Analisi Matematica 4 – A.A. 2016/17 Corso di Laurea in Matematica Esercizi 2 2.1. Let the following statements. (a) If f ∈ L+ , the set (X , M, µ) be a measure space. Prove 1 x : f (x) 6= 0} is σ-finite. (b) If f ∈ L (µ), the set x : f (x) 6= 0} is σ-finite. 2.2. Evaluate the following limits, justifying your answers: Z k Z k x k −2x x k x/2 1+ e dx lim 1− e dx . lim k→+∞ 0 k→+∞ 0 k k (Here and in what follows, dx = dm(x) denotes the Lebesgue measure on the real line.) 2.3. Compute the following limits, justifying your calculations: Z 1 Z +∞ 1 + nx sin(x/n) dx , (ii) lim dx , (i) lim n→+∞ 0 [1 + x2 ]n n→+∞ 0 [1 + (x/n)]n Z +∞ Z +∞ n sin(x/n) n (iii) lim dx , (iv) lim dx (a ∈ R) . 2 n→+∞ 0 n→+∞ a x(1 + x ) 1 + n2 x2 2.4. Evaluate the following limits, justifying your answers: √ Z tanh( x/n) 1 p (1) lim dx; n→+∞ n [k−2 ,+∞) x2 (n + 1)x √ Z arctan( 4 x/n) p √ (2) lim dx; n→+∞ [k−1 ,3] x2 x( n + 1) √ Z arctan( 4 x/n) p √ dx; (3) lim n→+∞ [k−1 ,+∞) x2 x( n + 1) Z log(1 + x/n) √ (4) lim dx; n→+∞ [k−3/2 ,+∞) x3 n + x Z +∞ 1 − 2xn dx. (5) lim n→+∞ 0 1 + 4xn−1 ex−1 2.5. Evaluate the following limits, if they exist, justifying your answers: Z k Z +∞ 1 1 1 1 −(x−k)2 (i) lim √ (ii) lim 2 e dx . √ 1 2 dx , (x− ) 1 k→+∞ k→+∞ k x3 k 0 xe k k 2.6. Determine whether the following equalities hold true Z +∞ Z +∞ lim fk (x) dx = lim fk (x) dx , k→+∞ 0 0 k→+∞ where 2 tanh( xk ) 1 (i) fk (x) = χ[ 1 ,+∞) (x) k k x5 justifying your answers. 2 arctan( xk ) 1 (ii) fk (x) = 2 χ[ 1 ,+∞) (x) , k k x6
© Copyright 2026 Paperzz