Supplementary Table 1: Marine mammal anatomical, biochemical

Supplementary Table 1:
Marine mammal anatomical, biochemical, physiological and behavioural adaptations for diving. (Some
adaptations have been observed, others are hypothesised.)
Adaptations
Species
Description
Source
Anatomical
Flexible chest
All
Highly compressible chest facilitates compression collapse of
alveoli.
[1-3]
Modified lung
structure
facilitating alveolar
collapse
All
Stiffened upper airways and lack of smaller respiratory bronchii
compared to terrestrial mammals. Thin-walled compliant alveoli
collapse under increasing hydrostatic pressure causing a graded
decrease in the amount of respiratory gases absorbed by the blood
stream as the depth of diving increases. Effective gas exchange
between lungs and blood ceases when all alveoli are collapsed.
Reinforced lung structure may also facilitate high ventilation rates
at surface.
[3-5]
Bronchial
sphincters
Cetaceans Presence of a series of bronchial sphincter muscles found in the
terminal segments of the airways. Function is largely unknown, but
is hypothesised to relate to management of lung air.
[3, 6, 7]
Large aortic bulb
Phocids
Elastic and bulbous ascending aorta hypothesised to play a role in
maintaining arterial pressure during the long diastolic intervals of
diving bradycardia. A larger bulb is found in deeper divers. (There
is some suggestion of a similar bulb in mysticete whales.)
[8, 9]
Enlarged spleen
and hepatic sinus
Phocids
The enlarged spleen acts as a reservoir for red blood cells, and is
used in concert with the hepatic sinus to meter blood allowing
temporary increases in hematocrit during periods of apnoea and
diving. The release of red blood cells responds to increases in
epinephrine. The size of the spleen is correlated with diving
capacity, i.e. deep diving phocids have the largest spleens.
[10-13]
Vena caval
sphincters
High brain
capillary density
Retia mirabilia
Pinnipeds, Muscle sphincter located around thoracic caudal vena cava, just
Some
cranial to the diaphragm and large hepatic sinus (phocids).
cetaceans. Innervated by branch of right phrenic nerve. Assumed to be a
mechanism to regulate venous return to the heart.
Phocids
A higher capillary density facilitates increased O2 conductance to
neural tissue.
Cetaceans, In cetaceans, these are a series of vascular networks of densely
Sirenians looped arteries primarily located from base of brain case, along and
within the vertebral column, and retro-pleurally lining the ventral
aspect of the rib arches. It is the only path of arterial blood to the
brain in adult cetaceans. Possible functions of the retia include as a
windkessel for brain blood flow, allowing intrathoracic and
vascular engorgement to mitigate ‘lung squeeze’, or as a filter for
arterial gas emboli preventing DCS (neuroprotective effect).
[14-17]
[18, 19]
[4, 16,
20-22]
Supplementary Table 1 (cont)
Adaptations
Species
Description
Source
Anatomical (cont)
Large epidural
Cetaceans, Extensive epidural venous plexuses in cetaceans and sinuses in
venous sinuses and Phocids phocids may act as a blood store. In cetaceans, the small plexiform
plexuses
structure could help trap gas and/or fat emboli before they occlude
small veins and arteries in the CNS. Juxtaposition to central
nervous system may allow regional heterothermy of brain and
spinal cord.
[14, 17,
23-25]
Smaller lung size
[4, 26]
Elaborate
plexiform veins in
and around air
spaces
DeepThe relatively large lung size in delphinids and phocoenids
diving
indicates a reliance on lung stores for oxygen in relatively shortcetaceans duration shallow diving species. Deep diving species rely on
greater blood and muscle oxygen stores (haemoglobin and
myoglobin) to meet oxygen demands and have therefore retained a
relatively small comparative lung size.
Odontocete
cetaceans
and
phocids
Investment of odontocete pterygoid and peribullar sinuses with
elaborate plexiform veins. More elaborate and voluminous sinus
vasculature in deep divers (e.g. physeterids, kogiids, ziphiids)
compared to shallow-diving delphinids. Phocids and deep diving
odontocetes also have extensive thoracic venous vasculature. As
air volume in sinuses and lung cavities reduces under pressure,
these structures may allow blood volume to replace diminishing air
volume. Possibility of gas/nitrogen exchange at sinuses is
unknown.
[14, 2731]
Peripheral
vasoconstriction
and selective
ischemia
All
A marked reduction in peripheral blood flow and variable reduction
to organs during diving reduces oxygen delivery to tissues with
relatively lower metabolic demands. Variable responses have been
observed during natural diving with the magnitude of
vasoconstriction being dependent on the dive duration.
[32, 33]
Bradycardia
All
Reduction in heart rate driven by circulatory adjustment with heart
rate following vascular resistance to maintain constant blood
pressure. Dramatic reduction in heart rate was initially observed in
forced dive studies, but has also been observed during natural
diving. Heart rates decline as a function of dive duration. Abrupt
bradycardia observed for phocid seals, more gradual bradycardia
for otariids and cetaceans. Modified by conscious control and by
exercise.
[4, 3442]
Hypometabolism
All
The post-submersion rate of O2 consumption appears insufficient to
maintain a normal metabolic rate during submersion. This suggests
a hypometabolic response to diving, which has been verified
experimentally for trained sea lions and grey seals diving
voluntarily.
[43, 44]
Physiological
Regional
heterothermy
Pinnipeds, Regional reduction in body temperature may contribute to
Cetaceans? hypometabolism by reducing the oxygen consumption demands of
cooled tissues, including possibly the brain.
[45-48]
Supplementary Table 1 (cont)
Adaptations
Species
Description
Source
Physiological (cont)
Hypoxic tolerance
All
Hypometabolism and cell protection achieved through co-ordinated
system-level reorganisation involving reductions in oxygen
delivery to organs, partial shutdown of some organs, and complex
reconfiguration at cellular and molecular levels.
[18, 49,
50]
Pulmonary shunt
?
Intrapulmonary arteriovenous pathways linked to exercise and
hypoxia in humans ([51, 52]). Blood bypasses functional alveoli
(i.e., there is ventilation without perfusion) reducing pulmonary gas
exchange.
[53]
Anaerobic
extension of dives
beyond aerobic
dive limit
?
Potential to use anaerobic metabolism to extend dive duration.
Some deep divers repeatedly dive beyond the calculated aerobic
dive limit.
[54-58]
Biochemical
High myoglobin
concentration,
aerobic enzyme
capacities and
mitochondrial
volume density
All
Increased total body oxygen stores provided by higher myoglobin
concentrations. Concentrations highest in areas of muscle which
provide greatest force (and have greatest oxygen requirements).
Increased oxidative capacity provided by higher aerobic enzyme
capacities and mitochondrial densities found in swimming muscles,
which appear to be adapted for aerobic lipid metabolism under
diving hypoxia. The increased capacity is estimated to be as high as
20 times greater than that of terrestrial mammals.
[59-64]
High resident
neural globin
concentration
All
Neural haemoglobins, neuroglobins and cytoglobins facilitate
oxygen transfer into neural tissues, and may protect against reactive
oxygen and nitrogen groups. Increased concentrations are observed
for fast-swimmers and divers relative to terrestrial species.
[65]
Lung surfactant
production
Pinnipeds Increased surfactant production caused by transient
Cetaceans? mechanostimulation (pressure), facilitates reinflation of the
collapsed lung during ascent.
[66, 67]
Hypocoagulable
blood (lacking
several clotting
factors)
Cetaceans Cetaceans may lack a number of clotting factors common to
terrestrial mammals. This may serve several functions, including
improved microcirculation during dive-induced bradycardia. It may
also reduce venous thrombosis, which is thought to be an important
mechanism in human DCS).
[68]
Tolerance to
oxygen free
radicals
Pinnipeds The cycles of regional ischemia and prompt post-dive reperfusion
raise the potential for production of reactive oxygen species (ROS)
and associated oxidative damage. Seals show high tolerance to
ROS via enzyme superoxide dismutase (SOD) formation and large
antioxidant capacity.
[69-72]
Supplementary Table 1 (cont)
Adaptations
Species
Description
Source
Phocids
Phocid seals exhale before diving, reducing the diving lung volume
and facilitating a shallower depth of lung collapse.
[2, 4]
Behavioural
Reduce initial lung
volume (exhale
prior to diving)
Modification of
swimming gait
All
Modifying swimming gait to glide downward or upward during
descent or ascent of dives is possible due to buoyancy changes at
depth. The process of gliding conserves energy and increases the
aerobic dive duration by reducing the need for myogenic
propulsion.
[55, 7376]
Constrained diving
patterns
All
A number of constraints on feasible patterns of diving have been
hypothesized as a means to reduce N2 saturation.
[77-79]
Consecutive dives
crush bubble nuclei
All
It has been hypothesized that rapid compression (descent) may
crush pre-existing gas nuclei and thereby reduce the risk of bubble
formation during decompression.
[80, 81]
Supplementary Table 1 References
References to Table S1
1. Ridgway S.H., Scronce B.L., Kanwisher J. 1969 Respiration and deep diving in the bottlenose porpoise.
Science 166, 1651-1654. (doi:10.1126/science.166.3913.1651).
2. Kooyman G.L., Hammond D.D., Schroeder J.P. 1970 Bronchograms and tracheograms of seals under
pressure. Science 169, 82-84. (doi:10.1126/science.169.3940.82).
3. Kooyman G.L. 1973 Respiratory adaptations in marine mammals. Am Zool 13, 457-468.
(doi:10.1093/icb/13.2.457).
4. Scholander P.F. 1940 Experimental investigations on the respiratory function in diving mammals and birds.
Hvalradets Skrifter 22, 1-131.
5. Bostrom B.L., Fahlman A., Jones D.R. 2008 Tracheal compression delays alveolar collapse during deep
diving in marine mammals. Resp Physiol Neurobiol 161, 298-305. (doi:10.1016/j.resp.2008.03.003).
6. Belanger L.F. 1940 A study of the histological structure of the respiratory portion of the lungs of aquatic
mammals. . Am J Anat 67, 437-461.
7. Ninomiya H., Inomata T., Shirouzu H., Katsumata E. 2005 Microanatomy of the terminal air spaces of
Baird's beaked whale (Berardius bairdii) lungs. J Vet Med Sci 67, 473-479.
8. Shadwick R.E. 1999 Mechanical design in arteries. J Exp Biol 202, 3305-3313.
9. Drabek C.M., Burns J.M. 2002 Heart and aorta morphology of the deep diving hooded seal (Cystophora
cristata). Integrative and Comparative Biology 42, 1222-1222. (doi:10.1139/Z02-181).
10. Ponganis P.J., Kooyman G.L., Sartoris D., Jobsis P. 1992 Pinniped splenic volumes. Am J Physiol 262, R322R325.
11. Hurford W.E., Hochachka P.W., Schneider R.C., Guyton G.P., Stanek K.S., Zapol D.G., Liggins G.C., Zapol
W.M. 1996 Splenic contraction, catecholamine release, and blood volume redistribution during diving in the
Weddell seal. J Appl Physiol 80, 298-306.
12. Cabanac A., Folkow L.P., Blix A.S. 1997 Volume capacity and contraction control of the seal spleen. J Appl
Physiol 82, 1989-1994.
13. Thornton S.J., Spielman D.M., Pelc N.J., Block W.F., Crocker D.E., Costa D.P., Le Boeuf B.J., Hochachka
P.W. 2001 Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proc Natl
Acad Sci USA 98, 9413-9418. (doi:10.1073/pnas.151192098).
14. Harrison R.J., Tomlinson D.W. 1956 Observations on the venous system in certain pinnipedia and cetacea.
Proc Zool Soc Lond 126, 205-233. (doi:10.1111/j.1096-3642.1956.tb00433.x).
15. Slijper E.J. 1962 Whales. London, Hutchinson.
16. Ponganis P.J., Kooyman G.L., Ridgway S.H. 2003 Comparative diving physiology. In Bennett and Elliott's
physiology and medicine of diving (eds. Brubakk A.O., Neuman T.S.), pp. 211-226, 5th ed. Saunders,
Elsevier Science Ltd.
17. Ponganis P.J., Stockard T.K., Levenson D.H., Berg L., Baranov E.A. 2006 Intravascular pressure profiles in
elephant seals: Hypotheses on the caval sphincter, extradural vein and venous return to the heart. Comp
Biochem Physiol A-Mol Integr Physiol 145, 123-130. (doi:10.1016/j.cbpa.2006.05.012).
18. Kerem D., Elsner R. 1973 Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respiration Physiology
19, 188-200. (doi:10.1016/0034-5687(73)90077-7 ).
19. Folkow L.P., Ramirez J.M., Ludvigsen S., Ramirez N., Blix A.S. 2008 Remarkable neuronal hypoxia
tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446, 147-150.
(doi:10.1016/j.neulet.2008.09.040).
20. Nagel E.L., Morgane P.J., McFarlane W.L., Galliano R.E. 1968 Rete mirabile of dolphin: its pressuredamping effect on cerebral circulation. Science 161, 898-900. (doi:10.1126/science.161.3844.898).
21. Viamonte M., Morgane P.J., Galliano R.E., Nagel E.L., McFarland W.L. 1968 Angiography in the living
dolphin and observations on blood supply to the brain. Am J Physiol 214, 1225-1249.
22. Vogl A.W., Fisher H.D. 1982 Arterial retia related to supply of the central nervous system in two small
toothed whales- narwhal (Monodon monoceros) and beluga (Delphinapterus leucas). J Morphol 174, 41-56.
(doi:10.1002/jmor.1051740105).
23. Ronald K., McCarter R., Selley L.J. 1977 Venous circulation in the harp seal (Pagophilus groenlandicus). In
Functional Anatomy of Marine Mammals (ed. Harrison R.J.), pp. 235-270, Academic Press.
Supplementary Table 1 References
24. Nordgarden U., Folkow L.P., Walloe L., Blix A.S. 2000 On the direction and velocity of blood flow in the
extradural intravertebral vein of harp seals (Phoca groenlandica) during simulated diving. Acta Physiol Scand
168, 271-276.
25. Jepson P.D., Deaville R., Patterson I.A.P., Pocknell A.M., Ross H.M., Baker J.R., Howie F.E., Reid R.J.,
Colloff A., Cunningham A.A. 2005 Acute and chronic gas bubble lesions in cetaceans stranded in the United
Kingdom. Vet Pathol 42, 291-305. (doi:10.1354/vp.42-3-291).
26. Piscitelli M.A., McLellan W.A., Rommel S.A., Blum J.E., Barco S.G., Pabst D.A. 2010 Lung size and
thoracic morphology in shallow- and deep-diving cetaceans. J Morphol 271, 654-673.
(doi:10.1002/jmor.10823).
27. Murie J. 1874 On the organization of the Caaing whale, Globicephala melas. Trans Zool Soc London 8, 235301.
28. Boenninghaus F.W.G. 1904 Das Ohr des Zahnwales, zugleich ein Beitrag zur Theorie der Shallertung. Eine
biologische Studie. Zool Jahrbuch Jena, Abtheilung für Anatomie und Ontogenie der Theire 19, 189-360.
29. Fraser F.C., Purves P.E. 1960 Hearing in cetaceans - evolution of the accessory air sacs and the structure and
function of the outer and middle ear in recent cetaceans. Bull Brit Museum Nat Hist Zool 7, 1-140.
30. Odend'hal S., Poulter T.C. 1966 Pressure regulation in the middle ear cavity of sea lions: a possible
mechanism. Science 153, 768-769. (doi:10.1126/science.153.3737.768).
31. Stenfors L.E., Sade J., Hellstrom S., Anniko M. 2001 How can the hooded seal dive to a depth of 1000 m
without rupturing its tympanic membrane? A morphological and functional study. Acta Oto-Laryngol 121,
689-695. (doi:10.1080/00016480152583629).
32. Zapol W.M., Liggins G.C., Schneider R.C., Qvist J., Snider M.T., Creasy R.K., Hochachka P.W. 1979
Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47, 968-973.
33. Davis R.W., Polasek L., Watson R., Fuson A., Williams T.M., Kanatous S.B. 2004 The diving paradox: new
insights into the role of the dive response in air-breathing vertebrates. Comp Biochem Physiol A 138, 263268. (doi:10.1016/j.cbpb.2004.05.003).
34. Elsner R.W., Franklin D.L., Van Citters R.L. 1964 Cardiac output during diving in an unrestrained sea lion.
Nature 202, 809-810. (doi:10.1038/202809a0).
35. Kooyman G.L., Campbell W.B. 1972 Heart rates in freely diving Weddell seals, Leptonychotes weddelli.
Comp Biochem Physiol 43, 31-36. (doi:10.1016/0300-9629(72)90465-3).
36. Ridgway S.H., Carder D.A., Clark W. 1975 Conditioned bradycardia in sea lion Zalophus californianus.
Nature 256, 37-38. (doi:10.1038/256037a0).
37. Fedak M.A. 1986 Diving and exercise in seals: a benthic perspective. In Diving in Animals and Man (eds.
Brubakk A.O., Kanwisher J.W., Sundnes G.), pp. 11-32. Trondheim, Tapir.
38. Williams T.M., Kooyman G.L., Croll D.A. 1991 The effect of submergence on heart rate and oxygen
consumption of swimming seals and sea lions. J Comp Physiol B 160, 637-644. (doi:10.1007/BF00571261).
39. Thompson D., Fedak M.A. 1993 Cardiac responses of grey seals during diving at sea. J Exp Biol 174, 139164.
40. Andrews R.D., Jones D.R., Williams J.D., Thorson P.H., Oliver G.W., Costa D.P., LeBoeuf B.J. 1997 Heart
rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200, 2083-2095.
41. Hindell M.A., Lea M.A. 1998 Heart rate, swimming speed, and estimated oxygen consumption of a freeranging southern elephant seal. Physiol Zool 71, 74-84.
42. Noren S.R., Cuccurullo V., Williams T.M. 2004 The development of diving bradycardia in bottlenose
dolphins (Tursiops truncatus). J Comp Physiol B 174, 139-147. (doi:10.1007/s00360-003-0398-9).
43. Hurley J.A., Costa D.P. 2001 Standard metabolic rate at the surface and during trained submersions in adult
California sea lions (Zalophus californianus). J Exp Biol 204, 3273-3281.
44. Sparling C.E., Fedak M.A. 2004 Metabolic rates of captive grey seals during voluntary diving. J Exp Biol
207, 1615-1624. (doi:10.1242/jeb.00952).
45. Hill R.D., Schneider R.C., Liggins G.C., Schuette A.H., Elliott R.L., Guppy M., Hochachka P.W., Qvist J.,
Falke K.J., Zapol W.M. 1987 Heart-rate and body temperature during free diving of Weddell seals. Am J
Physiol 253, R344-R351.
46. Butler P.J. 2004 Metabolic regulation in diving birds and mammals. Resp Physiol Neurobiol 141, 297-315.
(doi:10.1016/j.resp.2004.01.010).
Supplementary Table 1 References
47. Kvadsheim P.H., Folkow L.P., Blix A.S. 2005 Inhibition of shivering in hypothermic seals during diving. Am
J Physiol-Reg I 289, R326-R331. (doi:10.1152/ajpregu.00708.2004).
48. Blix A.S., Walloe L., Messelt E.B., Folkow L.P. 2010 Selective brain cooling and its vascular basis in diving
seals. J Exp Biol 213, 2610-2616. (doi:10.1242/jeb.040345).
49. Ramirez J.M., Folkow L.P., Blix A.S. 2007 Hypoxia tolerance in mammals and birds: From the wilderness to
the clinic. Annu Rev Physiol 69, 113-143. (doi:10.1146/annurev.physiol.69.031905.163111).
50. Meir J.U., Champagne C.D., Costa D.P., Williams C.L., Ponganis P.J. 2009 Extreme hypoxemic tolerance
and blood oxygen depletion in diving elephant seals. Am J Physiol-Reg I 297, R927-R939.
(doi:10.1152/ajpregu.00247.2009).
51. Lovering A.T., Haverkamp H.C., Romer L.M., Hokanson J.S., Eldridge M.W. 2009 Transpulmonary passage
of Tc-99m macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol
106, 1986-1992. (doi:10.1152/japplphysiol.01357.2007).
52. Lovering A.T., Romer L.M., Haverkamp H.C., Pegelow D.F., Hokanson J.S., Eldridge M.W. 2008
Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy
humans. J Appl Physiol 104, 1418-1425. (doi:10.1152/japplphysiol.00208.2007).
53. Kooyman G.L., Sinnett E.E. 1982 Pulmonary shunts in harbor seals and sea lions during simulated dives to
depth. Physiol Zool 55, 105-111.
54. Fedak M.A., Thompson D. 1993 Behavioural and physiological options in diving seals. Symp zool Soc Lond
66, 333-348.
55. Costa D.P., Gales N.J. 2000 Foraging energetics and diving behavior of lactating New Zealand sea lions,
Phocarctos hookeri. J Exp Biol 203, 3655-3665.
56. Costa D.P., Gales N.J. 2003 Energetics of a benthic diver: seasonal foraging ecology of the Australian sea
lion, Neophoca cinerea. Ecol Monogr 73, 27-43.
57. Costa D.P., Kuhn C.E., Weise M.J., Shaffer S.A., Arnould J.P.Y. 2004 When does physiology limit the
foraging behaviour of freely diving mammals? International Congress Series 1275, 359-366.
(doi:10.1016/j.ics.2004.08.058).
58. Tyack P.L., Johnson M., Aguilar Soto N., Sturlese A., Madsen P.T. 2006 Extreme diving of beaked whales. J
Exp Biol 209, 4238-4253. (doi:10.1242/jeb.02505).
59. Kooyman G.L. 1988 Pressure and the diver. Can J Zool 66, 84-88. (doi:10.1139/z88-011).
60. Kanatous S.B., DiMichele L.V., Cowan D.F., Davis R.W. 1999 High aerobic capacities in the skeletal
muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol 86, 1247-1256.
61. Noren S.R., Williams T.M. 2000 Body size and skeletal muscle myoglobin of cetaceans: adaptations for
maximizing dive duration. Comp Biochem Physiol 126, 181-191. (doi:10.1016/S1095-6433(00)00182-3).
62. Polasek L.K., Davis R.W. 2001 Heterogeneity of myoglobin distribution in the locomotory muscles of five
cetacean species. J Exp Biol 204, 209-215.
63. Weise M.J., Costa D.P. 2007 Total body oxygen stores and physiological diving capacity of California sea
lions as a function of sex and age. J Exp Biol 210, 278-289. (doi:10.1242/jeb.02643).
64. Kanatous S.B., Hawke T.J., Trumble S.J., Pearson L.E., Watson R.R., Garry D.J., Williams T.M., Davis R.W.
2008 The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. J Exp Biol 211,
2559-2565. (doi:10.1242/jeb.018119).
65. Williams T.M., Zavanelli M., Miller M.A., Goldbeck R.A., Morledge M., Casper D., Pabst D.A., McLellan
W., Cantin L.P., Kliger D.S. 2008 Running, swimming and diving modifies neuroprotecting globins in the
mammalian brain. P Roy Soc Lond B Bio 275, 751-758. (doi:10.1098/rspb.2007.1484).
66. Spragg R.G., Ponganis P.J., Marsh J.J., Rau G.A., Bernhard W. 2004 Surfactant from diving aquatic
mammals. J Appl Physiol 96, 1626-1632. (doi:10.1152/japplphysiol.00898.2003).
67. Miller N.J., Daniels C.B., Costa D.P., Orgeig S. 2004 Control of pulmonary surfactant secretion in adult
California sea lions. Biochem Bioph Res Co 313, 727-732. (doi:10.1016/j.bbrc.2003.12.012).
68. Robinson A.J., Kropatkin M., Aggeler P.M. 1969 Hageman factor (factor XII) deficiency in marine
mammals. Science 166, 1420-1422. (doi:10.1126/science.166.3911.1420).
69. Elsner R., Oyasaeter S., Almaas R., Saugstad O.D. 1998 Diving seals, ischemia-reperfusion and oxygen
radicals. Comp Biochem Physiol A 119, 975-980. (doi:10.1016/s1095-6433(98)00012-9).
70. Zenteno-Savin T., Clayton-Hernandez E., Elsner R. 2002 Diving seals: are they a model for coping with
oxidative stress? Comp Biochem Physiol C 133, 527-536. (doi:10.1016/S1532-0456(02)00075-3).
Supplementary Table 1 References
71. Vazquez-Medina J.P., Zenteno-Savin T., Elsner R. 2006 Antioxidant enzymes in ringed seal tissues: Potential
protection against dive-associated ischemia/reperfusion. Comp Biochem Physiol C 142, 198-204.
(doi:10.1016/j.cbpc.2005.09.004).
72. Vazquez-Medina J.P., Olguin-Monroy N.O., Maldonado P.D., Santamaria A., Konigsberg M., Elsner R.,
Hammill M.O., Burns J.M., Zenteno-Savin T. 2011 Maturation increases superoxide radical production
without increasing oxidative damage in the skeletal muscle of hooded seals (Cystophora cristata). Can J Zool
89, 206-212. (doi:10.1139/z10-107).
73. Williams T.M. 1999 The evolution of cost efficient swimming in marine mammals: limits to energetic
optimization. Phil Trans R Soc Lond B 354, 193-201. (doi:10.1098/rstb.1999.0371).
74. Williams T.M., Davis R.W., Fuiman L.A., Francis J., Le Boeuf B.J., Horning M., Calambokidis J., Croll D.A.
2000 Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288, 133-136.
(doi:10.1126/science.288.5463.133).
75. Crocker D.E., Gales N.J., Costa D.P. 2001 Swimming speed and foraging strategies of New Zealand sea lions
(Phocarctos hookeri). J Zool 254, 267-277. (doi:10.1017/s0952836901000784).
76. Madden K.M., Fuiman L.A., William T.M., Davis R.W. 2008 Identification of foraging dives in free-ranging
Weddell seals Leptonychotes weddellii: confirmation using video records. Mar Ecol Prog Ser 365, 263-275.
(doi:10.3354/meps07396).
77. Zimmer W.M.X., Tyack P.L. 2007 Repetitive shallow dives pose decompression risk in deep-diving beaked
whales. Mar Mamm Sci 23, 888-925. (doi:10.1111/j.1748-7692.2007.00152.x).
78. Fahlman A., Schmidt A., Jones D.R., Bostrom B.L., Handrich Y. 2007 To what extent might N2 limit dive
performance in king penguins? J Exp Biol 210, 3344-3355. (doi:10.1242/jeb.008730).
79. Hooker S.K., Baird R.W., Fahlman A. 2009 Could beaked whales get the bends? Effect of diving behaviour
and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and
Hyperoodon ampullatus. Resp Physiol Neurobiol 167, 235-246. (doi:10.1016/j.resp.2009.04.023).
80. Mackay R.S. 1982 Dolphins and the bends. Science 216, 650-650. (doi:10.1126/science.7071606).
81. Vann R.D. 2004 Mechanisms and risks of decompression. In Bove and Davis' diving medicine (ed. Bove
A.A.), pp. 127-164, 4th ed. Philadelphia, W. B. Saunders.