertoensurethat dependent animal specieshave atleasttheminimum territory sizeandcandisperse acrossthe farm (Opdametal, 1993); - Variation: avariety ofhabitatsshould occuronthe farm; variation canbe addedwithin thepredominant habitat typesbyapplying different management forms andthus accommodating different plant species and animalsthate.g. requirevariation inpreyand resources;thisholdstruefor generalistpredatorsofpestswhoneed'alternativeprey'when pestpopulations arelow(Altieri, 1994).Variation alsorelatesdirectlyto biodiversity; - Habitatquality: extensively managed habitats shouldbeprotected from manuring andsoil disturbance inordertoallow communities ofoldersuccessional stagestodevelop;to facilitate vegetation succession and small scaledifferentiation inecological gradients there shouldbe asmuchcontinuity intheyear-to-year management aspossible, including theuseofthefields(Westhoff etal, 1970);somevertebrate speciesrequire additional measures tocompensate for orprotect against threats intheproduction area,e.g. protection ofmeadowbird nests (Beintema, 1991). 104 Table2 Developing aFarm-Nature Plan bytranslating ecological information (aboutstructures andprocesses) to recommendations. Component: Landscape level recommendations: Climate utilize differences in microclimate Soil utilizerelief, soil-type, transitions Water correspond to flow patterns, seepage water quality (i.e. thegeneral ecohydrology) Physical structures Farm level recommendations: consider vicinity of roads and buildings (disquiet) Vegetation reference communities under consistent (nature) management; improve spatial linkages ormaintain separation Animals reference communities, including species with alarge home range nutrient application inconsistentpatterns in space and time;no input outside fields manage water quality, quantity andlinks: retention, rising water table, creating new ponds and marshes enable nesting and hiding of animals creating and/or linking of similar habitats; consistent management method ina consistent distribution pattern; mowing mainly withbiomass removal facilities andprotection measures Whenthe four farm-ecological keynotes areappliedtotheecosystem components atthe farm level,anumberofrecommendations canbeidentified (Table2): - Microclimate and climate:establishment ofsheltered and sunnyplaces;inopen landscapes sheltercanbeprovided by shrubs,reed orevenhighperennial herbs;ditch banksorpondswith asunny aspect should haveprioritywhen extraefforts aremadein vegetation management; - Soil and soil fertility: anymanuringoremission ofnutrients outsidetheproduction area shouldbeavoided. Themargins ofpastures and,ifpossible,theedges ofarablecrops could,therefore, receive lessmanure;difference infertility levels of fields shouldbe emphasized; onmarginalfieldsonarable farms alessintensive croprotation canbe considered; - Farmbuildings:access andnesting facilities forbirds (swallow,barnowl) andmammals (hedgehog, stoat)couldbe offered; - Water:thepotential for conservingrelatively nutrient-poor groundwater andrainwateron the farm shouldbeexploited; sometimesthedirection offlow canbechanged andthe effects ofgoodwaterquality extended;thewaterlevel insomeditches couldberaisedby damming.Ifthelandscapetypepermits,wet elements ordeeperwater canbe created; - Vegetation: ifthelandscapepermitsnewlinearwoody elementsofatleast 3mwidthto be established; theruleofthumbregarding themovement ofbirds,batsandbutterflies the 100meterbetween trees andshrubs;thepatternofwet,woodyandherbaceous elements aroundfieldsshouldbeasinterconnected aspossible;agap shouldnever exceed200m (radiusofaction for stoat and songbirds).Plots shouldpreferably benolargerthan 8ha. There shouldbe arealistic andnottoocomplex annualplanning ofthevegetation management ofverges andditchbanks,thatprovides for differences ingrowing stage between orevenwithin linearelements;thereshouldbe aconsistent differentiation in land-usepatterns,ifstocking ratepermits. 105 4. Protocol for aFarm-Nature Plan Howcanorganicorotherfarms bemodified inordertoachievecoherence atthe landscape level andintegrationofnatureatthe farm level?Theaboverecommendations werederived from bothlevels.TheFarm-NaturePlanprotocol (Smeding, 1995)wasdeveloped forthis purpose.Itisastepwiseprocedurethatleadstoamapofthe farm including site-specific recommendations. TheFarm-NaturePlanprotocol hasfivesteps: - Theattunement: atalkwiththefarmer abouthisperception ofnatureonthefarm, his wishes,technicalpossibilities andconstraints; - Thesurvey: afieldvisitoftwodaystoidentify anddescribe allrelevant features resulting in(1)a 1:5,000mapofthe farm, (2)a 1:25,000mapofthelandscape, (3) alistofthe different habitat typesandtheirareasand(4)ashortreport onobservations ofhabitat structure and composition; onlyconspicuous indicator speciesneedtobe identified; information isalsocollected about land-useplanningpolicy andnature management subsidiesrelevant for the farm; - Theappraisal: anevaluation ofthefarm withregard to: (1)theareaof non-farmed habitats,(2)theconnectedness ofsimilar (wet,woody ortallherbaceous) habitatsonand aroundthe farm area,(3)thevariation and(4)qualityof farmed andnon-farmed habitats; - Thechoiceofobjectives: adecisiononsite-specific andrealistic objectives for the farm; thedecision isbasedonecological criteria(appraisal),the farmer's preferences and management possibilities (attunement) and local land-usepolicy and subsidies (survey); - Thedesign: starting from theobjectives andthe farm mapseveralpointsofattention are checked;atthis stage,thelistofrecommendations (Table2)isconsulted to establish landscape coherence andcompatibility with farming practices;theresult isamapofthe farm areaincluding theexisting andplanned distribution ofgreen infrastructure, with practicalrecommendations;particularly inthislaststepthe scientific/ecological judgement istobecombined with creativity whenfindingalternatives for acceptable solutions. Bywayofanexample,letusconsider theFarm-NaturePlanmadefor theA.P.Minderhoudhoeveexperimental farm (Lantinga &Oomen, 1998),a89hamixedorganic farm inapolder dominatedbyarableproduction. Theplan (Fig. 1)involved increasingthetotal areaofnonfarmed biotopes from 2.8to 5.8%.Foursowngrassybanksarecross-linking the herbaceous network anddividing extended areasofarableland intoplotsof9haorless. Themanagement intheditches isvaried,with theaimofachieving atallherb structure (commonreed)and apoorlyproductivevegetation with increased flowering performance. Thevegetation quality oftheditch slopesisguaranteed bymeansofagrassyfieldmarginand anoverall mowing regimewithbiomassremoval.Theditchwithtallherbstogetherwith shrubbycorners andanewlyplanted hedgerowhavetoprovide ashelternetwork for insectivorous songbirds andsmallmammals likestoat andweasel.Additional measures are takentoprotect and facilitate nesting ofswallow andblack-tailed Godwit. Theprotocol wasdeveloped incollaboration withtheDutchNational Extension Service.The procedurewastested in 1995atthreeorganic farms (Smeding, 1995).In 1996-1997 extensionistsmade27Farm-NaturePlans forDutch organic farms, ranging from dairyand arabletofruit production, anddistributed overvariousregions intheNetherlands (Van Almenkerk &VanKoesveld, 1997).In 199870%oftheinvolved farmers responded toa questionnaire:40%ofthe farmers hadimplemented therecommendations and35%intended todosointhe future. About 70%oftheinvolved farmers areusingtheFarm-Nature Planin discussionswiththelocalgovernment,waterboards andnatureconservation authorities. 106 Fig. I. Farm-Nature Planfor theA.P. Minderhoudhoeve-WU experimental organicfarm (89ha), a,arablefield; p, permanent pasture; s.farm buildings; c,canal; r,road withverge(s).Measures (width): I,grassbanks (3m); 2,ditch/common reed (5m);ditch rich inflowering herbs (5m);4,grassyfield margins (3m); 5,shrub corners (25 m~);6,hedgerow (3m). 5. Discussion Thedevelopment of fanning systemsthat includebiodiversity management isacomplex topic.Theapproach presented inthisarticle emphasizes coherencebetween farm and landscape features and integration ofnon-production habitat andfarm management. As explained above,thisapproach issubsequently elaborated intoan advisory instrument (protocol forFarm-NaturePlan)which assumesthatthe farmer willcollaborate and participate actively. Theapproach doesnotpretend tobefinalandcomprehensive;theFarm-NaturePlanprotocol follows onlyoneparticular lineofreasoning,applying field experience and scientific evidences mixedwithprofessional judgement. However, thecomplex system ofafarm can alsobe approached from anotherperspective, for example,historical development, spatial relationsor from different integration levels(crop,community,region).Certainly, more scientific researchcouldalwaysbedonebefore givingpractical recommendations atthe farm level.However, despite such criticism every alternative lineofplanning of farm-nature, including theimplementation, tendstoposecomparableproblems. 107 Avaluablepointoftheapproachpresented isthewell-structured framework thatenablesopen discussion and improvements.Theresultsofpractice-oriented scientific research canbe fitted intothis framework, improving thecriteriaandguidelines. Important research topicsinclude: the selection ofindicator-parameters atdifferent levels,food webson farms, dispersal requirements for plantsandanimals,necessity ofplant species introduction, etc. Afurther advantage isthattheprotocol istransparent andcanbe applied bynon-academics, becausetheemphasisisonobservation of structures andgeneral characteristics of speciesand vegetation.Last,butnot least:thefarmer's involvement indesigning aFarm-NaturePlanis essential.Theresultsarestronglydependent onthe farmer's good intentions, understanding andaccuracyintiming andpositioning ofactions.Theprotocol and Farm-NaturePlanseem tobeeffective toolsinrestoring landscape and farming sustainability. Aswell ashavinga high-tech context,precision farming (Rabbinge, 1997)may alsorefer toakeen understanding anduseofecologicalpatterns andprocesses and atolerant attitude towardsnature elements onthe farm: managingbiodiversity asthestartingpoint inecologising agriculture. 108 Chapter 8:General discussion 1.Observations andtheirimplicationsfrom afoodweb perspective 1.1. Empiricaldataonfood webstructures 1.1.1. Initialhypotheses Itwasexpected thattheduration oforganicmanagement, anextensive croprotation andan improvedecologicalinfrastructure (E.I.){i.e. enlargedarea,aregimeoflatemowing),would relatepositively totheabundance ofnon-pest arthropod functional groups,includingprimary levelsofthedetrital aswell astheherbivore subweb.Thecrop areawasexpected to support inparticularthedetritivoresinthefarm food web,andtheE.I.wasexpectedto support particularly the(K-)herbivore functional groupsthatmightbe scarceinthecrop area.An increaseoftheprimary functional groupswould consequently enhanceinvertebrate predator andparasitoidnumbersaswellasthenumbersofinsectivorousvertebrates(i.e.birds)that feed onbothprimary andpredacious groups.Theincreased abundance ofthepredator complex wasexpected toinhibit outbreaks ofpestherbivores. 1.1.2. Observations inthecroparea Field studiesonorganic arable farms inFlevoland indicatedthat allthe factors included inthe abovehypothesis, affected abundance and functional group composition ofboth arthropods andbirds.However the effects differed from whatwas expected. Inthecroparea(i.e.wheat crops),K-herbivore abundancewas associated with farms thathad beenrecentlyconverted, whiler-herbivore abundancewasassociated with farms ofalonger organicdurationwith anintensive croprotation.Bothobserved herbivore increasesmightbe explained byacombination ofcrop susceptibility totheherbivoregroup and limitedpredation pressure (Smeding etal, 2001b).Therewas,accordingtothehypothesis, some evidence found for detritivore increase related totheextensive croprotations onlongduration farms (Smeding etal, 2001b),andfor predator increases associated with detrital subwebonthe moreextensive farms (Smeding etal, 2001a).Inthis lattercase,abroader definition of 'extensive'was applied, involvingboth croprotation and farming practices.Predator abundance inthecropcanopywasparticularly relatedtohighK-herbivore numberson recently converted farms; however thehighest speciesdiversitywasfound onlong duration farms whichhad anintensivecroprotation(Smeding etal, 2001b).Thefarms whichhadan extensive croprotation compared withtheother farms had alowpredatornumberinthecrop canopy,whereastheparasitoidshad intermediate numbers.Thedensityofbirds' territories seemedtobeenhanced bythecrop areasoflongduration organic farms with an intensive croprotation. Thiswaspossibly relatedtoincreased herbivory (Smeding &Booij, 2001). 1.1.3.Observations intheecological infrastructure Increased arthropod abundancewas found inthevegetation ofthe improved E.I. (Smedinget al, 2001b).Theincreased functional groups includedbothpredators anddetritivores. However K-herbivore numbersdidnotincreaseintheimproved E.I.whentheywere compared tothetraditionally managed E.I.;perhapsbecausetheprolonged vegetative development offrequently mownvegetation mightextendthe availability ofnutritive grass tissue.Also,theabundance ofepigeicpredators,inparticular ofthequantitatively important group ofpredacious beetles,wasnotrelatedtoanimproved E.I.(Smeding &Booij, 2001). Observations suggestedthattheirnumberswererelatedtothecropareaconditions.Open, frequently mown E.I.vegetation enhanced themore specific grounddwelling functional 109 groupscompared toimproved E.I.Theterritorial density ofinsectivorousbirdswaspositively related tothehigh arthropod abundance intheE.I.(Smeding &Booij, 2001). 1.1.4. Observations ontheinteractions between theE.I. andthecroparea Field studiesprovided noconvincing evidence for thedispersal of functional groups, abundant intheE.I.,intothecrop area.Theeffects ofcropconditions onthe arthropod functional groupabundance inthecropareaseemedtooffset theinfluence oftheE.I. (Smeding etai, 2001b).Contrarytoexpectations,observations suggested theeffects were reversed regardingepigeicpredaciousbeetles (Smedingetai, 2001a),and flying insectsthat werepossibly transported intotheE.I.(Smeding etal, 2001b;Smeding &Booij, 2001). Bird studiesrevealedpositivecorrelationbetweenbird functional groups and acombination ofcropareaandE.I.characteristics (Smeding &Booij, 2001).Thismay suggestthatboththe croparea andtheE.I.habitats areimportant tothesebirds.Thismay alsoholdtruefor birds thattypically liveintheE.I.,becauseacertainproportion oftheirpreycould originate inthe croparea. 1.2.Observations relatedtothefood web theory 1.2.1.Top downandbottomupdetermination ofabundance Theinitial setofhypotheses wasbased onthegeneralisation that anincreased food webbase, duetoanenlargedresource supply,relatestothe subsequently increased trophic layers ('bottom upcontrol',cf Oksanenetai, 1996).Ourfindings largelyconfirm theimportanceof "bottomup'determination ondetritivores,K-herbivores,r-herbivores, invertebratepredators andinsectivorousbirds.However,theplaceoftheresourceswasdifferent thanexpected: long duration organic farms didnotprovide alarge food resourcetoK-herbivores and incaseofan intensivecroprotation alsonottodetritivores.IntheE.I.,contrary to expectation detritivorous arthropod numberswereenhanced bylatemowing andnotparticularly Kherbivorenumbers. Additionaltoindications for 'bottom up'determination, indicationswere found for 'topdown' effects {cf Wiseetai, 1999;Tscharntke, 1997;Poweretal, 1996).Observations ofboththe K-andr-herbivore abundance suggested thattheexplanation ofherbivore abundancemight, next totheherbivore susceptibility ofthecrop,also involveherbivore controlbypredators. Anincreaseofpredationpressureonfarms, alonganintensity-gradient beginningwith recently converted farms,may first depressK-herbivore numbers(onintensive farms oflong duration)andthen alsothemorevigorousr-herbivores (onextensive farms oflongduration). Thispresumedpredation pressure couldbeduetoepigeicpredators that are supported by subsidised detrital food chains (Wiseetal, 1999;Polis&Hurd, 1996).Thepotential strength ofsuchpressure issuggested byseveralreports onfood shortages for epigeicpredators (Sunderland etai, 1996;Booij etal., 1996;Wiseetal, 1999).These'topdown' effects may modify toacertain extentthegenerally 'bottom up'determined farm food web structure. However,muchmoreresearchisrequired tofind conclusiveanswers. Thepredominance ofaparticularpredator functional groupmay affect otherpredator groups bymeansofpredation aswell ascompetition (e.g. Tscharntke, 1997).For example,an abundance ofcarabidsorlinyphiid spidersmight affect syrphid fly larvae (oligophagous predator) andparasitoids,which alsointeractwith eachother. Consequently parasitoid distributionmighttoacertain extent,bedetermined bytheoccurrence ofpredators competing with orpreying onparasitoids.Theseinteractions (i.e.'topdown'and 'horizontal effects' inthe food web)defined as'predator interference' or'intraguild predation'may influence arthropod 110 functional group compositions. Theabundanceofinsectivorousbirdsmightbenegatively affected bythe 'multi-channel' omnivoryofepigeicpredators,sinceherbivores, especially K-herbivores arethe preferred food items for insectivorousbirds(Poulsenetal, 1998).Thebirds feed, toacertainextent,on ahigher trophic levelthan arthropodpredators;areduction ofbirddensitytherefore impliesa shortening ofthe functional chainlength ofthe farm food web.Accordingly,Poweretal. (1996)arguedthat food chain lengthwillget shorter inasuccession from thepioneer stageto thesecondary stagebecausethegrazersorsecondary consumers possess armouredtraits protectingagainstpredation. Thisviewpointwouldbethereverseofthecommonlyheldview byecologiststhatthereisasuccession towards anincreased complexity. Thehighestbirddensitieswereobserved on farms that combined intensive crop production withimproved E.I.Thisobservation suggested, accordingtothehypothesis,thatthe broadening ofthe food webbasemay facilitate ('bottom up1)highertrophic levels.The negative indirect ('top down') effect ofdetrital subsidyonthe food availability tobirdsatthe farm level,mightbecompensatedby food availability tobirds inotherhabitatsonthe farm (e.g.inE.I.) and aroundthe farm. 1.3. ExtrapolationofFlevolandobservationstootherlandscapes Thecomparative studyofarthropod communities andbirdsonfour organic arablefarms in Flevoland andtheriverregion (Smeding &Booij, 1999;DenNijs etal., 1998)demonstrated mainlycontrastsbetweenthelandscapes.Therelationofmost invertebrate functional groups toE.I. seemedtobe ambiguous.However, the farm typewith increased E.I. ineach landscape wasassociated withhighdensitiesofspecialist insectivorousbirds. Observations suggested thatwheat crops intheriverregion compared towheatcropsin Flevolandincluded amuchhigher speciesdiversity, involving for exampleanapparent abundance anddiversity ofweeds.Abundant flowering weeds likecamomile, attracted large numbersofanthophiles and also for example large-sizedpredacious Diptera(asilid flies) that didnot occur inFlevoland; theterritoryofastonechat (Saxicola torquata) onfarm 'O-',an insectivorousbird,andtheweed Venus'looking-glass (Legousiaspeculum-veneris) on farm 'O+'representedhighnatureconservation values (Smeding,unpublished data).Theobserved increaseinspeciesrichness and associated complexity offarmland communities onorganic farms inoldculture landscapemayrequireamoredetailed assessmentoffunctional group assemblages inthe farm food web. Theincreased food availability tobirds intheriverregionwas suggested bythetotal songbird territory density: 10-12territories/10ha,whichwastwotosixtimesmorethanonten selected Flevoland farms inthe 1997-1999observations.Inoneofbothriverregion farms, skylarks had adensity of2.7territories/10ha,whichwashigherthanthehighest observed density (2.4 territories/10ha)inFlevoland. Infarm food webs inoldculture landscape comparedto polders,resources suppliedbyweeds,bothdirectly (seeds) andindirectly (herbivores),might haveparticularimportance.AlsocontributionsoftheE.I.tothe farm food webinoldculture landscape,maynot onlyincludeorganisms from herbaceous vegetation but also from habitats (e.g.woody,aquatic)thataremorecontrastingtofarmland communities. Itcanbe arguedthat itwouldbemoredifficult toassess(i.e.isolate)the effects of farm management (e.g.involving detritis input inthecroparea)inoldculture landscapethanin polders.Morecomplex systemsmayinvolvemore extensive ecosystem services andnature conservation contributions thatdonot (yet)occur insimpler agroecosystems (Brown, 1999a; 111 Altieri, 1994).Studies should,therefore, soonerorlater,also addressthemore complex farmland communities inmorebiodiverse landscapes (Stobbelaar &VanMansvelt,2000; Edwardsetal., 1999;Vandermeeretal.,1998). 1.4. Implications 1.4.1. Implicationsfor improvementofecosystemserviceandnatureconservation aims Withregardtoimprovingtheutilisation ofecosystem services(Altieri, 1999),ourresults implythatenhancing theprey availability for epigeicpredators,bysubsidising thedetrital subweb,mightcontributetopestcontrolonorganic arable farms. Thismechanism may alreadybeaninfluence onlongduration organic farms with extensive croprotation (including aleypasture).However, further researchonthistopicisnecessary andpromising. Increasingtheabundance ofvegetation dwelling (oligophagous) predators inthecropcanopy, mightnotbeanappropriate aim,becausethegreat abundanceofcropherbivoreswouldbe needed toincreasethesepredators.Thisisinagreementwithreportsonthelimited predation capacityofoligophagouspredators (e.g. CoccinellidaeinHemptinne&Dixon, 1997). Withreference tothenatureconservation goals,results suggestthatimprovement ofE.I. enhancesthedensityofinsectivorousbirds,whicharethemainconservation-worthyspecies onarable farms. Thecrop areasofintensiveorganicarablefarms supported relatively high densitiesofinsectivorousbirds(when compared withrecently converted farms), possibly related totheoccurrence ofr-herbivores. However, ifthesesystemsweretobeoptimised, inaccordancewiththeprinciples outlined above,theincreased employment ofepigeicbeneficials mightruncountertohighbird densitiesi.e. natureconservation values.Anincreased efficacy ofweedcontrol inthe future, might further diminishthefood resourcesinthecropareaavailable for thesebirds.Itmight appearcuriousthatcurrent organic farming systemsinFlevoland withanintensivecropping system (andparticularly whenthereisalsoanimproved E.I.)combinetogether,toa reasonabledegree,both aimsofproviding ecosystem services andnatureconservation,but that further improvement oforganic farming systemsmightreducethis integration. 1.4.2. Furtheragroecologicalimplications offood webmanagement TheimportanceofK-herbivores aspreyfor insectivorousbirds aswell astheimportanceof herbivorousvertebrates for toppredators suggeststherelevance, from anenergypointof view,ofrelativelysmallfood chains('flows') inthefarm food web.Probablymost consumptionbyherbivores iscarried outbysmallorganisms liker-herbivores (i.e.aphids) (Smeding &DeSnoo,2001).Because90%ofenergyislost ineachtransfer inthe food chain (Polis&Winemiller, 1996),food chainsthat start from smallprimary organisms, dissipate moreenergy,before tissuesareassimilated intothelargerorganism-'meat';primary consumptionby largeherbivores (e.g. leatherjackets,chafers, grasshoppers,sawfly larvae, caterpillars,mice)mightbemoreeffective for thehighertrophic levelsofthefarm foodweb. Inthedetrital food web asimilar arbitrary divisionbetweenthesmallprimary organism chainsand largeprimaryorganism chainscouldbemade:micro-organism based chains(De Ruiteretal.,1995)versussaprovorous arthropods (e.g. flies, large springtails) and earthwormsbasedchains,which connect tovertebrates,for example, lapwingand insectivorousmammals. Foodwebmanagement,whichisaimedatnatureconservation goals,mayaddress,in particular, thelargeorganismchains.Thiscouldbedonebyincreasingtheamount ofless nutritive andmorecomplexplanttissues,aswellasthedetritusthat doesnot decompose 112 easily inboth thecrop areaandtheE.I.;theseresourcesrequiretheemployment ofthelarger organismsmentioned above.Accordingly,Ryszkowski etal.(1993)found morelargespecies inarablecrops inmosaic landscapes {i.e. including ahighamountof'E.I.')than inarable cropsinuniform landscapes. Cousins(1996),whowasasourceofinspiration for thechapter on food webstructure, stressedtheimportanceofweighting thefood 'value'inafood web.Fromthisviewpoint, for example seedsand flower products, althoughprincipally belongingtoprimary production, maybeput onthe sametrophic level asaphids.Accordingly, detrituswith ahigher fibre content,mayhaveahigher 'value'than easily decomposablematerial whichisimmediately decomposedbythemicropredator system.However,theseprinciples shouldnotbeapplied toorigorously; for example,Steffan-Dewenter &Tscharntke (1997)found morelargesized catterpillars inpioneer successional fields than inlatesuccessional fields. Another aspectis that largerorganisms often have longerlife cycles;therefore alsophysical disturbance and shelterpossiblities,onbothfieldandfarm level,shouldbeconsidered {e.g. Ryszkowski etal., 1993;Brown, 1999b). Themanagement ofcomponentsthatarenotharvested (NHC)(Vandermeeretal, 1998), included intheconcept ofmulti-species farms,providesaconceptualbasis for afood web management that specifically addressesthe'largeprimaryorganism chains'.Centraltothe management ofNHC istherecognition oftheimportance ofcropresidues,hay from thecanal banks, andothernon-harvestedmaterials(includingthestandingcropofwildvegetationand trees)for thefarming system and itsfood web.Primaryproduction capacity,whichdoesnot feature intheeconomicreturnsofthe farm {e.g. greenmanure,E.I.vegetation) mightbeused asalife support for thenon-pest herbivore subweb andsubsequently support the detritivore subwebmacrofauna. Betterhabitatconditions fortheseherbivoresmaycompensatetosome extent forthepredationpressurebyepigeicpredators,duetodetrital subsidy. Insuchan extended food web structure, ecosystem services andnatureconservationmight againbe integrated. However,thequestionwhethercomplex food websarebetter i.e. morestablethan simplefoodwebsisaperennialtopic fordiscussion amongecologists (Polis&Winemiller, 1996),andmightbemoredifficult toapproachthanotherquestionsraisedbythisparagraph. Swift &Anderson (1993)aswellasWardle(1999)arguedthatthedetrital subwebonarable farms ismoredeveloped andlessdepletedthantheherbivore subweb.Ourstudies,however, suggest,inreference totheabovegroundcommunity,thatthereisanequalsignificance for boththeherbivore subwebandthedetrital subweb(Smeding &DeSnoo,2001): agroecosystemsinwhich alltheNHC enterthedetritivorous food chainsmaynot support highdensitiesofvertebrates.From afood webperspective itmight therefore be achallengeto incorporate controlled herbivory inmulti-species farming systems(e.g.Theunissen, 1994, 1997;Andow, 1988;Altieri, 1994;Holland &Fahrig,2000). 2. Recommendations 2.1Improvementoftopologicalweb Theassemblage offunctional groupsandtheidentification ofinteractionsbetweenthese functional groups aretheempirical foundation offood web studies (Winemiller &Polis, 1996).Peculiarities of speciesmay,insomecases,determine food web structure.Therefore it isimportant to elaborateonthis foundation byextracting information ondiet,habitat preferences and life history shifts from thevast amountofavailable literature {e.g. Paoletti, 1999).This information iscurrentlybeingcollected inadatabaseAURYN (Booij,Lockand 113 Smeding,unpublished data),andwillbeused toupdatethetopological food webspresented inthisthesis. 2.2. Linkingfood Miebs tofarm models Thechangesoffarm food web structurerelated to farm andE.I.characteristics (Smeding& DeSnoo,2001)couldbedescribed byamathematical model.Intheexploratoryphaseof food webmanagement, simplemodelsmayhelptoexplorethehypotheses andtodetect theoretical inconsistency.Apreliminarymodel isbeingdeveloped usingFuzzyCognitive Mapping (Wolfert, inprep),which cancalculate,basedoncertain farm and E.I.traits,relative sizesof thefunctional groupsinthefarm foodweb. Foodweb analysismayinthefuture profit from extensive farm modelsthatcalculatethe availabilityofresources fortheprimary functional groupsinthefarm food web(e.g. Oomen &Habets, 1998;Wolfert, 1998;Wolfert etal.,1997).Thesemodelscould estimate,basedon dataofthecroprotation andmanurestrategy,theamountsofvarioustypesofprimary production andcropresidues (NHC)that areneeded tosupport theprimary consumption in thefoodweb.Suchmodelscouldbeusedtodesignrealistic experimental and commercial farms, withfor exampleoptimised detrital subsidy. Thesubject ofthisthesiswasexplorative research describing arthropod andbird communities that gaveanindication offood webstructure.However, inthefuture morequantitative data setsandbetterunderstanding ofprocesses infarm food webs areexpected todeliver useful simulationmodels. 2.3Spatialapproaches Thespatialapproach(e.g. Opdam, 1986;Wratten&Thomas, 1990;DenBelderetal., in prep.) andthefood web approach arebothuseful asaconceptual framework for agroecological studiesatthecommunity level(VanWingerden &Booij, 1999).Authoritiesof the food web approach (Polisetal, 1996;Winemiller&Polis, 1996)arguethatboth approachesshouldbecombined,butalsonotethattheresultingcomplexitycouldbeaserious constraint. Accordingly, connecting spatialmodelstoimportant functional groupsinthe food webmodelwillposegreatproblems,bothintechnical andmethodological respect. However, itmightbeachallenge forboth food web andspatialapproaches toexperiment withrather simplecomprehensive models(e.g. Kreuss &Tscharntke, 1994).Theeffect onthe farm food webstructureoftheE.I.arthropod community, and alsoofcropmosaics, exemplify spatial heterogeneity. Accounting for themobilityof functional groups isnecessary for the successful application of food web management. Thespatial approach,based onthedispersal ofindividuals andpopulations (e.g. Topping, 1997)isessentially a'bottomup'approach. However, characteristics onahigher integration levelshouldalsobeapproached withtheappropriatemethodsforthishigherlevel (Almekinders etal., 1995;Cousins, 1996).Examples ofaspatial approach that addresses higherintegration levelsareprovidedbytheworkofOldeman(1990),analysing spatial patternsbasedonthedistinction of'eco-units'. 114 2.4.Fieldexperiments Fieldresearch and experimentation arerequired toinvestigate thepreliminary conclusions providedbythisthesis.Astudyareamight includebothcommercial farms aswellas experimental farms. Theexperimental farms couldrepresent extremeregimesofmanagement which arenotyet acceptable for farming practice.Careshouldbetakenwithexperimentsthat involveplotswheretherearemany smallfields,whichmayrepresent amosaic from afarm levelperspective.Thecontext and scaleofa(farming) systemmayinsomecasesbea precondition fortheoccurrenceofparticulareffects (e.g. Pimm, 1991;Brown, 1999a). Comprehensive field studieswith indiscriminate assessment ofmanytaxa, asdonebyPotts& Vickerman(1974),maymodelfieldresearchthatcouldoptimally support food webstudies. 2.5.Practicalrecommendations Procedures for farm-nature planswererecently elaboratedbyVanAlmenkerk &Van Koesveld (1997),Visser (2000) andDaemen(2000).Protocols orprocedures for such combined agricultural andecologicalplansmightbesupportedbyarestricted food web assessmentbasedonsimpleassumptions.Forexample,asimplemodelthat appliesdatafrom the farm map(areasofcropsandhabitats),coarsemanuring strategy, andE.I. management, mayprovideestimatesofresource availability for several functional groupsonthe farm. Theseoutcomesmayhelpthe farmer oradvisertosetpriorities,withregard tohabitatsor speciesgroupsthat couldbe andaretobe enhanced. 115 References Aebischer,N.J., 1991.Twentyyearsofmonitoringinvertebrates andweedsincerealfields in Sussex.In:L.G.Firbank,N.Carter,J.F.Darbyshire,J.F.Potts(eds),The32nd Symposium oftheBritishEcological Society andtheAssociation ofApplied Biologists,Universityof Cambridge,Blackwell Scientific Publications,Oxford, 305-331. Afifi, A.A.,Clark,V., 1984.Computer-aided MultivariateAnalysis.VanNostrand Reinhold, NewYork,458pp. Almekinders,C.J.M.,Fresco,L.O.,Struik,P.C., 1995.Theneedtostudyandmanage variation inagro-ecosystems.Netherlands JournalofAgricultural Science43, 127-142. Almenkerk,J.J.van,Koesveld,F.van, 1997.Hetagrarischnatuurplan, eeninnovatieve voorlichtingsmethode (projectdocument). Biologica, Organisation for Organic farming and Trade,Utrecht. Altieri,M.A., 1994.Biodiversity andPestmanagement inAgroecosystems.Food Products Press,NewYork, 185pp. Altieri,M.A., 1999.Theecologicalroleofbiodiversity inagroecosystems. Agriculture Ecosystems andEnvironment 74,19-32. Andow,D.A., 1988.Management ofweeds for insectmanipulation inagroecosystems.In: M.A.Altieri&M.Liebman, WeedManagement inAgroecosystems: Ecological Approaches,CRCPress,BocaRaton,FloridaUSA,265-301. Andreasen, C, Stryhn,H., Streibig,J.C., 1996.Declineofthe flora inDanish arable fields. Journal ofApplied Ecology 33, 619-626. Andrewartha, H.G.,Birch,L.C., 1984.Theecologicalweb -Moreonthedistribution and abundance ofanimals.TheUniversity ofChicagoPress,Chicago/London, 506pp. Anonymous, 1991.CouncilRegulation (EEC)No2092/91of24June 1991onorganic production ofagriculturalproductsand indicationsreferring theretoon agricultural foodstuffs, Official J.L.I98, 1-15. Bal,D.,Beye,H.M.,Hoogeveen, Y.R., 1995.HandboekNatuurdoeltypen. Rapportnr. 11, Informatie enKennisCentrum Natuurbeheer, Wageningen, 408pp. Baldock, D.,Beaufoy, G.,Bennett, G.,Clark,J., 1993. Natureconservation andnew directions intheEC CommonAgriculturalPolicy.Report for theMinistry ofAgriculture, NatureManagement andFisheries,TheNetherlands.Institute forEuropean Environmental Policy,LondonandArnhem,224pp. Barker, A.M.&Reynolds,C.J.M., 1999.Thevaluesofplanted grassfields marginsasa habitat for sawlies andotherchick-food insects.AspectsofApplied Biology 54,109-116. Beintema, A.J., 1991.Breeding ecologyofmeadowbirds(Charadriiformes); implications for conservation andmanagement. Ph.D.Thesis,University ofGroningen,Groningen, 127pp. Beintema, A.J.,Moedt, O.,Ellinger, D., 1995.Ecologische atlasvandeNederlandse weidevogels. Schuyt &Co,Haarlem,352pp. Beintema,A.J.,Thissen,J.B.,Tensen,D.,Visser, G.H., 1991.Feeding ecology of charadriiform chicksinagricultural grassland. Ardea79,31-44. Belder, E.den,Elderson, J.,Brink, W.J.vanden,Schelling,G., (inprep.) Effect ofwoodlots ononionthripsdensityin leek fields: alandscape analysis. 117 Boatman,N.D.,Davies,D.H.K., Chaney,K., Feber,R., Snoo,G.R. de,Sparks,T.H.(eds), 1999.Fieldmarginsandbuffer zones:ecology,management andpolicy.Aspectsof Applied Biology 54,374pp. Bockemuhl,J., 1986.DyingForests-a crisesinconsciousness. SocialEcology Series. Hawthorn Press,Gloucestershire UK,96pp. Bohac,J., 1999.Staphylinid beetles asbioindicators.Agriculture Ecosystems and Environment 74,357-372. Booij, K., 1994.Diversity patternsincarabid assemblages inrelationtocrops and farming systems.In:Desender etal.(eds),Carabid beetles:Ecologyand Evolution,Kluwer AcademicPublishers,TheNetherlands,425-431. Booij, K.,Nijs, L.den, 1996.Arthropod natural enemiesinarable land,II Survival, Reproduction andEnhancement. ActaJutlandicaLXXI:2,natural science series 10. AarhusUniversity Press,Denmark, 278pp. Booij, C.J.H.,Noorlander, J., 1992.Farming systemsandinsectpredators.Agriculture, Ecosystems and Environment 40,125-135. Booij, C.J.H., Topping,C, Szysko,J.,Dijk, Th.van,Paoletti,M.,Helenius,J., 1996. Assessmentofsurvivalandmortalityinfield populationsofbeneficial arthropods.Acta JutlandicaLXXI:2,natural scienceseries 10,AarhusUniversity Press,Denmark,69-78. Braae,L.Nehr,H.,Petersen, B.S., 1988.Fuglefaunaen pakonventionelle ogokologiske landbrug. [acomparative studyofthebirdfauna inconventionally andorganically farmed areaswith special reference totheeffects ofpesticides].Miljoprojekt, 102.Danish Evironmental Protection Agency, Copenhagen. Brown,M.W., 1999a.Applyingprinciples ofcommunity ecologytopest management in orchards.Agriculture, Ecosystems andEnvironment 73, 103-106. Brown,R.W., 1999b.Grassmarginsandearthworm activityinorganicand integrated systems.AspectsofApplied Biology 54,207-210. Brussaard, L., 1998.Soil fauna, guilds,functional groups andecosystem processes.Applied Soil Ecology9, 123-135. Brussaard, L.,Behan-Pelletier,V.M.,Bignell,D.E., Brown,V.K., Didden, W.A.M.,Folgarait, P.J.,Fragoso,C , Freckman,D.W.,Gupta,V.V.S.R.,Hattori,T.,Hawksworth,D.L., Klopatek, C, Lavelle,P.,Walloch,D.,Rusek, J., Soderstrom, B.,Tiedje, J.M., Virginia, R.A., 1997.Biodiversity andecosystem functioning insoil.Ambio26(8),563-570. Brussaard,L.,Veen,J.A.van,Kooistra,M.J.,Lebbink,G., 1988.Thedutchprogrammeon soilecologyofarablefarming systemsI.objectives, approach andpreliminary results. Eological Bulletins 39,35-40. Btichs,W.Harenberg, A.,Zimmerman, J., 1997.Theinvertebrate ecology offarmland asa mirroroftheintensity oftheimpact ofman?-An approach tointerpreting resultsof field experiments carried out indifferent cropmanagement intensities ofasugarbeet andanoil seedraperotation including set-aside.Biological Agriculture &Horticulture 15,83-108. Burgt, G.J.vander, 1997.Inventarisatieregenwormen AKC-bedrijven. Internrapport, Louis BolkInstituut,DriebergenNL,25pp. Burn,A.J., 1988.Effects of scaleonthemeasurement ofpesticide effects on invertebrate predators andpredation. In:M.P.Greaves,P.W. Greig-Smith &B.D.Smith,Field methods for thestudyofenvironmental effects ofpesticides,Monograph 40,BritishCrop Protection Council, 109-177 118 Buys,J.C.,Oosterveld,E.B.,Ellenbroek, F.M., 1996.Kansenvoornatuurbij braaklegging II -Verslag vaneentweejarig praktijkonderzoek, CLM253-1996,Centrum voor landbouw en Milieu,Utrecht, 163pp. Canters,K.J.,Dormer,J.H.,Poll,R.J.vander,Tamis,W.L.M., 1997.Watkomterinenwat gaatemit.CMLrapport 132,Centrum voorMilieukunde,Rijksuniversiteit Leiden,27pp. Cave,A.J., 1968.ThebreedingofthekestrelFalcotinnunculus L.,inthereclaimed area Oostelijk Flevoland. Ph.D.Thesis,Rijksuniversiteit Leiden,404pp. Chamberlain, D.E.,Wilson,J.D.,Fuller,R.J., 1999.Acomparison ofbirdpopulationson organic andconventional farm systemsin SouthernBritain.Biological Consrvation88, 307-320. Cohen,J.E., Schoenly,K., Heong,K.L.,Justo,H.,Arida,Barrion, A.T.,Litsinger,J.A., 1994. Afood-web approach toevaluatetheimpact ofinsecticide spraying oninsectpest population dynamics inaPhilippine irrigated riceecosystem.Journal ofApplied Ecology 31,747-763. Cousins,S.H., 1990.Countable ecosystems deriving from anew food web entity.Oikos57, 270-275. Cousins,S.H., 1996.Foodwebs:from theLindemanparadigm toataxonomic general theory ofecology.In:G.A.Polis& K.O.Winemiller,Foodwebs:integration ofpatternsand dynamics. Chapman &Hall,NewYork,243-254. Cramp,S.(ed), 1988.Handbook oftheBirdsofEurope,theMiddleEast andNorth Africa. TheBirdsoftheWesternPalearctic.Oxford UniversityPress. Crawly,M.J., 1983. Herbivory -Thedynamicsofanimal-plant interactions. Studiesin Ecology 10,Blackwell Scientific Publications,Oxford/London, 437pp. Curry,J.P., 1994.Grassland invertebrates:ecology, influence onsoil fertility, andeffects on plant growth.Chapman &Hall,London,437pp. Daemen,N.,2000.Bedrijfsnatuurplannen -een onderzoek envoorstel vooreen standaard. Project analyseenstandaardisering bedrijfsnatuurplannen van Landschapsbeheer Nederland Intern rapport, Landschapsbeheer Nederland,Utrecht, 58pp. Dijk, A.J.van, 1993.Handleiding SOVONBroedvogel Onderzoek. SOVON, Beek-Ubbergen NL, 54pp. Dorp,D.van, 1996.Seed dispersal inagriculturalhabitasandtherestoration of species-rich meadows.Ph.D.Thesis,WageningenAgricultural University, 177 pp. Duelli,P.,Obrist,M.K.,Schmatz,D.R., 1999.Biodiversity evaluation in agricultural landscapes.Agriculture Ecosystems andEnvironment 74,33-64. Edwards,P.J.,Kollmann,J., Wood,D., 1999.Determinants of agrobiodiversity inthe agricultural landscape.In:D.Wood& J.M.Lenne(eds), Agrobiodiversity: characterization, utilization andmanagement. CABIpublishing, Oxon/NewYork, 183210. Edwards,P.J.,Wratten, S.D., 1980.Ecologyofinsect-plant interactions. Studies inBiology no.121,EdwardArnold, Londen, 60pp. EEC(Europese Commissie), 1994.Debiologische landbouw. Bureauvoor officiele publikaties derEuropese Gemeenschappen, Luxemburg. Elsen,T.van,2000. Speciesdiversity asatask for organic agriculture ineurope.Agriculture, Ecosystems &Environment 77, 101-110. 119 Emden,H.F.van, 1988.Thepotential for managing indigenous natural enemies ofaphidson fieldcrops.Philosphical Transactions oftheRoyal SocietyLondon,B318, 183-201. Esselink, H.,Smeding,F.W., Schaminee,J.H.J, 1996.Biologische landbouw inde Achterhoek:nostalgieofnieuwewegenvoornatuurherstel.-Beschrijving vanhet bedrijf vandefamilie vanIpenburg.In:A. Stortelder (ed),Natuur enlandschap indeAchterhoek enLiemers,Jaarboek 1995/96,UitgaveStichting StaringInstituut/Mr.H.J. Steenbergenstichting, Doetinchem NL, 8-39. Everts,F.H.&Vries,N.P.J,de, 1991.Devegetatieontwikkeling vanbeekdalsystemen; een landschapsecologische studievanenkeleDrentsebeekdalen. HistorischeUitgeverij, Groningen,224pp. Feber,E.E.,Smith,H.,Macdonald,D.W., 1999.Theimportanceofspatially variablefield marginmanagement for twobutterfly species.AspectsofApplied Biology 54, 155-162. Fretwell, S.D., 1977.Theregulation ofplantcommunitiesbythefood chains exploitingthem. Perspectives inBiologyandMedicine 20,169-185. Frouz,J., 1999.Useofsoildwelling diptera(Insecta, Diptera) asbioindicators: areviewof ecologicalrequirements andresponse todisturbance. Agriculture Ecosystems and Environment 74, 167-186. Fuller,R.J., Gregory,R.D.,Gibbons,D.W.,Marchant,J.H.,Wilson,J.D.,Bailie, S.R., Carter, N., 1995.Population declinesandrangecontractions among lowland farmland birdsin Britain.Conservation Biology 9,1425-1441. Gange,A.C.,Brown,V.K.,Farmer, L.M., 1991.Mechanisms ofseedling mortalityby subterranean insectherbivores.Oecologia 88,228-232. Gezondheidsraad, 1997.Devoedselweb-benadering inde ecotoxicologische risicobeoordeling, 1994/14,Rijswijk, 82pp. Green,R.E., 1980.Food selectionbyskylarks andgrazing damagetosugarbeet seedlings. Journal ofAppied Ecology 17,613-630. Hald,A.B.,Reddersen J., 1990.Fuglefode ikornmarker-insekterogvildeplanter [Bird food items incerealfield-insectsandweeds.Studiesonconventional andorganic farms 19871988].Miljeprojekt 125.DanishEnvironmental Protection Agency, Copenhagen, 107pp. Halley,J.M.,Thomas,C.F.G.,Jepson,P.C., 1996.Amodel for spatial dynamicsof linyphiid spidersin farmland. Journal ofApplied Ecology 63,471-492. Haughton, A.J.,Bell,J.R., Gates,S.,Johnson,P.J., Macdonald, D.W., Tattersall,F.H.,Hart, B.H., 1999.Methods ofincreasing invertebrate abundance withinfieldmargins.Aspectsof Applied Biology 54,163-170. Haysom,K.A.,McCracken, Foster, G.N., Sotherton,N.W., 1999.Grass conservation headlands- adapting anarabletechnique for thegrassland farmer. Aspects ofApplied Biology 54,171-178. Heimbach,U.,Garbe,V., 1996.Effects ofreducedtillagesystemsinsugarbeetonpredatory andpestarthropods.ActaJutlandica LXXI:2,natural scienceseries 10,Aarhus University Press,Denmark, 195-208. Hemptinne,J.L.,Dixon,A.F.G., 1997.Areaphidophagous ladybirds (Coccinellidae) prudent predators?Biological Agriculture &Horticulture 15, 151-159. 120 Hermy,M., 1994.Effects offormer landuseonplant speciesdiversity andpatternin Europeandeciduous woodlands.In:Biodiversity, Temperate ecosystems and Global Change,Springer-Verlag,Berlin, 123-144. Hendriks,K.,Stobbelaar, D.J.,Mansvelt,J.D.van,2000.Theappearanceofagriculture-An assessment ofthequalityof landscape ofboth organic andconventional horticultural farms inWestFriesland. Agriculture,Ecosystems &Environment 77,157-176. Holland, J.,Fahrig,L.,2000.Effect ofwoodybordersoninsect density anddiversity incrop fields: alandscape-scale analysis.Agriculture,Ecosystems and Environment 78,115-122. Holland,J.M.,Drysdale,A.,Hewitt,M.V.,Turley,D., 1996.TheLINKIFSProject - The effect ofcroprotations andcropping systemsonCarabidae.Aspects ofAppliedBiology 47,119-126. Holland, J.M.,Thomas S.R., 1996.Phaceliatanacetifolia flower strips:theireffect on beneficial invertebrates andgamebird chick food inanintegrated farming system.Acta Jutlandica LXXI:2,natural scienceseries 10,AarhusUniversityPress,Denmark, 171-183. Holland, J.M.,Thomas,S.R., 1997.Assessingtheroleofbeneficial invertebratesin conventional andintegrated farming systemsduringanoutbreak ofSitobionavenae. BiologicalAgriculture &Horticulture 15, 73-82. Holland, J.M.,Winder, L.,Perry,J.N., 1999.Arthropodpreyoffarmland birds:their spatial distribution within asprayedfieldwith andwithoutbuffer zones.AspectsofApplied Biology 54,53-60. Hospers,M., 1991.Bloemen tegenluizen-deinzaaivanbloemstroken langsakkerranden. Publikatie LouisBolkInstituut,DriebergenNL. Hradetzky,R.,Kromp,B., 1997.Spatialdistributionofflying insectsinanorganicryefield andan adjacent hedgeand forest edge.Biological Agriculture &Horticulture 15, 353-360. Hunt,H.W., Coleman,D.C.,Ingham,E.R, Ingham,R.E.,Elliot,E.T.,Moore,J.C.,Rose, S.L., Reid, C.P.P.,Morley,C.R., 1987.Thedetrital food webinashortgrassprairie.Biology andFertility of Soils3,57-68. Idinger, J.,Kromp,B., 1997.Groundphotoeclector evaluationofdifferent arthropod groups inunfertilized, inorganic andcompost-fertilized cerealfieldsinEasternAustria, Biological Agriculture &Horticulture 15, 171-176. Idinger, J.,Kromp,B.,Steinberger,K.H., 1996.Groundphoto-eclectorevaluationofthe numbersofcarabid beetles andspiders found inandaround cerealfieldstreated witheither inorganicorcompost fertilizers. ActaJutlandica LXXI:2,natural scienceseries 10,Aarhus University Press,Denmark,255-269. Isart,J.,Llerena, J.J. (eds), 1996.Biodiversity andLandUse:Theroleof OrganicFarming. Proceedings ofthefirstENOFworkshop,Barcelona, 155pp. Joenje, W.,Burel,F.,Gerowitt,B.,Paoletti,M.G.,Thomas,C.F.G.,Moonen, C , Baudry,J., LeCoeur,D.,Kleijn, D.,Schippers,P.,Kopp,A.,Thenail,C , Marshall,E.J.P., 1997.Field boundary habitat for wildlife, cropandenvironmental protection, LongAshton Research Station,Bristol, 313pp. Kabourakis,E., 1996.Prototyping anddissemination ofecological oliveproduction systems: amethodology for designing anddissemination ofprototype ecological oliveproduction systems(EOPS) inCrete.Ph.D.Thesis,Landbouwuniversiteit Wageningen, 121pp. Kevan,P.G., 1999.Pollinators asbioindicators ofthestateofthe environment: species, activity anddiversity. Agriculture Ecosystems andEnvironment 74,373-394. 121 Keulen,H.van,Lantinga, E.A., Laar,H.H.van, 1998.Mixed farming systems inEurope. APMinderhoudhoeve-reeks nr.2,LandbouwuniversiteitWageningen,231pp. Kleijn, D., 1997.Speciesrichness andweed abundance inthevegetation ofarable field boundaries.Ph.D.Thesis,Landbouwuniversiteit Wageningen, 176pp. Kreuss,A.,Tscharntke,T., 1994.Habitat fragmentation, species loss,andbiological control. Science264, 1581-1584. Kromp,B.&Meindl,P.(eds), 1997.Entomological Research inOrganic Agriculture. Biological Agriculture &Horticulture 15,Nos 1-4. 382pp. Kromp,B., 1999.Carabid beetles insustainable agriculture: areview onpest control efficay, cultivation impacts andenhancement. AgricultureEcosystems and Environment 74, 187228. Lange,R.,Twisk,P.,Winden,A.van,Diepenbeek, A.van, 1994.ZoogdierenvanWestEuropa.KNNV-veldgidsno.8,KNNV-uitgeverij, Utrecht,400pp. Lantinga,E.A., Oomen,G.J.M., 1998.TheMinderhoudhoeve project: development ofan integrated and ecologicalmixed farming system.In:H.vanKeulen,E.A.Lantinga &H.H. vanLaar,Mixed farming systemsinEurope.APMinderhoudhoeve-reeks nr.2, Landbouwuniversiteit Wageningen, 115-118. LaSalle,J., 1999.Insectbiodiversity inagroecosystems: function, value andoptimization.In: D.Wood& J.M.Lenne(eds),Agrobiodiversity: characterization, utilization and management. CABIpublishing, Oxon/NewYork, 155-182. Leeuwen,C.G.van, 1966.Arelationtheoretical approachtopattern andprocessin vegetation. Wentia 15, 25-46. Lys,J.A., 1994.thepositive influence ofstripmanagement ongroundbeetles inacereal field: increase,migration andoverwintering. In:Desenderetal.(eds),Carabid beetles:Ecology andEvolution, KluwerAcademic Publishers,TheNetherlands,451-455. Lys,J.A.,Nentwig,W., 1992.Augmentation ofbeneficial arthropodsby stripmanagement4: surface activity,movements andactivitydensityofabundant carabid beetles inacereal field.Oecologia 92,373-382. Macleod,A., Sotherton,N.W.,R.W.J.Harwood,Wratten, S.D., 1995.Animproved suction sampling devicetocollect aphidsandtheirpredators inagroecosystems. Acta Jutlandica LXX:2,natural scienceseries 10,AarhusUniversity Press,Denmark, 125-131. Magurran, A.E., 1988.Ecological diversity anditsmeasurement. CroomHelm, London, 178pp. Marc,P.,Canard, A.,Ysnel,F., 1999.Spiders (Aranae) useful forpest limitationand bioindication. Agriculture Ecosystems andEnvironment 74,229-274. Moreby, S.J., Aebischer,N.J.,Southway, S.E., Sotherton,N.W., 1994.Acomparison ofthe flora andarthropod fauna oforganically andconventionally grownwinterwheatin southernEngland. AnnalofApplied Biology, 125,13-27. Moreby, S.J., Sotherton,N.W., 1997.Acomparison ofsomeimportant chick-food insect groupsfound inorganic andconventionally grownwinterwheat fields in Southern Engeland.Biological Agriculture &Horticulture 15, 51-60. Nan,H., Smeding,F.W., Stuiver,J.,Bruggen, A.H.C.,(inprep.) Spatial distribution of skylarkAlaudaarvensisterritories onorganic farmland inTheNetherlands- spatial analysisusingGIS. 122 Nijs, L.J.M.F.den,Boesewinkel, E.,Zijp,J.P.H., Smeding,F.W., Booij, C.J.H., 1998. Methodstostudytheeffect ofecological infrastructure on aphids andtheirenemieson winterwheat.Proceedings Experimental andApplied Entomology 9,93-98. Nijs, L.J.M.F.den,Booij, C.J.H.,Daamen,R.,Lock,C.A.M.,Noorlander, J., 1996.Can pitfall trapcatchesinform usabout survival andmortality factors? Ananalysisof pitfall trapdata forPterostichus cupreus(Coleoptera: Carabidae) inrelationtocroprotationand crop specific husbandrypractices.ActaJutlandica LXXI:2,natural science series10, AarhusUniversity Press,Denmark,41-56. Nijs, L.den,Booij, K., Daamen,R., Lock,C, Noorlander, J., 1997.Theeffects ofcrop rotationonbeneficial arthropods inagroecosystems.Biological Agriculture &Horticulture 15,364. O'Connor, R.J., Shrubb,M., 1986.Farming andBirds.CambridgeUniversityPress. Odum,E.P., 1974.Fundamentals ofecology,3rdEd.,W.B.Saunders,Philadelphia, 574pp. Oksanen,L.,Oksanen, T.,Ekerholm, P.,Moen,J.,Lundberg,P.,Schneider,M.,Aunapuu, M., 1996.Structure anddynamicsofarctic-subarctic grazerwebsinrelation toprimary productivity. In:G.A. Polis& K.O.Winemiller,Foodwebs:integrationofpatternsand dynamics.Chapman &Hall,NewYork,231-242. Oldeman,R.A.A., 1990.Forests:ElementsofSilvology.Springer-verlag, 624pp. Oomen,G.J.M.,Habets,A.S.J., 1998.Usingthewhole farm modelFARM andthedynamic modelNDICEAtointegrate arableandanimalproduction. In:H.vanKeulen, E.A. Lantinga &H.H.vanLaar,Mixed farming systemsinEurope. APMinderhoudhoeve-reeks nr.2,Landbouwuniversiteit Wageningen, 199-206. Opdam,P.,vanApeldoorn, R., Schotman,A.,Kalkhoven, J., 1993. Populationresponsesto landscape fragmentation. In:C.C.Vos& P.Opdam (eds),LandscapeEcology ofa Stressed Environment. Chapman andHall,London, 147-171. Paoletti,M.G.,Hassal,M., 1999.Woodlice (Isopoda: Oniscidea):theirpotential for assessing sustainability anduseasbioindicators.Agriculture Ecosystems andEnvironment 74, 157166. Paoletti,M.G.(ed), 1999.Invertebratebiodiversity asbioindicators ofsustainable landscapes: practical useofinvertebrates toassess sustainable landuse.Agriculture Ecosystems and Environment 74,nos 1-3,446pp. Paoletti,M.G.,Boscolo,P.,Sommaggio,D., 1997.Beneficial insectsin fields surroundedby hedgerows inNorthEasternItaly.BiologicalAgriculture &Horticulture 15,311-324. Paoletti,M.G., Sommagio,D.,Bressan,M,.Celano,V., 1996.Can sustainable agricultural practices affect biodiversity inagricultural landscapes? Acase study concerning orchards inItaly.ActaJutlandica LXXI:2,natural science series 10,AarhusUniversityPress, Denmark,241-254. Park,J., Cousins, S.H., 1995.Soilbiologicalhealthandagro-ecological change. Agriculture, Ecosystems andEnvironment 56,137-148. Pfiffner, L.,Mader,P., 1997.Effects ofbiodynamic,organic andconventional production systems onearthworm populations.Biological Agriculture &Horticulture 15,3-10. Phelan,P.L., 1997.Soil-management history andtheroleofplantmineral balance asa determinant ofmaizesusceptibilitytotheeuropean cornborer. BiologicalAgriculture& Horticulture 15,25-34. 123 Pimentel,D.,Harvey,C, Resosudarmo,P.,Sinclair, K.,Kurz,K.,McNair, M.,Christ, S., Shpritz,L.,Fitton,L., Saffouri, R., Blair,R., 1995.Environmental and economic costsof soilerosionandconservation benefits, Science267,1117-1123. Pimm,S.L., 1991.Thebalanceofnature? -Ecological issuesintheconservation ofspecies andcommunities.TheUniversity ofChicagoPress,Chicago/London, 434pp. Plesnik, J.,Dusik,M , 1994.Reproductive output oftheKestrelFalcotinnuculusinrelation tosmallmammaldynamicsinintensively farmland. In:Raptorconservationtoday.The PicaPress,Meyburg. Polis,G.A., Holt,R.D.,Menge,B.A.,Winemiller,K.O., 1996.Time,space and life history: influences onfood webs.In:G.A.Polis& K.O.Winemiller,Foodwebs:integrationof patternsanddynamics.Chapman &Hall,New York,435-460. Polis,G.A.,Hurd, S.D., 1996.Allochthonous input acrosshabitats,subsidized consumers and apparenttrophiccascades:examplesfrom theocean-land interface. In:G.A.Polis& K.O. Winemiller, Foodwebs:integration ofpatterns anddynamics. Chapman &Hall,New York,275-285. Polis,G.A.,Winemiller,K.O., 1996.Foodwebs:integration ofpatterns anddynamics. Chapman &Hall,NewYork,472pp. Potts,G.R., 1986.Thepartridge:pesticides,predation andconservation. Collins,London. Potts,G.R., Vickermann, G.P., 1974.Studiesofthecerealecosystem. Advances inEcological Research, 8, 107-197. Poulsen,J.G.,Aebischer,N.J., 1995.Quantitativecomparisonoftwomethodsofassessing dietofnestling skylarks(Alaudaarvensis).Theauk 112,1070-1073. Poulsen,J.G., Sotherton,N.W.,Aebischer,N.J., 1998.Comparativenesting and feeding ecologyofskylarksAlaudaarvensisonarablefarmland inSouthern Englandwithspecial reference toset-aside.Journal ofApplied Ecology 35,131-147. Power, W.,Nickless,A., 1997.Theforaging efficiency oftheparasitoidDiaeretiella rapae (Hymenoptera:Braconidae)inrelationtothespatialdistribution ofaphidsonplants.Acta Jutlandica LXXI:2,natural science series 10,AarhusUniversity Press,Denmark, 97-106. Power,M.E.,Parker,M.S.,Wootton,J.T., 1996.Disturbance and food chain lengthinrivers. In:G.A.Polis & K.O.Winemiller, Foodwebs:integration ofpatterns anddynamics. Chapman&Hall,NewYork,286-297. Rabbinge,R. 1997.Chairman'sintroduction.In:PrecisionAgriculture:Spatialand Temporal Variability ofEnvironmental Quality.CibaFound. Symp.210.Wiley,New York, 1-5. Rands,M.R.W., 1985.pesticide useoncerealsandthesurvival ofgreypartridge chicks:a fieldexperiment.JournalofAppliedEcology,49-54. Reddersen, J., 1997.Thearthropod fauna oforganicversus conventional cerealfieldsin Denmark. Biological Agriculture &Horticulture 15,61-71. Remmelzwaal,A.J., 1992.Rijkswaterstaat alsbiologischeboer. Landinrichting 32(5),22-27. Remmelzwaal,A.J.,Voslamber, B., 1996.Indemarge-een onderzoek naarruimtevoorde natuuroplandbouwbedrijven. Flevobericht 390.MinisterievanVerkeer enWaterstaat, RWS-RDIJ,Lelystad NL, 136pp. Ruiter,P.C.de,Moore,J.C.,Zwart,K.B.,Bouwman, L.A.,Hassink, J.,Bloem,J., Vos,J.A. de,Marinissen,J.C.Y.,Didden,W.A.M.,Lebbink, G.,Brussaard, L., 1993.Simulationof 124 nitrogen mineralization inthebelow-ground food websoftwowinter wheat fields. Journal ofApplied Ecology 30,95-106. RuiterP.C.de,Neutel,A.M.,Moore,J.C., 1995.Energetics,pattern ofinteraction strengths andstabilityinreal ecosystems. Science269,1257-1260. Ruiter,P.C.de,Neutel,A.M.,Moore,J.C., 1996.Energetics and stability inbelow-ground food webs.In:G.A. Polis& K.O.Winemiller,Foodwebs:integration ofpatterns and dynamics. Chapman &Hall,NewYork,201-210. Ryszkowski,L,Karg,J., 1991.Theeffect ofthe structure ofagricultural landscapeon biomassofinsectsoftheabove-ground fauna. EkologiaPolska 39(2), 171-179. Ryszkowski, L.,Karg,J.,Margarit, G.,Paoletti,M.G.,Zlotin,R., 1993. Above-ground insect biomassinagricultural landscapes ofEurope.In:R.G.H.Bunce,L.Ryszkowski & M.G. Paoletti,Landscape Ecology andAgroecosystems, Lewispublishers,BocaRaton,71-82. Scharenburg,Kvan,Hoff, J.van't,Koks,B.,Klinken,A.van, 1990.Akkervogelsin Groningen. SOVON-district Groningen enAvifauna Groningen, GroningenNL, 112pp. Schekkerman,H., 1997.Graslandbeheer engroeimogelijkheden voor weidevogelkuikens. DLG-publicatie 102,IBN-rapport292,Instituut voorBos-en Natuuronderzoek, Wageningen, 92pp. Schoenly,K.G.,Cohen,J.E.,Heong,K.L.,Arida,G.S.,Barrion,A.T.,Litsinger,J.A., 1996. Quantifying theimpact ofinsecticides onfood webstructure ofrice arthropod populations inaPhilippineFarmer'sirrigatedfield: acasestudy.In:G.A.Polis& K.O. Winemiller, Foodwebs:integration ofpatternsanddynamics.Chapman &Hall,NewYork, 343-351. Sheldrake,R., 1988.Thepresence ofthepast.Fontana,London, 391pp. Sheldrake,R., 1991.Therebirthofnature.BantamBooks,NewYork,217pp. Sinnige,C.A.M.,Tamis,W.L.M.,Klijn, F., 1992.Indeling vandebodemfauna in ecologische soortengroepen. Report 80,CentrumvoorMilieukunde, Rijksuniversiteit Leiden, 127pp. Smeding,F.W., 1993.Onkruidvegetaties indebiologische landbouw. Stratiotes 7,29-37. Smeding,F.W., 1995.ProtocolNatuurplan. Mededelingen vandeVakgroep Ecologische Landbouw 002.95,Landbouwuniversiteit Wageningen, 137pp. Smeding,F.W.,Booij, C.J.H., 1999.Effect of field marginmanagement on insectivorous birds, aphidsandtheirpredatorsindifferent landscapes.AspectsofAppliedBiology54, 367-373. Smeding,F.W.,Booij, C.J.H.,2001. Insectivorousbreedingbirdsonorganic farms inrelation tocroparea,ecological infrastructure andarthropods.Chapter 4,Ph.D.Thesis, Wageningen University, 51-74. Smeding,F.W., Lock,C.A.M.,Booij, C.J.H.,2001a. Shifts infunctional group composition ofground dwelling arthropods inrelationtoecological infrastructure andconversion to organic farming. Chapter 3,Ph.D.Thesis,WageningenUniversity, 31-50. Smeding,F.W., Maassen,A.H.T.M.,Bruggen, A.H.C.van,2001b.Functional group compositions ofvegetation dwellling arthropods inrelationtoecological infrastructure and timesinceconversion toorganicfarming. Chapter 2,Ph.D.Thesis, Wageningen University, 5-29. Smeding,F.W.,Joenje, W., 1999.Farm-NaturePlan:landscape ecologybased farm planning. Landscape andUrbanPlanning46, 109-115. 125 Smeding,F.W., Snoo,G.R. de,2001. Aconceptoffood web structure inorganic arable farming systems.Chapter 6,Ph.D.Thesis,WageningenUniversity, 83-99. Snoo,G.R. de, 1995.Unsprayedfieldmargins:implications for environment, biodiversity and agriculturalpractice -Thedutchfieldmarginproject intheHaarlemmermeerpolder.Ph.D. Thesis,Rijksuniversiteit Leiden,205pp. Snoo,G.Rde,Chaney,K., 1999.Unsprayedfieldmargins- what arewetryingto achieve? AspectsofApplied Biology 54,1-13. Snoo,G.R. de,Canters,K.J., 1990.Sideeffects ofpesticides onterrestrial vertebrates.CML report 35,CentrumMilieukunde,Rijksuniversiteit Leiden, 147pp. Steffan-Dewenter, I.,Tscharntke,T., 1997.Early succession ofbutterfly andplant communities inset-asidefields.Oecologia 109,294-302. Sotherton,N.W., 1984.Thedistribution andabundance ofpredatory arthropods overwintering onfarmland. Annalsofappliedbiology 105, 423-429. Sotherton,N.W., 1985.Thedistribution andabundance ofpredatory Coleoptera overwintering infieldboundaries.Annalsof appliedBiology 106, 17-21. Stoat,C, 1999.Theinfluence offieldboundary structureonbreedingterritory establishment ofwhitethroat Sylviacommunis andyellowhammerEmberizacitrinella.Aspectsof Applied Biology 54, 125-130. Stobbelaar, D.J.,Mansvelt, J.D.van(eds),2000.Criteria for sustainable landscape development. Agriculture,Ecosystems &Environment 77,nos 1-2, 178pp. Strong,D.R.,Maron,J.L.,Conners,P.G., 1996.Topdownfromunderground? The underappreciated influence ofsubterranean food webs onaboveground ecology. In:G.A. Polis& K.O.Winemiller, Foodwebs:integration ofpatterns anddynamics.Chapman& Hall,NewYork, 170-178. Sunderland,K.D., 1991.Theecology ofspidersincereals inEurope.Proc.6thInt.Symp. PestsandDiseasesofSmallGrain CerealsandMaize,Halle/Saale,Germany, 1,269-280. Sunderland, K.D.,Bilde,T.,Nijs, LJ.M.F.den,Dinter, A.,Heimbach,U.,Lys,J.A.,Powell, W.,Toft, S., 1996a.Reproduction ofbeneficial predators andparasitoids in agroecosystems inrelation tohabitat andfood availability. ActaJutlandica LXXI:2, natural scienceseries 10,AarhusUniversity Press,Denmark, 117-156. Sunderland, K.D.,Topping, C.J., Ellis,S.,Long,S.,Laak, S.vande,Else, M., 1996b. Reproduction and survival oflinyphiid spiders,with special reference toLeptyphantes tenuis(Blackwell).ActaJutlandica LXXI:2,natural scienceseries 10,Aarhus University Press,Denmark, 81-96. Svensson,B.,Lagerlof,J., Svensson, B.G.,2000.Habitatpreferences ofnest-seeking bumble bees(Hymenoptera:Apidae) inan agricultural landscape.Agriculture Ecosystems and Environment 77,247-255 Swift, M.J.,Anderson, J.M., 1993.Biodiversity andecosystem functioning in agricultural systems.In:E.D.Schulze &H.A.Mooney (eds),Biodiversity and Ecosystem Function, SpringerVerlag,Berlin, 15-41. Theunissen, J., 1994.Intercropping infieldvegetable crops:pestmanagement by agroecosystem diversification: anoverview. Pesticide Science,42,65-68. Theunissen,J., 1997.Application ofintercropping inorganicagriculture.Biological Agriculture &Horticulture 15,251-260. 126 Theunissen, J.,Kohl,J., 1999.Knelpuntanalyse vanziekten enplagen invollegrondsgroenteenakkerbouwgewassen indeecologischeteelt.Nota 14,PlantResearch International, Wageningen,24pp. Thomas,C.F.G.,Green,F.,Marshall,E.P.J., 1997.Distribution, dispersal, andpopulation size ofthegroundbeetles,Pterostichus melanarius (Illiger) andHarpalusrufipes(Degeer) (Coleoptera, Carabidae) infieldmarginhabitats.Biological Agriculture &Horticulture 15, 337-352. Toft, S., 1996.Indicatorsofprey quality for arthropodpredators.ActaJutlandicaLXXI:2, natural science series 10,AarhusUniversity Press,Denmark, 107-117. Topping,C.J., 1997.Predictingthe effect oflandscapeheterogeneity onthedistributionof spidersinagroecosystems usingapopulation dynamicsdriven landscape-scale simulation model.BiologicalAgriculture &Horticulture 15, 325-336. Topping, C.J., Sunderland, K.D., 1996.Estimatingthemortality rateofeggsandfirstfreelivinginstarLepthyphantes tenuis(Aranae:Linyphiidae) from measurements of reproduction anddevelopment. ActaJutlandica LXXI:2,natural science series 10,Aarhus University Press,Denmark,57-68. Tscharntke,T., 1997.Vertebrate effects onplant-invertebrate food webs.In:A.C.Gange& V.K.Brown(eds),MultitrophicInteractionsinTerrestrial Systems,Blackwell Sciencific Publications,Oxford, 277-297. Tscharntke,T., Gathmann, A., Steffan-Dewenter, I., 1998.Bioindication using trap-nesting bees andwaspsandtheirnatural enemies:community structure andinteractions.Journalof AppliedEcology 35,708-719. Tscharntke,T., Greiler, H.J., 1995.Insectcommunities,grassesand grasslands.Annual ReviewsofEntomology 40,535-558. Unwin,D.M., 1981.Akeytothe families ofBritishDiptera.Field studies 5,513-553. Vandermeer,J., 1995.Theecological basis ofalternative agriculture.Annual ReviewsEcol. Syst. 26,201-224. Vandermeer, J.,Noordwijk, M.van,Anderson, J., Ong,C, Perfecto, Y., 1998.Global change andmulti-species agroecosystems: concepts andissues.Agriculture,Ecosystems and Environment 67, 1-22. Venhorst,B.,Smeding,F.W.,Booij, C.J.H.,(inprep.)Distribution ofhoverflies (Syrphidae) inawheatfieldinrelationtodistancetothefield margin. Vereijken, P., 1989.Research onintegrated arable farming andorganicmixed fanning inThe Netherlands.In:P.Vereijken &D.J.Roye,Current status ofIntegrated Arable Farming SystemsResearch inWesternEurope,IOBC/WPRSBulletin,41-50. Vereijken, P., 1997.Amethodicalwayofprototyping integrated andecological arable farming systems (I/EAFS)ininteractionwithpilot farms.European Journal ofAgronomy 7,235-250. Vereijken, P.(ed), 1998.Improving anddisseminating prototypes.Progressreport4, Researchnetwork for EUandAssociated CountriesonIntegrated andEcological Arable Farming Systems,AB-DLO,Wageningen, 55pp. Vereijken, P.,Kloen,H.,enVisser,R., 1994.Innovatieproject Ecologische Akkerbouw en Groenteteelt, eerstevoortgangsrapport. Rapport 28,AB-DLO,Wageningen, 95pp. Vickermann, G.P., Sunderland, K.D., 1975.Arthropods incereal crops:nocturnal activity, vertical distribution andaphidpredation. Journal ofApplied Ecology 12,755-766. 127 Visser,A.J.,2000.Prototyping onfarm naturemanagement -asynthesisof landscape ecology, developmentpoliciesand farm specific possibilities.AspectsofApplied Biology 58, 299304. Wakeham-Dawson, A.,Szoszkiewicz, K., Stern,K., Aebischer,N.J., 1998.Breeding skylarks AlaudaarvensisonEnvironmentally SensitiveArea arablereversion grassin Southern England: survey-based andexperimental determination ofdensity.Journal ofApplied Ecoloy 35,635-648. Wardle,D.A,Giller,K.E.&Barker, G.M., 1999.Theregulation and functional significance ofsoilbiodiversity inagroecosystems.In:D.Wood & J.M.Lenne(eds),Agrobiodiversity: characterization, utilization andmanagement. CABIpublishing, Oxon/NewYork, 87-122. Weber, G.,Franzen,J.,BuchsW., 1997.Beneficial Diptera infieldcropswithdifferent inputs ofpesticides andfertilizers. Biological Agriculture&Horticulture 15,109-122. Werff, P.A.vander, 1991.Alleen eenanderewetenschap kanzorgenvoor een duurzame landbouw. Landbouwkundig tijdschrift 103(9),25-27. Westerman, P.R., Werf,W.vander,Hofman, A.,Vet,L.E. (inprep.)Therelative importance ofvertebrates andinvertebrates inseedpredation oncerealfields. Westhoff, V.,Bakker,P.A.,Leeuwen, C.G.van,Voo,E.E.vander, 1970.WildePlantenI. UitgaveNatuurmonumenten,Amsterdam. White,T.C.R., 1978.Theimportance ofarelative shortageoffood inanimal ecology. Oecologia33,71-86. Wilson,J.D.,Browne,S.J., 1993. Habitat selection andbreeding successofskylarksAlauda arvensisonorganic andconventional farmland. BTOResearch report 129,48pp. Wilson,J.D.,Evans,J.,Browne,S.J., King,J.R., 1997.Territory distribution andbreeding successofskylarksAlaudaarvensisonorganicandintensive farmland in southern England.JournalofApplied Ecology34,1462-1478. Winemiller,K.O.,Polis,G.A., 1996.Foodwebs:whatcantheytell usabout theworld?In: G.A. Polis& K.O.Winemiller, Foodwebs:integration ofpatterns anddynamics. Chapman &Hall,NewYork, 1-22. Wingerden, W.K.R.E.,Booij, C.J.H., 1999.Biodiversiteit enonderdrukking vanziektenen plagen:strategieen engraadmeters.IBN-rapport413,Instituut voorBos-en Natuuronderzoek/InstituutvoorPlantenziektenkundig Onderzoek, Wageningen. Wise,D.H., Snyder, W.E.,Tuntibunpakul, P.,Halaj, J., 1999.Spiders indecomposition food websofagroecosystems:theory andevidence.TheJournal ofArachnology 27,363-370. Wolfert, J., 1998.Decision support for mixed ecological farming systemsbasedonphysical product flows. In:H.vanKeulen,E.A.Lantinga&H.H.vanLaar,Mixed farming systems inEurope.APMinderhoudhoeve-reeks nr.2,Landbouwuniversiteit Wageningen,207-212. Wolfert, J.,Goewie,E.A.&Beulens,A.J.M., 1997.Dynamicproduct flow model for amixed ecological farm. In:H.Kure,I.Thysen &A.R. Kristensen (eds),Proceedings ofthe first EuropeanConference for Information Technology inAgriculture, 15-18June 1997.The RoyalVeterinary andAgricultural University, Copenhagen,Denmark,pp. 199-204 Wolfert, J.,(inprep.) (Dynamicproduct flow models fordecision support in farming systems).Ph.D.Thesis,Wageningen University. Wood,D.,Lenne,J.M., 1999.Agrobiodiversity: characterization, utilization and management. CABIpublishing, Oxon/New York,490pp. 128 Wratten, S.D., Thomas,C.F.G., 1990.Farm scalespatialdynamicsofpredators and parasitoids inagricultural landscapes.In:R.G.H.Bunce& D.C.Howard (eds),Species dispersal inagriculturalhabitats.BelhavenPress,London. Zimmerman,J.Btichs,W., 1996.Management ofarablecrops andits effect onrovebeetles (Coleoptera: Staphylinidae),with specialreference tothe effects ofinsecticide treatments. ActaJutlandica LXXI:2,natural science series 10,AarhusUniversity Press,Denmark, 183-194. 129 Summary Species diversityofindigenousplantsandanimalsonfarmland isdeclining dramatically due toagricultural intensification. Biodiversity lossinagriculture affects both economicand natureconservation values.Oneimportant solution forthereversal ofbiodiversity lossinthe agriculture ofindustrialised countriescouldbethedevelopment offarming systemsthatare economicallybasedonutilisation ofbiodiversity andthat alsoharbourconservation worthy species.This ideaiscompatiblewiththeconcept ofmulti-species agroecosystems. Development oforganic farming systemsisapossible implementation ofthisconcept;crop areasmanaged accordingtothisconceptmaybecomplementedby anadjacent ecological infrastructure (E.I.)-Afood web approachisanappropriatemethod for investigations intothe higher integration levelsofecosystems andmaytherefore contributetoresearch onmultispecies farming systems.Progressinscientific understanding of food webs iscurrently expanding into agroecology.Afood web approach alsoprovides aframework for orderingthe scattered information onfarmland speciesandhabitats. Asimplified setofhypotheses withregardto food web structure onorganic farms servedas thestartingpoint forthethesis:itwasexpectedthattheduration oforganic management, extensive croprotation aswellasanimproved E.I.(i.e.enlarged areaand latemowed),would relatepositivelytothe abundance ofarthropods inbothnon-pest herbivorous and detritivorousprimary subsystems.Thevariedplanttissuesinimproved E.I.would particularly boostthenon-pest herbivorous functional groups.Consequentlypredator andparasitoid numbersonthe farm wouldbe supported. Anaccumulated highinvertebrate densityonthe farm would support insectivorous vertebrates,particularly birds.Theobjectives ofthethesis were:totake acomprehensive food web approachinrelationtothe farm andE.I. management; tolinkcomponentknowledge onspecies and farm operationstofoodweb theories;andtopoint outimplications formulti-species farm development. The studyarea involved farms thatweremainly situatedintherelatively uniform landscape ofFlevoland. Thispolderhas aconcentration oforganicarable farms, including farms with improved E.I. Empirical investigationswereconcentrated onparticular sectionsofthefarmland community, namelyground dwelling arthropods,vegetation dwelling arthropods and insectivorousbirds. Functional group compositions (e.g. detritivores,herbivores andpredators)within these sectionswere assessed.Field studies indicated that allthe factors included inthe above hypothesis affected abundance and functional groupcomposition ofboth arthropods and birds.However,theeffects differed from whatwas expected. Inthecroparea(i.e.wheatcrops),K-herbivore abundancewasrelated tofarms thathadbeen recently converted andr-herbivore abundancewasrelated to farms ofalonger duration with anintensive croprotation.Boththeobserved herbivore increasesmightbe explainedbya combination ofcrop susceptibility totheherbivore group,andlimitedpredation pressure (Chapter2).Therewas,accordingtothehypothesis, someevidence for detritivoreincrease related toextensive croprotation onlongduration farms and for detrital subweb-connected predator increase inrelationtomore extensive farms (Chapters 2and 3).Predator abundance inthecropcanopywasparticularly related tohighK-herbivore numbersonrecently converted farms. Thehighest speciesdiversitywasfound onlongduration farms whichhad anintensivecroprotation (Chapter 2).The farmswhichhad anextensive croprotation, compared with theother farms, had alowpredatornumber inthecropcanopy,whereasthe parasitoids had intermediatenumbers.Thedensity ofbirds' territories seemed tobeenhanced bythecropareasofthoselong duration organic farms thathad anintensive croprotation,this beingpossibly related toan increased herbivory (Chapter4). 131 Anincreased arthropod abundancewas found inthevegetation oftheimproved E.I.The increased functional groupsincludedbothpredators anddetritivores (Chapter 2).However, K-herbivore numbersdidnotincreaseintheimproved E.I.whentheywerecompared tothe traditionallymanaged E.I.(Chapter 2and3);perhapsbecausetheprolonged vegetative development offrequently mownvegetationmight extendtheavailability ofnutritive grass tissue.Also,theabundance oftheepigeicpredators,inparticularofthe quantitatively importantgroupofpredaciousbeetles,wasnotrelated toanimproved E.I.(Chapter3). Observations suggested thattheirnumberswererelated tothecrop areaconditions.Open, frequently mownE.I.vegetation enhanced themorespecific ground dwelling functional groups,whencompared toimproved E.I.Theterritorial densityofinsectivorousbirdswas showntobepositively relatedtothehigh arthropod abundance intheE.I.(Chapter4). Field studiesprovided someevidencefor thedispersal offunctional groups,abundantinthe E.I.intothecrop area.However,theeffects ofcropconditions onthearthropod abundancein thecropareawereobserved tooffset theinfluence oftheE.I. for somegroups.Contraryto expectations,observations suggested theoppositeeffects regarding flying arthropods,which werepossiblytransported intotheE.I.,andepigeicpredaciousbeetles(Chapters 2and3). Bird studies(Chapter4)revealedpositive correlationsbetweenbirdfunctional groupsanda combination ofcrop areaandE.I.characteristics.Thismay suggestthatboththecropareaand theE.I.habitatsareimportant tothesebirds.Thismay alsoholdtrue for birdsthattypically liveintheE.I.,because acertainproportion oftheirpreycouldoriginate inthecroparea. Inthediscussion sectionofeach empirical studyobservationswere linkedtotheoryin food webliterature.Fieldobservationsprovided someindications for indirect effects ofsubsidised detrital food chainsonherbivore abundance andconsequentlyonbird abundance,aswellas possible effects ofintraguildpredation onarthropod functional groupcomposition. However extrapolation oftheresultsobtained inFlevoland toothergeographical regionsmayrequirea further examination offunctional group assemblages,andofprimaryresources relatedto weedsortosemi-natural habitatsotherthanherbaceoushabitat (Chapters 5and8). Aproposal for adescriptiveortopological farm food webisdrawn from field observations as wellasfrom references inliterature (Chapter 6).Important themesinthe food webtheory weretentatively applied tothispreliminary model inexplaining differences between localised farm foodwebstructures andhowtheyarerelatedtothefarm and/orecological infrastructure management. Predictions aremadefor four different farm food webstructuresthat express four extremesoftwoenvironmental gradientswhichcorrespond tothelength oforganic duration andtheamount/qualityoftheE.I.Empirical observations areusedtoillustratethe different food web structures.However, further investigation isnecessary toconfirm the hypothesesput forward. Theimplications ofbothempirical aswell asconceptual studies arethattheorganic duration andtheamount/qualityoftheecological infrastructure maybothpositivelycontributeto improvingecosystem services andtoaimsbasedonnatureconservation.However,an optimisation ofthefarm food webwithregardtoecosystem servicesmayrun counterto natureconservationvalues,asinthecaseofenhanced epigeicpredators whichwoulddepress herbivorous food items forbirds.Nevertheless anincreased understanding ofthefarm food webanditsmanagement islikelytoshowmoreclearlythepossibilities for the development ofmulti-species agroecosystemsthat integrate ecosystem services andnature conservation goals.Theoutcome ofthiskind ofapplied ecological research islikely toimprovethebasisof pragmatic protocols for farm-nature planning exemplified inChapter 7. 132 Samenvatting Desoortsdiversiteit endeaantallenvanwildedieren enplanten inlandbouwgebieden gaan achteruit tengevolgevanintensivering vandelandbouw. Ditverliesaanbiodiversiteit heeft nadelen voorzoweleconomiealsnatuurbescherming. Aanwending vanecosystem servicesin verbandmetbiodiversiteit, zoukunnenbijdragen aaneenverminderdeinzetvanbestrijdingsmiddelen,meststoffen enfossiele brandstoffen. Dezeecosystemservicesworden mogelijk dooreenkleinegroepvanessentielesoortenverzorgd.Echtervanuithetoogpuntvannatuurbescherming isbrede stimuleringvanbiodiversiteit gewenstomdatlandbouw veelruimte gebruikt enspecifieke leefgemeenschappen omvat.Eenmogelijke oplossingvoorhet geschetsteprobleem ishet ontwikkelen vanlandbouwsystemen diebiodiversiteit benutten en instandhouden enduslandbouw ennatuurbescherming ophetniveauvan een landbouwbedrijf verenigen.Verschillende agroecologen hebbenditthemauitgewerkt. De Amerikaanse onderzoeker Vandermeer noemtdergelijke landbouwsystemen 'multi-speciesagroecosystems' (Vandermeer etal., 1998);ditbegripvatdedoelstellingvandezethesissamen. Onderzoekdienstigaanhetontwikkelenvanmulti-speciesagroecosystemsinde praktijk verlangt eenspecifieke opzet.Watbetreft hetobject ishetbelangrijk dathet onderzochte systeem degewenste specifieke complexiteitbezitomdatdegezochteprocessen mogelijk alleen ineendergelijke context optreden.Vanuit dezeoverwegingisgekozenomop biologische landbouwbedrijven onderzoek tedoenenmetnameopbiologischebedrijven met randomdepercelen eenecologische infrastructuur (E.I.)dieverbeterd is,d.w.z.vergroot qua oppervlak enecologischbeheerd. Watbetreft demethodeishetbelangrijk dathet onderzoek kenmerkenmeetophetsysteemniveau.Vanuit dezeoverwegingisgekozenvooreen voedselwebbenadering, overeenkomstigdeaanbevelingen van Gezondheidsraad (1997)met hetoogopecosysteemanalyse.Uitgangspunten enuitwerkingenvandebenaderingzijn te vindeninhet gezaghebbende werkvanPolis&Winemiller(1996).Inagroecosystemen (inde gematigde streken)verkeert voedselwebonderzoek nogineenoverwegend exploratieve fase metbijvoorbeeld fundamentele studies aanhetdetrituswebvanDeRuiter etal.(1993,1995) enhypothese-ontwikkelende artikelenvanWiseetal.(1999),Brussaard (1998) enTscharntke (1997). Hetonderzoeksdoelvoorditproefschrift wasdrieledig: -het opstellenvan eendescriptief ('topologisch')voedselweb voor eenbiologisch akkerbouwbedrijf, datzowelhetonder-alsbovengrondse systeemomvatendatgeschiktis voorhet leggenvanrelatiesmethandelingen vandeboer; -het leggenvanverbanden tussen componentkennis (diersoorten, teeltmaatregelen en biotoopbeheer), enecologische theorievanuitdevoedselwebbenadering, om zodoende aanwijzingen tevindenvooreffecten opbedrijfsniveau van voedselwebinteracties; -zoekrichtingen aangevenvoorhet ontwikkelen vanbedrijfssystemen diehetbenutten van 'ecosystem services'ennatuurbescherming combineren. Dehypothese vanhetonderzoekbestaatuit eenserie,vanuit deliteratuur onderbouwde,deelhypothesentenaanzienvandevoedselwebstructuur.Dezehypothesewasdateroplang (geleden)omgeschakeldebedrijven meteenverbeterde E.I.eenrelatief grotedichtheid isvan mesofauna enmacrofauna vandeprimairefunctionele groepen. Dedetritivoren worden bevorderd dooreenextensievevruchtwisseling metgranen enkunstweiden dieveel organische stofachterlaten,enookdoororganische mest.Deherbivoren, enmetnamenietplaagsoorten, hebbenrelatiefhogedichtheden doordeaanwezigheid vanveelverschillende gewassen enwat talrijkere onkruiden. DeE.I.bevordert vooral deaantallen herbivoren vanwegehaargroterevariatieaanplantenweefsels, inclusiefbijvoorbeeld bloemen enzaden. 133 Bij detoenamevandeprimaire functionele groepen enhunvoedselbronnen spelen cumulatieveeffecten overdejarenmee.Detoegenomen dichtheid vanbeideprimaire subsystemendraagthethogeretrofische niveauvandeongewerveldepredatoren en parasitoiden.Deverhoogde dichtheden vandezegroepenwerken deexponentiele toename vanplaagherbivoren tegen.Vervolgens isdetotaledichtheid vanzoweldepredatoren alsde primaire groepenvanbelang alsvoedsel voorinsectenetende vogelsophetbedrijf. De dichtheid vanpredatoren,parasitoiden envogelswordtdusverondersteld toetenemenin verband metomschakelingsduur enE.I.-kwaliteit. Hetonderzoekbestond uitveldonderzoek enliteratuurstudie.Hetveldonderzoek was vrijwel beperkt totFlevoland omdatlandbouwbedrijven daareenovereenkomstigetopografie en historiehebben. Ookbevindt zichinFlevoland eenconcentratie vanongeveer 75biologische akkerbouw- envollegrondsgroenteteeltbedrijven, waaronderbedrijven met een verbeterde ecologische infrastructuur. Inhetveldonderzoek werdenwaarnemingenverricht aanepigeische geleedpotigen door middelvanvangbekers,vegetatiebewonende insecten doormiddelvan eenzuigapparaat,en insectenetende vogelsdoormiddelvanterritoriumkarteringen.Ongewervelden werden verzameld intarwevelden enindeernaast gelegen slootkanten.Vogels en omgevingsvariabelenwerdengemetenop bedrijfsniveau. Deresultaten vandeveldonderzoeken lieten,overeenkomstigdehypothese,effecten zienop dehoeveelheden van functionele groepen,vandeduurvandebiologische bedrijfsvoering, intensiteitvandevruchtwisseling endeomvangenhetmaaibeheer vandeE.I. Indegewassenblekenherbivoren echterhettalrijkst tezijn oppasomgeschakelde bedrijven meteenweelderiggewas;typischeplaagherbivoren (bladluizen) hadden dehoogste dichtheden oplangomgeschakelde bedrijven meteenintensievevruchtwisseling (Hoofdstuk 2).Waarnemingen aandetritivoren wezenwelmeerinderichtingvandehypothese. Detritivoren (vliegjes enmugjes)warenoplangomgeschakeldebedrijven meteenextensieve vruchtwisseling relatieftalrijk (Hoofdstuk 2). Ookepigeischepredatoren (o.a.loopkeversen spinnen),diewaarschijnlijk vooral verbonden zijn metdetritivoreketens,lekentalrijker te zijn insystemenmeteenextensievere teeltwijze (Hoofdstuk 3).Predatoren inhet bladerdek vanhetgewasblekengeassocieerd tezijnmetherbivoren; dezewarentalrijk inweelderige gewassenvanpasomgeschakeldebedrijven enwarendiversqua soortenoplang omgeschakeldebedrijven meteenintensievevruchtwisseling (Hoofdstuk 2). HetverbeterdebeheerindeE.I.had,overeenkomstig dehypothese eensterkpositiefeffect op dedichtheid vanarthropoden enmetnamepredatoren indevegetatie(Hoofdstuk 2). Detritivoren waren echterdetalrijkste primairegroep;herbivorenwarenweliswaar talrijk maarhadden eenovereenkomstige dichtheid inE.I.methettraditioneleklepelbeheer. De talrijkste epigeischegroepenvanpredatorekeversenbaldakijnspinnen vertoonden eengewasaffiniteit (Hoofdstuk 3).Andere,mindertalrijke groepen,zoalswolfspinnen warenmeer geassocieerd metklepelbeheer danmethetverbeterdebeheer.Verbeterde E.I.haddus(inde zomer)voorepigeische soortenweinigbetekenis.Waarnemingen indegewas-E.I.gradient, lietenziendathogedichtheden indeE.I.kunnenuitstralen inderichtingvanhetgewas.De omstandighedeninhet gewaswaren echteroverheersend enkondenzulkeeffecten tenietdoen ofaanhetzichtonttrekken,bijvoorbeeld ingevalvandetoenamevanherbivoren en predatoren ineenweelderiggewas. Dedichtheid vaninsectivorebroedvogelsbleekgeassocieerd tezijn metzowel bedrijfs/gewaskenmerken, alsmetE.I.kenmerken (Hoofdstuk 4).Watbetreft het bedrijf, 134 suggereren deresultaten dat langomgeschakelde biologischebedrijven met eenintensieve vruchtwisseling,dehoogstevogeldichtheid hadden.Mogelijkbevordert deperiodieke toenamevanplaagherbivoren devoedselbeschikbaarheid. Watbetreft deE.I.werden duidelijke verbanden gevonden tussenvogeldichtheid enverhoogdedichtheid van arthropodengroepen indevegetatievandeE.I. Indediscussiesvaniederempirischonderzoek (hoofdstukken 2,3en4)zijn deresultatenin verband gebrachtmetvoedselwebtheorieen. Develdwaarnemingen gaven indicaties voorhet optredenvaneenindirectnegatief effect vantoegenomen detritivorevoedselketens,via bevordering vanpolyphagepredatoren, opdedichtheid vanherbivoren. Enook indicaties voormogelijke interacties tussenpredatorengroepen.Verderonderzoek isechter noodzakelijk. Inhoofdstuk 6isopbasisvanliteratuur enveldonderzoek eentopologisch voedselweb opgesteld.Devariatieindestructuurvanditvoedselweb isvoorspeld aandehandvanvier extremebedrijfstypen dietweegradientenrepresenteren watbetreft deduurvanbiologische bedrijfsvoering enE.I.kwaliteit. Aanvullend isnogonderscheid gemaakt tussen lang omgeschakeldebedrijven metverbeterdeE.I.,watbetreft dematevanherbivorie inhun gewassen. Thema'sdienaarvorenkwamenindediscussiesvandeempirischeonderzoeken (hoofdstukken 2,3en4)werdenondergebracht inhetgrotereverband vanhetvoedselweb op bedrijfsniveau. Overeenkomstigdeoorspronkelijke hypothese,isdeaanvoervan voedselbronnen vanonderafinhetvoedselweb alsbepalend aangewezen ('bottomup' processen).Mogelijk zijn echterookterugkoppelingen vanbovennaarbeneden inhet voedselwebbelangrijk ('top down'effecten). Zulkeeffecten tredenopalsepigei'sche predatoren,bevorderd doordetritivoreprooien,herbivoreprooisoorten onderdrukken. Een complete onderdrukking vanplagen enookvanandereherbivoren kanechter ongunstig zijn voordichtheden vaninsectenetende vogelsomdatdezegroep inbelangrijke mategevoed wordtviaherbivorevoedselketens ophetlandbouwbedrijf. Ecosystemservicesen natuurbelang zijn dan tegenstrijdig. Destudie laatziendat eenvoedselwebbenadering veelbelovend is;hiermeeisonderzoek mogelijk aandeeffecten vaninteracties inhet voedselweb,inclusief gevolgen voor landbouw ennatuurdoelen. Eventuele tegenstrijdigheid kandeaanleiding zijn tezoekennaar alternatieventeroptimalisatievanbeidedoelen.Verderonderzoek isechter zeer noodzakelijk. Naastdedriehoofdstukken overveldonderzoek inFlevoland enhethoofdstuk methet conceptuelemodel,isereenempirischhoofdstuk 5dat eenstudietoontvandiergroepenop tweebiologischebedrijven inFlevoland entweeinhetrivierengebied. Inbeide landschappen waseenbedrijf met veeleneenbedrijf metweinig E.I.Dezewaarnemingen tonen echter vooral het contrast tussendelandschappen. Extrapolatie vandeFlevolandse gegevensnaar andere landschappen ismogelijk maarverlangt mogelijk uitbreiding vande functionele groepen eneenbeter zicht opdebijdragen aandeze functionele groepen (inclusiefprooienen predatoren) vanbijvoorbeeld houtigebiotopen enonkruiden. Hoofdstuk 7beschrijft eenprocedure voorhetopstellenvanbedrijfsnatuurplannen. Dit instrument ispragmatisch enstreeft naarzogoedmogelijke ontwerpen opbasisvan ecologischekennis,veldbiologie enpraktischemogelijkheden. Doorhet expliciet makenvan doelen encriteriaisgetracht omdestappenvanwaarneming,viawaardering naar beslissing teverhelderen enookteversnellen. Devraaginhoeverre eenbedrijfsnatuurplan effectief is voorhetbevorderen vanpredatoren ofbijzondere dieren,waseenaanleiding totde voedselwebstudies. Verderonderzoek opbasisvanditproefschrift kanindetoekomst bijdragen aanadviesinstrumenten tenbehoevevanmultispeciesfarming systems. 135 Curriculum Vitae FransWouter Smeding wasborn onthe4thSeptember 1962inMeppel,TheNetherlands.He graduated from theAthenaeum oftheStedelijk Lyceum inZutphen, in 1981,and subsequently studiedBiology attheWageningen Agricultural University.Hespecialisedin vegetation science,plant ecology andweed scienceaswell asalternative methodsin agriculture andhorticulture.Heachieved hisMScinMarch 1989,including a qualification forfirstdegree education. In 1989-1990hecontributed tothesettingupofunsprayedfield marginresearch atthedepartment ofVegetation science,Plant ecologyand Weed science.In November 1990hestartedtowork atthedepartment ofEcological Agriculturewherehe participated inongoingresearch andinternational educationprograms withreference to holisticapproaches.Hehasspecialised there,since 1992,ontheintegration ofagriculture and nature.Incollaboration withtheDutch agricultural extension service,hedeveloped in 1994-1995aprotocol for farm-nature plans.Thisworkwas followed byexplorative research on farm food webs inrelationtothemanagement ofcropandfieldmargins (1996-2001).He iscurrently employed aslecturerbytheWageningenUniversity andResearch Centre,atthe BiologicalFarming Systemsgroup,DepartmentofPlant Sciences. 137
© Copyright 2024 Paperzz