83 Ζ. Kristallogr. NCS 214 (1999) 83-84 © by R. Oldenbourg Verlag, München Crystal structure of betaine potassium iodide dihydrate, (C5HHN02)2KI 2H20 L. C. R. Andrade, M. M. R. Costa, J. A. Paixäo Universidade de Coimbra, Faculdade de Ciencias e Tecnologia, Departamento de Física, P-3000 Coimbra, Portugal J. Agostinho Moreira, A. Almeida, M. R. Chaves Universidade do Porto, Faculdade de Ciencias, Departamento de Física, IMAT (núcleo IFIMUP), CFUP, Rua do Campo Alegre, 687, P-4150 Porto, Portugal and A. Klöpperpieper Universität des Saarlandes, Fachbereich Physik, D-66041 Saarbrücken, Germany Received July 29, 1998, CSD-No. 409357 Betaine potassium iodide dihydrate,(C5H1 ιΝ02)2ΚΙ · 2Η2θ presents unique features amongst the rich variety of properties exhibited by the betaine family of compounds investigated in recent years [2-6]. The study of dielectric and pyroelectric properties provided evidence for a structural phase transition, probably of first order, occurring close to 100 Κ [7], Both iodine and potassium ions occupy special positions. Examination of the crystal structure shows that potassium ion is octahedrally coordinated by four oxygen atoms from betaine molecules in a plane close to (010) and by two water molecules. The iodine ion is bonded to the carboxylic group of the aminoacid by electrostatic interactions. Zigzag chains of water and betaine molecules linked via hydrogen bonds run throughout the structure. The carboxylic 02 atom is involved in a relatively strong hydrogen bond being an acceptor of the water molecule (0(3)-H31 0(2)', i = 2-x,—y,ì— Ζ, 2.654(3) Â) while the atom Ol is only involved in much weaker C—H—O interactions. This correlates well with the observed difference in the carboxylic C - 0 bonds. Neighbouring water molecules are linked together via a weaker hydrogen bond ( 0 3 H(32)-03", ii = \-x,-y,\~z, 3.099(5) Â). There are no solventaccessible voids in the crystal lattice [8], Abstract C10H26KN2O6, triclinic, PI (No. 2), a = 5.653(2) Â, b = 5.894(2) Â, c = 14.02(1) Â, α = 82.23(4)°, β = 82.16(4)°, y=73.22(2)°, V = 440.7 Â3, Ζ = 1, Rg{F) = 0.021, Rvj(F ) = 0.050, Τ = 293 Κ. Source of material The compound was synthesized from a saturated water solution of ionic potassium iodide and betaine. A small grain selected from the polycrystalline precipitate obtained was used as a seed for the growth of a larger single crystal. Discussion The structure was solved by direct methods. Hydrogen atoms participating in C-Η bonds were placed at calculated positions and refined as riding using the SHELXL-97 defaults [1]. The hydrogen atoms of the water molecules were located as a result of a Fourier difference synthesis and refined as riding. Table 1. Data collection and handling. Crystal: Wavelength: μ: Diffractometer, scan mode: 2Θ„ Ι 3 Χ: WlWjmeasured, colorless, transparent prism, size 0.07x0.1 χ 0.2 mm Mo Ka radiation ( 0 . 7 0 9 3 0 Â ) 20.75 cm"1 Enraf-Nonius CAD4, ω/2θ 69.76° N(hkl)unique: Criterion for /0bs, N(hkl): 5680, 2720 /obs > 2 a(Iobs), 2 5 5 4 N(param)K fined: 104 Programs: SHELXL-97 [1], XCAD4 [9], SDP [10], ORTEPII [11] Unauthenticated Download Date | 6/19/17 2:57 AM 84 Betaine potassium iodide dihydrate Table 2. Atomic coordinates and displacement parameters (in À 2 ). Table 2. Continued. Atom Site χ y ζ Uis0 Atom Site X H(4A) H(4B) H(1 A) H(IB) H(1C) H(2A) H(2B) li li 2i li 21 2i li 1.2130 1.2693 0.9665 0.7285 0.7453 0.9756 1.2153 0.8449 0.6800 0.7316 0.9492 0.7316 1.2237 1.0086 0.2997 0.2165 0.1018 0.1033 0.1825 0.1052 0.0995 0.054 0.054 0.062 0.062 0.062 0.069 0.069 H(2C) H(3A) H(3B) H(3C) H(31) H(32) li li li li li li 1.1658 0.8244 0.6588 0.6423 0.797(7) 0.660(6) y 1.1762 1.1714 0.9995 1.2173 -0.147(4) -0.041(8) ζ t/iso 0.1822 0.3099 0.3090 0.2300 0.567(2) 0.495(3) 0.069 0.074 0.074 0.074 0.123 0.123 Table 3. Atomic coordinates and displacement parameters (in Â2). Atom Site X y ζ UH U22 ί/33 1 Κ 0(1) Ν C(4) C(5) C(l) C(2) C(3) 0(3) 0(2) \e \h li li li li li li li li li 1/2 1/2 0.8284(3) 0.9517(2) 1.1386(2) 1.0503(3) 0.8378(3) 1.0895(3) 0.7514(3) 0.7477(5) 1.2294(3) 1/2 1/2 0.5803(3) 0.9456(2) 0.7616(2) 0.5715(3) 0.8291(3) 1.1027(3) 1.0969(3) 0.0040(3) 0.4164(3) 0 1/2 0.3481(1) 0.20571(8) 0.2624(1) 0.3320(1) 0.1427(1) 0.1425(1) 0.2694(1) 0.5345(1) 0.3656(1) 0.03520(9) 0.0424(2) 0.0499(7) 0.0298(5) 0.0320(6) 0.0466(7) 0.0391(7) 0.0445(7) 0.0504(8) 0.122(2) 0.0619(8) 0.03927(9) 0.0552(3) 0.0637(8) 0.0316(5) 0.0392(6) 0.0397(6) 0.0472(7) 0.0423(7) 0.0411(7) 0.0479(8) 0.0505(7) 0.03897(9) 0.0364(2) 0.0548(7) 0.0310(5) 0.0361(6) 0.0296(6) 0.0385(7) 0.0487(8) 0.0499(8) 0.066(1) 0.0645(8) Acknowledgments. We thank gratefully Dr. J. Albers for his collaboration in the study of betaine compounds. We are indebted to the Cultural Service of the German Federal Republic Embassy, the Deutscher Akademischer Austauschdienst (DAAD) and the German Agency for Technical Cooperation (GTZ) for the offer of a CAD-4 automatic diffractometer which enabled the experimental work to be carried out. This work was supported by Fundaçào para Ciência e Tecnologia and by PRAXIS/2/2. l/FIS/26/94. J. Agostinho Moreira thanks the Project PRAXIS XXI for his grant (DB/3192/94). References 1. Sheldrick, G. M.: SHELXL-97, a program for refining crystal structures. University of Göttingen, Germany 1997. 2. Renata Chaves, M.; Almeida, Α.: Competitive interactions in betaine compounds. Physica Scripta T35 (1991) 179-183. 3. Albers, J.: Betaine compounds-a new family with ferroelectric and incommensurate phases. Ferroelectrics 78 (1988) 3-10. U12 -0.00180(5) -0.0163(2) -0.0252(6) -0.0074(4) -0.0119(5) -0.0170(6) -0.0107(6) -0.0157(6) -0.0041(6) -0.0112(9) -0.0155(6) U13 -0.00183(5) -0.0028(2) 0.0054(5) -0.0009(4) -0.0057(5) -0.0029(5) -0.0091(5) -0.0044(6) 0.0087(7) -0.015(1) -0.0169(6) ί/23 -0.00254(5) 0.0043(2) 0.0096(6) -0.0023(4) 0.0043(5) 0.0004(5) -0.0077(6) 0.0116(6) -0.0158(6) 0.0110(7) 0.0201(6) 4. Schaack, G.: Experimental results on phase transitions in betaine compounds. Ferroelectrics 104 (1990) 147-158. 5. Santos, M. L.; Almeida, Α.; Chaves, M. R.; Klöpperpieper, Α.; Albers, J.; Agostinho Moreira, J.; Gervais, F.: Study of the lattice dynamics and phase transitions in betaine phosphate by comparison with betaine phosphite via infrared reflectivity. J. Phys. Condens. Matt. 9 (1997) 8119-8134. 6. Almeida, Α.; Agostinho Moreira, J.; Chaves, M. R.; Klöpperpieper, Α.; Pinto, F.: Dielectric relaxation behaviour of protonated and deuterated betaine arsenate. J. Phys. Condens. Matt. 10 (1998) 3035-3044. 7. Almeida, Α.; Chaves, M. R.; Agostinho Moreira J.; Pinto F.; Klöpperpieper, Α.: Betaine potassium iodide dihydrate: a new compound of betaine. Accepted for publication in J. Phys. Condens. Matt. 8. Spek, A. L.: PLATON. Molecular Geometry Program. University of Utrecht, Utrecht, The Netherlands 1995. 9. Enraf Nonius. CAD4 Software, Version 5.0. Enraf Nonius, Delft, The Netherlands, 1989. 10. Frenz, Β. Α.: Enraf Nonius SDP-plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands, 1985. 11. Johnson, C. K.: ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, US A, US A 1976. Unauthenticated Download Date | 6/19/17 2:57 AM
© Copyright 2024 Paperzz