Quiz 1 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a ? are ‘‘for your entertainment’’ and are not essential. SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference sections 5.2 and 5.3 of the recommended textbook (or the equivalent section in your alternative textbook/online resource) and your lecture notes. EXPECTED SKILLS: • Given a differentiation rule, be able to construct the associated indefinite integration rule. • Know how to integrate power functions (including polynomials), exponential functions, and trigonometric functions. • Know how to simplify a ‘‘complicated integral’’ to a known form by making an appropriate substitution of variables. PRACTICE PROBLEMS: For problems 1 and 2, compute the indicated derivative and state a corresponding integration formula. d 1 1. dx (2x + 3)2 2. d [x ln x − x] dx 1 For problems 3-16, evaluate the given indefinite integral Z 1 2 x + x dx 3. 2 Z √ 4. x7 + e dx Z 5. Z 6. Z 7. 1 + 3x3 x3 dx 3x–2/3 + x–1/2 + 5x dx √ 4x4/3 − 7 x dx Z 8. 3 cos x dx Z 9. –7 sec2 x dx Z 1 x dx 10. – +e x Z 11. (1 − x2 )(x3 + 4) dx Z x2 − 3x5 dx x3 Z –2 sin x dx cos2 x 12. 13. Z 14. (6 cos x + 9 csc2 x) dx Z (sin x − 3 sec x tan x) dx 15. Z 16. 2x dx 2 Z 17. Consider cot2 x dx (a) Using the fact that sin2 x + cos2 x = 1, derive the identity cot2 x = csc2 x − 1. (b) Use the identity that you derived in part (a) to evaluate the original integral. For problems 18 and 19, find a function y = y(x) which satisfies the given initial value problem. 1 dy = 2 dx 9x 18. y(1) = 1 2 dy = –2ex dx 19. y(0) = –5 20. A ball is thrown straight up in the air from an initial height of s0 feet above the ground with an initial speed of v0 ft/sec. Then s(t) gives the height (in feet) above the ground at time t, v(t) = s0 (t) gives the velocity (in ft/sec) of the ball at time t, and a(t) = s00 (t) gives the acceleration (in ft/sec2 ) of the ball at time t. Assuming that acceleration is a constant –g ft/sec2 , determine v(t) and s(t). For problems 21-39, evaluate the given indefinite integral. Z 21. 3x2 (x3 + 3)3 dx Z 22. Z 23. 5 dx 5x + 3 2x cos(x2 ) dx 3 Z 24. 4x(x2 + 6)2 dx Z 25. sec(4x) tan(4x) dx Z 26. Z 27. (3x − 5)9 dx e–2x dx Z sin x cos x dx 1 + sin2 x Z x x cot dx 29. csc 2 2 Z √ 30. –3x3 1 − x4 dx 28. Z 31. Z 1 dx 2 + 4x2 Z 4x dx (3 + x2 )2 Z √ x2 4 − x dx Z e3/x dx x2 Z ex dx e2x + 1 32. 33. 34. 35. 36. Z 37. 38. √ e x 1 √ − cos 4x x 4 dx (sin 4x)(cos 4x)2/3 dx Z 3 csc2 (3x) tan2 (3x) + x2 ex dx 4 Z 39. 1 dx x ln x Z ? Determine f (x) dx where f (x) = Z ? Compute x + 1, x<0 0, 0 ≤ x ≤ 20 5 − x2 , x > 20. x + sin x − cos x − 1 dx. x + ex + sin x (Taken from a Romanian college entrance exam.) 5 SOLUTIONS 1. By chain rule, 1 –2 d –4 = ·2= , 2 3 dx (2x + 3) (2x + 3) (2x + 3)3 which gives us Z 1 –4 dx = + C. 3 (2x + 3) (2x + 3)2 2. By the product rule, d [x ln x − x] = (1)(ln x) + (x) dx 1 − 1 = ln x + 1 − 1 = ln x, x which gives us Z ln x dx = x ln x − x + C. 1 1 x2 x3 1 1 2 3. x + x dx = · + + C = x2 + x3 + C 2 2 2 3 4 3 Z √ Z 2 7 x + e dx = x7/2 + e dx = x9/2 + ex + C 4. 9 Z Z 1 1 3 5. + 3x3 dx = (x–3 + 3x3 ) dx = – x–2 + x4 + C 3 x 2 4 Z 6 Z 5 3x–2/3 + x–1/2 + 5x dx = 9x1/3 + 2x1/2 + x2 + C 2 Z Z √ 7x3/2 4x7/3 4/3 4x − 7 x dx = 7. − +C = 4x4/3 − 7x1/2 dx = 7/3 3/2 12 7/3 14 3/2 x − x +C 7 3 Z 8. 3 cos x dx = 3 sin x + C 6. Z 9. –7 sec2 x dx = –7 tan x + C Z 1 x 10. – +e dx = – ln |x| + ex + C x Z Z 1 1 2 3 11. (1 − x )(x + 4) dx FOIL (x3 + 4 − x5 − 4x2 ) dx = x4 + 4x − x6 − = 4 6 4 3 x +C 3 Z Z 2 1 x − 3x5 2 dx = − 3x dx = ln |x| − x3 + C 12. x3 x Z Z Z –2 sin x –2 sin x dx = 13. · dx = –2 sec x tan x dx = –2 sec x + C cos2 x cos x cos x Z 14. (6 cos x + 9 csc2 x) dx = 6 sin x − 9 cot x + C Z (sin x − 3 sec x tan x) dx = – cos x − 3 sec x + C 15. Z 16. x 2 dx = Z e ln 2 x Z dx = 17. (a) sin2 x + cos2 x = 1 ⇒ e(ln 2)x dx = 2x 1 (ln 2)x e +C = +C ln 2 ln 2 sin2 x cos2 x 1 = ⇒ 1 + cot2 x = csc2 ⇒ 2 + 2 sin x sin x sin2 x cot2 x = csc2 x − 1 Z Z 2 (b) cot x dx = (csc2 x − 1) dx = – cotx − x + C 7 Z 18. We have y = dy dx = dx Z 1 1 1 dx = – + C. Since y(1) = , 2 9x 9x 2 1 1 1 1 11 =– +C ⇒C = + = , 2 9(1) 2 9 18 and so y(x) = – Z 19. We have y = 1 11 + . 9x 18 dy dx = dx Z –2ex dx = –2ex + C. Since y(0) = –5, –5 = –2e0 + C = –2 + C ⇒ C = 2 − 5 = –3, and so y(x) = –2ex − 3. 20. Let us first find v(t). Since a(t) = v 0 (t), the given data yields the following initial value problem: dv = –g dt v(0) = v . 0 Z Hence v(t) = 0 Z v (t) dt = –g dt = –gt + C and v0 = –g(0) + C = C so that v(t) = –gt + v0 . We can now find s(t) by way of the other available initial value problem: ds = –gt + v 0 dt s(0) = s . 0 8 Z Z 0 Therefore s(t) = s (t) dt = 1 (–gt + v0 ) dt = – gt2 + v0 t + C and 2 1 s0 = – g(0)2 + v0 (0) + C = C 2 1 so that s(t) = – gt2 + v0 t + s0 . (Observe that these are the formulas 2 describing free fall that one learns in physics.) 21. Let u = x3 + 3 so that du = 3x2 dx. Then Z 2 3 Z 3 3x (x + 3) dx = 1 1 u3 du = u4 + C = (x3 + 3)4 + C. 4 4 22. Let u = 5x + 3 so that du = 5 dx. Then Z 5 dx = 5x + 3 Z 1 du = ln|u| + C = ln|5x + 3| + C. u 23. Let u = x2 so that du = 2x dx. Then Z 2 Z 2x cos(x ) dx = cos u du = sin u + C = sin(x2 ) + C. 24. Let u = x2 + 6 so that du = 2x dx ⇒ 2du = 4x dx. Then Z 2 2 4x(x + 6) dx = 2 Z 2 2 u2 du = u3 + C = (x2 + 6)3 + C. 3 3 9 1 25. Let u = 4x so that du = 4 dx ⇒ du = dx. Then 4 Z 1 sec(4x) tan(4x) dx = 4 Z sec u tan u dx = 1 1 sec u+C = sec(4x)+C. 4 4 1 26. Let u = 3x − 5 so that du = 3 dx ⇒ du = dx. Then 3 Z 1 (3x − 5) dx = 3 9 Z u9 du = 1 1 10 1 · u + C = (3x − 5)10 + C. 3 10 30 1 27. Let u = –2x so that du = –2 dx ⇒ – du = dx. Then 2 Z Z 1 1 1 –2x e dx = – eu du = – eu + C = – e–2x + C. 2 2 2 1 28. Let u = 1 + sin2 x so that du = 2 sin x cos x dx ⇒ du = sin x cos x dx. 2 Then Z sin x cos x 1 dx = 2 2 1 + sin x Z 1 1 1 1 du = ln|u|+C = ln|1+sin2 x|+C = ln(1+sin2 x)+C. u 2 2 2 (Note that because 1 + sin2 x > 0 for all real x, the absolute value is superfluous and can be removed.) 29. Let u = Z csc x 1 so that du = dx ⇒ 2du = dx. Then 2 2 x 2 cot x 2 Z dx = 2 csc u cot u du = –2 csc u+C = –2 csc 10 x +C. 2 3 30. Let u = 1 − x4 so that du = –4x3 dx ⇒ du = –3x3 dx. Then 4 Z Z √ √ 3 3 2 1 –3x 1 − x4 dx = u du = · u3/2 + C = (1 − x4 )3/2 + C. 4 4 3 2 3 √ Z e x 1 √ 31. First split the integral in two: cos 4x dx. The second dx − 4 x √ integral is pretty easy. For the first one, let u = x so that du = 1 1 √ dx ⇒ 2du = √ dx. Then 2 x x Z Z √ e x √ dx = x Z √ e x 1 · √ dx = 2 x Z eu du = 2eu + C = 2e √ x + C. Combining this with the other integral, we see that Z √ e x 1 √ − cos 4x x 4 √ dx = 2e x − 1 sin 4x + C. 16 32. One may suspect that the answer will involve the inverse tangent function, but instead of a ‘‘1 + something squared’’ we have a ‘‘2 + something squared.’’ That is fine. To mitigate that, let us factor out a 2 from the denominator of the integrand so that Z 1 dx = 2 + 4x2 Z 1 1 1 · dx = 2 2 1 + 2x 2 It now makes sense to make u = dx. Then 11 √ Z 1+ 2x so that du = 1 √ √ 2x 2 dx. 1 2 dx ⇒ √ du = 2 1 2 Z 1 √ 1+ 1 1 2 dx = · √ 2 2 2x Z √ 1 1 1 –1 –1 2x +C. du = √ tan u+C = √ tan 1 + u2 2 2 2 2 33. Let u = 3 + x2 so that du = 2x dx ⇒ 2du = 4x dx. Then Z 4x dx = 2 (3 + x2 )2 Z 1 –2 1 du = –2 · + C = + C. 2 u u 3 + x2 34. This is very tricky, but it is best to let u = 4 − x so that x = 4 − u ⇒ dx = –du. So Z x 2 √ Z 4 − x dx = – Z =– Z =– √ (4 − u)2 u du (16 − 8u + u2 )u1/2 du 16u1/2 − 8u3/2 + u5/2 du 2 5/2 2 7/2 2 3/2 +C = – 16 · u − 8 · u + u 3 5 7 32 16 2 = – (4 − x)3/2 + (4 − x)5/2 − (4 − x)7/2 + C. 3 5 7 35. Let u = Z 3 3 1 1 so that du = – 2 dx ⇒ – du = 2 dx. Then x x 3 x e3/x dx = x2 Z 3/x e 1 1 · 2 dx = – x 3 12 Z 1 1 eu du = – eu + C = – e3/x + C. 3 3 36. Let u = ex so that du = ex dx. Then Z ex dx = e2x + 1 Z du = tan–1 u + C = tan–1 (ex ) + C. +1 u2 1 37. Let u = cos 4x so that du = –4 sin 4x dx ⇒ – du = sin 4x dx. Then 4 Z 2/3 (sin 4x)(cos 4x) 1 dx = – 4 Z 3 1 3 u2/3 du = – · u5/3 +C = – (cos 4x)5/3 +C. 4 5 20 Z 2 38. First split the integral in two: 2 csc (3x) tan (3x) dx+ Z 3 x2 ex dx. Note that Z 2 sin2 (3x) 1 · dx sin2 (3x) cos2 (3x) Z 1 = dx 2 cos (3x) Z 1 = sec2 (3x) dx = tan(3x) + C. 3 Z 2 csc (3x) tan (3x) dx = For the second term, let u = x3 so that du = 3x2 dx ⇒ Then Z 1 x e dx = 3 2 x3 Z 1 du = x2 dx. 3 1 1 3 eu du = eu + C = ex + C. 3 3 Hence 13 Z 2 2 csc (3x) tan (3x) + x e 39. Let u = ln x so that du = Z 2 x3 1 dx = x ln x Z dx = 1 1 3 tan(3x) + ex + C. 3 3 1 dx. Then x 1 1 · dx = ln x x Z 14 1 du = ln |u| + C = ln |ln x| + C. u
© Copyright 2026 Paperzz