Supplementary Table 1: Marine mammal anatomical, biochemical, physiological and behavioural adaptations for diving. (Some adaptations have been observed, others are hypothesised.) Adaptations Species Description Source Anatomical Flexible chest All Highly compressible chest facilitates compression collapse of alveoli. [1-3] Modified lung structure facilitating alveolar collapse All Stiffened upper airways and lack of smaller respiratory bronchii compared to terrestrial mammals. Thin-walled compliant alveoli collapse under increasing hydrostatic pressure causing a graded decrease in the amount of respiratory gases absorbed by the blood stream as the depth of diving increases. Effective gas exchange between lungs and blood ceases when all alveoli are collapsed. Reinforced lung structure may also facilitate high ventilation rates at surface. [3-5] Bronchial sphincters Cetaceans Presence of a series of bronchial sphincter muscles found in the terminal segments of the airways. Function is largely unknown, but is hypothesised to relate to management of lung air. [3, 6, 7] Large aortic bulb Phocids Elastic and bulbous ascending aorta hypothesised to play a role in maintaining arterial pressure during the long diastolic intervals of diving bradycardia. A larger bulb is found in deeper divers. (There is some suggestion of a similar bulb in mysticete whales.) [8, 9] Enlarged spleen and hepatic sinus Phocids The enlarged spleen acts as a reservoir for red blood cells, and is used in concert with the hepatic sinus to meter blood allowing temporary increases in hematocrit during periods of apnoea and diving. The release of red blood cells responds to increases in epinephrine. The size of the spleen is correlated with diving capacity, i.e. deep diving phocids have the largest spleens. [10-13] Vena caval sphincters High brain capillary density Retia mirabilia Pinnipeds, Muscle sphincter located around thoracic caudal vena cava, just Some cranial to the diaphragm and large hepatic sinus (phocids). cetaceans. Innervated by branch of right phrenic nerve. Assumed to be a mechanism to regulate venous return to the heart. Phocids A higher capillary density facilitates increased O2 conductance to neural tissue. Cetaceans, In cetaceans, these are a series of vascular networks of densely Sirenians looped arteries primarily located from base of brain case, along and within the vertebral column, and retro-pleurally lining the ventral aspect of the rib arches. It is the only path of arterial blood to the brain in adult cetaceans. Possible functions of the retia include as a windkessel for brain blood flow, allowing intrathoracic and vascular engorgement to mitigate ‘lung squeeze’, or as a filter for arterial gas emboli preventing DCS (neuroprotective effect). [14-17] [18, 19] [4, 16, 20-22] Supplementary Table 1 (cont) Adaptations Species Description Source Anatomical (cont) Large epidural Cetaceans, Extensive epidural venous plexuses in cetaceans and sinuses in venous sinuses and Phocids phocids may act as a blood store. In cetaceans, the small plexiform plexuses structure could help trap gas and/or fat emboli before they occlude small veins and arteries in the CNS. Juxtaposition to central nervous system may allow regional heterothermy of brain and spinal cord. [14, 17, 23-25] Smaller lung size [4, 26] Elaborate plexiform veins in and around air spaces DeepThe relatively large lung size in delphinids and phocoenids diving indicates a reliance on lung stores for oxygen in relatively shortcetaceans duration shallow diving species. Deep diving species rely on greater blood and muscle oxygen stores (haemoglobin and myoglobin) to meet oxygen demands and have therefore retained a relatively small comparative lung size. Odontocete cetaceans and phocids Investment of odontocete pterygoid and peribullar sinuses with elaborate plexiform veins. More elaborate and voluminous sinus vasculature in deep divers (e.g. physeterids, kogiids, ziphiids) compared to shallow-diving delphinids. Phocids and deep diving odontocetes also have extensive thoracic venous vasculature. As air volume in sinuses and lung cavities reduces under pressure, these structures may allow blood volume to replace diminishing air volume. Possibility of gas/nitrogen exchange at sinuses is unknown. [14, 2731] Peripheral vasoconstriction and selective ischemia All A marked reduction in peripheral blood flow and variable reduction to organs during diving reduces oxygen delivery to tissues with relatively lower metabolic demands. Variable responses have been observed during natural diving with the magnitude of vasoconstriction being dependent on the dive duration. [32, 33] Bradycardia All Reduction in heart rate driven by circulatory adjustment with heart rate following vascular resistance to maintain constant blood pressure. Dramatic reduction in heart rate was initially observed in forced dive studies, but has also been observed during natural diving. Heart rates decline as a function of dive duration. Abrupt bradycardia observed for phocid seals, more gradual bradycardia for otariids and cetaceans. Modified by conscious control and by exercise. [4, 3442] Hypometabolism All The post-submersion rate of O2 consumption appears insufficient to maintain a normal metabolic rate during submersion. This suggests a hypometabolic response to diving, which has been verified experimentally for trained sea lions and grey seals diving voluntarily. [43, 44] Physiological Regional heterothermy Pinnipeds, Regional reduction in body temperature may contribute to Cetaceans? hypometabolism by reducing the oxygen consumption demands of cooled tissues, including possibly the brain. [45-48] Supplementary Table 1 (cont) Adaptations Species Description Source Physiological (cont) Hypoxic tolerance All Hypometabolism and cell protection achieved through co-ordinated system-level reorganisation involving reductions in oxygen delivery to organs, partial shutdown of some organs, and complex reconfiguration at cellular and molecular levels. [18, 49, 50] Pulmonary shunt ? Intrapulmonary arteriovenous pathways linked to exercise and hypoxia in humans ([51, 52]). Blood bypasses functional alveoli (i.e., there is ventilation without perfusion) reducing pulmonary gas exchange. [53] Anaerobic extension of dives beyond aerobic dive limit ? Potential to use anaerobic metabolism to extend dive duration. Some deep divers repeatedly dive beyond the calculated aerobic dive limit. [54-58] Biochemical High myoglobin concentration, aerobic enzyme capacities and mitochondrial volume density All Increased total body oxygen stores provided by higher myoglobin concentrations. Concentrations highest in areas of muscle which provide greatest force (and have greatest oxygen requirements). Increased oxidative capacity provided by higher aerobic enzyme capacities and mitochondrial densities found in swimming muscles, which appear to be adapted for aerobic lipid metabolism under diving hypoxia. The increased capacity is estimated to be as high as 20 times greater than that of terrestrial mammals. [59-64] High resident neural globin concentration All Neural haemoglobins, neuroglobins and cytoglobins facilitate oxygen transfer into neural tissues, and may protect against reactive oxygen and nitrogen groups. Increased concentrations are observed for fast-swimmers and divers relative to terrestrial species. [65] Lung surfactant production Pinnipeds Increased surfactant production caused by transient Cetaceans? mechanostimulation (pressure), facilitates reinflation of the collapsed lung during ascent. [66, 67] Hypocoagulable blood (lacking several clotting factors) Cetaceans Cetaceans may lack a number of clotting factors common to terrestrial mammals. This may serve several functions, including improved microcirculation during dive-induced bradycardia. It may also reduce venous thrombosis, which is thought to be an important mechanism in human DCS). [68] Tolerance to oxygen free radicals Pinnipeds The cycles of regional ischemia and prompt post-dive reperfusion raise the potential for production of reactive oxygen species (ROS) and associated oxidative damage. Seals show high tolerance to ROS via enzyme superoxide dismutase (SOD) formation and large antioxidant capacity. [69-72] Supplementary Table 1 (cont) Adaptations Species Description Source Phocids Phocid seals exhale before diving, reducing the diving lung volume and facilitating a shallower depth of lung collapse. [2, 4] Behavioural Reduce initial lung volume (exhale prior to diving) Modification of swimming gait All Modifying swimming gait to glide downward or upward during descent or ascent of dives is possible due to buoyancy changes at depth. The process of gliding conserves energy and increases the aerobic dive duration by reducing the need for myogenic propulsion. [55, 7376] Constrained diving patterns All A number of constraints on feasible patterns of diving have been hypothesized as a means to reduce N2 saturation. [77-79] Consecutive dives crush bubble nuclei All It has been hypothesized that rapid compression (descent) may crush pre-existing gas nuclei and thereby reduce the risk of bubble formation during decompression. [80, 81] Supplementary Table 1 References References to Table S1 1. Ridgway S.H., Scronce B.L., Kanwisher J. 1969 Respiration and deep diving in the bottlenose porpoise. Science 166, 1651-1654. (doi:10.1126/science.166.3913.1651). 2. Kooyman G.L., Hammond D.D., Schroeder J.P. 1970 Bronchograms and tracheograms of seals under pressure. Science 169, 82-84. (doi:10.1126/science.169.3940.82). 3. Kooyman G.L. 1973 Respiratory adaptations in marine mammals. Am Zool 13, 457-468. (doi:10.1093/icb/13.2.457). 4. Scholander P.F. 1940 Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skrifter 22, 1-131. 5. Bostrom B.L., Fahlman A., Jones D.R. 2008 Tracheal compression delays alveolar collapse during deep diving in marine mammals. Resp Physiol Neurobiol 161, 298-305. (doi:10.1016/j.resp.2008.03.003). 6. Belanger L.F. 1940 A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. . Am J Anat 67, 437-461. 7. Ninomiya H., Inomata T., Shirouzu H., Katsumata E. 2005 Microanatomy of the terminal air spaces of Baird's beaked whale (Berardius bairdii) lungs. J Vet Med Sci 67, 473-479. 8. Shadwick R.E. 1999 Mechanical design in arteries. J Exp Biol 202, 3305-3313. 9. Drabek C.M., Burns J.M. 2002 Heart and aorta morphology of the deep diving hooded seal (Cystophora cristata). Integrative and Comparative Biology 42, 1222-1222. (doi:10.1139/Z02-181). 10. Ponganis P.J., Kooyman G.L., Sartoris D., Jobsis P. 1992 Pinniped splenic volumes. Am J Physiol 262, R322R325. 11. Hurford W.E., Hochachka P.W., Schneider R.C., Guyton G.P., Stanek K.S., Zapol D.G., Liggins G.C., Zapol W.M. 1996 Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal. J Appl Physiol 80, 298-306. 12. Cabanac A., Folkow L.P., Blix A.S. 1997 Volume capacity and contraction control of the seal spleen. J Appl Physiol 82, 1989-1994. 13. Thornton S.J., Spielman D.M., Pelc N.J., Block W.F., Crocker D.E., Costa D.P., Le Boeuf B.J., Hochachka P.W. 2001 Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proc Natl Acad Sci USA 98, 9413-9418. (doi:10.1073/pnas.151192098). 14. Harrison R.J., Tomlinson D.W. 1956 Observations on the venous system in certain pinnipedia and cetacea. Proc Zool Soc Lond 126, 205-233. (doi:10.1111/j.1096-3642.1956.tb00433.x). 15. Slijper E.J. 1962 Whales. London, Hutchinson. 16. Ponganis P.J., Kooyman G.L., Ridgway S.H. 2003 Comparative diving physiology. In Bennett and Elliott's physiology and medicine of diving (eds. Brubakk A.O., Neuman T.S.), pp. 211-226, 5th ed. Saunders, Elsevier Science Ltd. 17. Ponganis P.J., Stockard T.K., Levenson D.H., Berg L., Baranov E.A. 2006 Intravascular pressure profiles in elephant seals: Hypotheses on the caval sphincter, extradural vein and venous return to the heart. Comp Biochem Physiol A-Mol Integr Physiol 145, 123-130. (doi:10.1016/j.cbpa.2006.05.012). 18. Kerem D., Elsner R. 1973 Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respiration Physiology 19, 188-200. (doi:10.1016/0034-5687(73)90077-7 ). 19. Folkow L.P., Ramirez J.M., Ludvigsen S., Ramirez N., Blix A.S. 2008 Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446, 147-150. (doi:10.1016/j.neulet.2008.09.040). 20. Nagel E.L., Morgane P.J., McFarlane W.L., Galliano R.E. 1968 Rete mirabile of dolphin: its pressuredamping effect on cerebral circulation. Science 161, 898-900. (doi:10.1126/science.161.3844.898). 21. Viamonte M., Morgane P.J., Galliano R.E., Nagel E.L., McFarland W.L. 1968 Angiography in the living dolphin and observations on blood supply to the brain. Am J Physiol 214, 1225-1249. 22. Vogl A.W., Fisher H.D. 1982 Arterial retia related to supply of the central nervous system in two small toothed whales- narwhal (Monodon monoceros) and beluga (Delphinapterus leucas). J Morphol 174, 41-56. (doi:10.1002/jmor.1051740105). 23. Ronald K., McCarter R., Selley L.J. 1977 Venous circulation in the harp seal (Pagophilus groenlandicus). In Functional Anatomy of Marine Mammals (ed. Harrison R.J.), pp. 235-270, Academic Press. Supplementary Table 1 References 24. Nordgarden U., Folkow L.P., Walloe L., Blix A.S. 2000 On the direction and velocity of blood flow in the extradural intravertebral vein of harp seals (Phoca groenlandica) during simulated diving. Acta Physiol Scand 168, 271-276. 25. Jepson P.D., Deaville R., Patterson I.A.P., Pocknell A.M., Ross H.M., Baker J.R., Howie F.E., Reid R.J., Colloff A., Cunningham A.A. 2005 Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. Vet Pathol 42, 291-305. (doi:10.1354/vp.42-3-291). 26. Piscitelli M.A., McLellan W.A., Rommel S.A., Blum J.E., Barco S.G., Pabst D.A. 2010 Lung size and thoracic morphology in shallow- and deep-diving cetaceans. J Morphol 271, 654-673. (doi:10.1002/jmor.10823). 27. Murie J. 1874 On the organization of the Caaing whale, Globicephala melas. Trans Zool Soc London 8, 235301. 28. Boenninghaus F.W.G. 1904 Das Ohr des Zahnwales, zugleich ein Beitrag zur Theorie der Shallertung. Eine biologische Studie. Zool Jahrbuch Jena, Abtheilung für Anatomie und Ontogenie der Theire 19, 189-360. 29. Fraser F.C., Purves P.E. 1960 Hearing in cetaceans - evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans. Bull Brit Museum Nat Hist Zool 7, 1-140. 30. Odend'hal S., Poulter T.C. 1966 Pressure regulation in the middle ear cavity of sea lions: a possible mechanism. Science 153, 768-769. (doi:10.1126/science.153.3737.768). 31. Stenfors L.E., Sade J., Hellstrom S., Anniko M. 2001 How can the hooded seal dive to a depth of 1000 m without rupturing its tympanic membrane? A morphological and functional study. Acta Oto-Laryngol 121, 689-695. (doi:10.1080/00016480152583629). 32. Zapol W.M., Liggins G.C., Schneider R.C., Qvist J., Snider M.T., Creasy R.K., Hochachka P.W. 1979 Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47, 968-973. 33. Davis R.W., Polasek L., Watson R., Fuson A., Williams T.M., Kanatous S.B. 2004 The diving paradox: new insights into the role of the dive response in air-breathing vertebrates. Comp Biochem Physiol A 138, 263268. (doi:10.1016/j.cbpb.2004.05.003). 34. Elsner R.W., Franklin D.L., Van Citters R.L. 1964 Cardiac output during diving in an unrestrained sea lion. Nature 202, 809-810. (doi:10.1038/202809a0). 35. Kooyman G.L., Campbell W.B. 1972 Heart rates in freely diving Weddell seals, Leptonychotes weddelli. Comp Biochem Physiol 43, 31-36. (doi:10.1016/0300-9629(72)90465-3). 36. Ridgway S.H., Carder D.A., Clark W. 1975 Conditioned bradycardia in sea lion Zalophus californianus. Nature 256, 37-38. (doi:10.1038/256037a0). 37. Fedak M.A. 1986 Diving and exercise in seals: a benthic perspective. In Diving in Animals and Man (eds. Brubakk A.O., Kanwisher J.W., Sundnes G.), pp. 11-32. Trondheim, Tapir. 38. Williams T.M., Kooyman G.L., Croll D.A. 1991 The effect of submergence on heart rate and oxygen consumption of swimming seals and sea lions. J Comp Physiol B 160, 637-644. (doi:10.1007/BF00571261). 39. Thompson D., Fedak M.A. 1993 Cardiac responses of grey seals during diving at sea. J Exp Biol 174, 139164. 40. Andrews R.D., Jones D.R., Williams J.D., Thorson P.H., Oliver G.W., Costa D.P., LeBoeuf B.J. 1997 Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200, 2083-2095. 41. Hindell M.A., Lea M.A. 1998 Heart rate, swimming speed, and estimated oxygen consumption of a freeranging southern elephant seal. Physiol Zool 71, 74-84. 42. Noren S.R., Cuccurullo V., Williams T.M. 2004 The development of diving bradycardia in bottlenose dolphins (Tursiops truncatus). J Comp Physiol B 174, 139-147. (doi:10.1007/s00360-003-0398-9). 43. Hurley J.A., Costa D.P. 2001 Standard metabolic rate at the surface and during trained submersions in adult California sea lions (Zalophus californianus). J Exp Biol 204, 3273-3281. 44. Sparling C.E., Fedak M.A. 2004 Metabolic rates of captive grey seals during voluntary diving. J Exp Biol 207, 1615-1624. (doi:10.1242/jeb.00952). 45. Hill R.D., Schneider R.C., Liggins G.C., Schuette A.H., Elliott R.L., Guppy M., Hochachka P.W., Qvist J., Falke K.J., Zapol W.M. 1987 Heart-rate and body temperature during free diving of Weddell seals. Am J Physiol 253, R344-R351. 46. Butler P.J. 2004 Metabolic regulation in diving birds and mammals. Resp Physiol Neurobiol 141, 297-315. (doi:10.1016/j.resp.2004.01.010). Supplementary Table 1 References 47. Kvadsheim P.H., Folkow L.P., Blix A.S. 2005 Inhibition of shivering in hypothermic seals during diving. Am J Physiol-Reg I 289, R326-R331. (doi:10.1152/ajpregu.00708.2004). 48. Blix A.S., Walloe L., Messelt E.B., Folkow L.P. 2010 Selective brain cooling and its vascular basis in diving seals. J Exp Biol 213, 2610-2616. (doi:10.1242/jeb.040345). 49. Ramirez J.M., Folkow L.P., Blix A.S. 2007 Hypoxia tolerance in mammals and birds: From the wilderness to the clinic. Annu Rev Physiol 69, 113-143. (doi:10.1146/annurev.physiol.69.031905.163111). 50. Meir J.U., Champagne C.D., Costa D.P., Williams C.L., Ponganis P.J. 2009 Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol-Reg I 297, R927-R939. (doi:10.1152/ajpregu.00247.2009). 51. Lovering A.T., Haverkamp H.C., Romer L.M., Hokanson J.S., Eldridge M.W. 2009 Transpulmonary passage of Tc-99m macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol 106, 1986-1992. (doi:10.1152/japplphysiol.01357.2007). 52. Lovering A.T., Romer L.M., Haverkamp H.C., Pegelow D.F., Hokanson J.S., Eldridge M.W. 2008 Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans. J Appl Physiol 104, 1418-1425. (doi:10.1152/japplphysiol.00208.2007). 53. Kooyman G.L., Sinnett E.E. 1982 Pulmonary shunts in harbor seals and sea lions during simulated dives to depth. Physiol Zool 55, 105-111. 54. Fedak M.A., Thompson D. 1993 Behavioural and physiological options in diving seals. Symp zool Soc Lond 66, 333-348. 55. Costa D.P., Gales N.J. 2000 Foraging energetics and diving behavior of lactating New Zealand sea lions, Phocarctos hookeri. J Exp Biol 203, 3655-3665. 56. Costa D.P., Gales N.J. 2003 Energetics of a benthic diver: seasonal foraging ecology of the Australian sea lion, Neophoca cinerea. Ecol Monogr 73, 27-43. 57. Costa D.P., Kuhn C.E., Weise M.J., Shaffer S.A., Arnould J.P.Y. 2004 When does physiology limit the foraging behaviour of freely diving mammals? International Congress Series 1275, 359-366. (doi:10.1016/j.ics.2004.08.058). 58. Tyack P.L., Johnson M., Aguilar Soto N., Sturlese A., Madsen P.T. 2006 Extreme diving of beaked whales. J Exp Biol 209, 4238-4253. (doi:10.1242/jeb.02505). 59. Kooyman G.L. 1988 Pressure and the diver. Can J Zool 66, 84-88. (doi:10.1139/z88-011). 60. Kanatous S.B., DiMichele L.V., Cowan D.F., Davis R.W. 1999 High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol 86, 1247-1256. 61. Noren S.R., Williams T.M. 2000 Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp Biochem Physiol 126, 181-191. (doi:10.1016/S1095-6433(00)00182-3). 62. Polasek L.K., Davis R.W. 2001 Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J Exp Biol 204, 209-215. 63. Weise M.J., Costa D.P. 2007 Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 210, 278-289. (doi:10.1242/jeb.02643). 64. Kanatous S.B., Hawke T.J., Trumble S.J., Pearson L.E., Watson R.R., Garry D.J., Williams T.M., Davis R.W. 2008 The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. J Exp Biol 211, 2559-2565. (doi:10.1242/jeb.018119). 65. Williams T.M., Zavanelli M., Miller M.A., Goldbeck R.A., Morledge M., Casper D., Pabst D.A., McLellan W., Cantin L.P., Kliger D.S. 2008 Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. P Roy Soc Lond B Bio 275, 751-758. (doi:10.1098/rspb.2007.1484). 66. Spragg R.G., Ponganis P.J., Marsh J.J., Rau G.A., Bernhard W. 2004 Surfactant from diving aquatic mammals. J Appl Physiol 96, 1626-1632. (doi:10.1152/japplphysiol.00898.2003). 67. Miller N.J., Daniels C.B., Costa D.P., Orgeig S. 2004 Control of pulmonary surfactant secretion in adult California sea lions. Biochem Bioph Res Co 313, 727-732. (doi:10.1016/j.bbrc.2003.12.012). 68. Robinson A.J., Kropatkin M., Aggeler P.M. 1969 Hageman factor (factor XII) deficiency in marine mammals. Science 166, 1420-1422. (doi:10.1126/science.166.3911.1420). 69. Elsner R., Oyasaeter S., Almaas R., Saugstad O.D. 1998 Diving seals, ischemia-reperfusion and oxygen radicals. Comp Biochem Physiol A 119, 975-980. (doi:10.1016/s1095-6433(98)00012-9). 70. Zenteno-Savin T., Clayton-Hernandez E., Elsner R. 2002 Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol C 133, 527-536. (doi:10.1016/S1532-0456(02)00075-3). Supplementary Table 1 References 71. Vazquez-Medina J.P., Zenteno-Savin T., Elsner R. 2006 Antioxidant enzymes in ringed seal tissues: Potential protection against dive-associated ischemia/reperfusion. Comp Biochem Physiol C 142, 198-204. (doi:10.1016/j.cbpc.2005.09.004). 72. Vazquez-Medina J.P., Olguin-Monroy N.O., Maldonado P.D., Santamaria A., Konigsberg M., Elsner R., Hammill M.O., Burns J.M., Zenteno-Savin T. 2011 Maturation increases superoxide radical production without increasing oxidative damage in the skeletal muscle of hooded seals (Cystophora cristata). Can J Zool 89, 206-212. (doi:10.1139/z10-107). 73. Williams T.M. 1999 The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Phil Trans R Soc Lond B 354, 193-201. (doi:10.1098/rstb.1999.0371). 74. Williams T.M., Davis R.W., Fuiman L.A., Francis J., Le Boeuf B.J., Horning M., Calambokidis J., Croll D.A. 2000 Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288, 133-136. (doi:10.1126/science.288.5463.133). 75. Crocker D.E., Gales N.J., Costa D.P. 2001 Swimming speed and foraging strategies of New Zealand sea lions (Phocarctos hookeri). J Zool 254, 267-277. (doi:10.1017/s0952836901000784). 76. Madden K.M., Fuiman L.A., William T.M., Davis R.W. 2008 Identification of foraging dives in free-ranging Weddell seals Leptonychotes weddellii: confirmation using video records. Mar Ecol Prog Ser 365, 263-275. (doi:10.3354/meps07396). 77. Zimmer W.M.X., Tyack P.L. 2007 Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Mar Mamm Sci 23, 888-925. (doi:10.1111/j.1748-7692.2007.00152.x). 78. Fahlman A., Schmidt A., Jones D.R., Bostrom B.L., Handrich Y. 2007 To what extent might N2 limit dive performance in king penguins? J Exp Biol 210, 3344-3355. (doi:10.1242/jeb.008730). 79. Hooker S.K., Baird R.W., Fahlman A. 2009 Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus. Resp Physiol Neurobiol 167, 235-246. (doi:10.1016/j.resp.2009.04.023). 80. Mackay R.S. 1982 Dolphins and the bends. Science 216, 650-650. (doi:10.1126/science.7071606). 81. Vann R.D. 2004 Mechanisms and risks of decompression. In Bove and Davis' diving medicine (ed. Bove A.A.), pp. 127-164, 4th ed. Philadelphia, W. B. Saunders.
© Copyright 2026 Paperzz