Crystal structure of betaine potassium iodide dihydrate,(C5H11NO2

83
Ζ. Kristallogr. NCS 214 (1999) 83-84
© by R. Oldenbourg Verlag, München
Crystal structure of betaine potassium iodide dihydrate,
(C5HHN02)2KI
2H20
L. C. R. Andrade, M. M. R. Costa, J. A. Paixäo
Universidade de Coimbra, Faculdade de Ciencias e Tecnologia, Departamento de Física, P-3000 Coimbra, Portugal
J. Agostinho Moreira, A. Almeida, M. R. Chaves
Universidade do Porto, Faculdade de Ciencias, Departamento de Física, IMAT (núcleo IFIMUP), CFUP, Rua do Campo Alegre, 687, P-4150 Porto, Portugal
and A. Klöpperpieper
Universität des Saarlandes, Fachbereich Physik, D-66041 Saarbrücken, Germany
Received July 29, 1998, CSD-No. 409357
Betaine potassium iodide dihydrate,(C5H1 ιΝ02)2ΚΙ · 2Η2θ presents unique features amongst the rich variety of properties exhibited by the betaine family of compounds investigated in recent
years [2-6]. The study of dielectric and pyroelectric properties
provided evidence for a structural phase transition, probably of
first order, occurring close to 100 Κ [7], Both iodine and potassium ions occupy special positions. Examination of the crystal
structure shows that potassium ion is octahedrally coordinated by
four oxygen atoms from betaine molecules in a plane close to
(010) and by two water molecules. The iodine ion is bonded to
the carboxylic group of the aminoacid by electrostatic interactions. Zigzag chains of water and betaine molecules linked via
hydrogen bonds run throughout the structure. The carboxylic 02
atom is involved in a relatively strong hydrogen bond being an
acceptor of the water molecule (0(3)-H31 0(2)', i = 2-x,—y,ì—
Ζ, 2.654(3) Â) while the atom Ol is only involved in much weaker
C—H—O interactions. This correlates well with the observed
difference in the carboxylic C - 0 bonds. Neighbouring water
molecules are linked together via a weaker hydrogen bond ( 0 3 H(32)-03", ii = \-x,-y,\~z,
3.099(5) Â). There are no solventaccessible voids in the crystal lattice [8],
Abstract
C10H26KN2O6, triclinic, PI (No. 2), a = 5.653(2) Â, b = 5.894(2) Â,
c = 14.02(1) Â, α = 82.23(4)°, β = 82.16(4)°, y=73.22(2)°,
V = 440.7 Â3, Ζ = 1, Rg{F) = 0.021, Rvj(F ) = 0.050, Τ = 293 Κ.
Source of material
The compound was synthesized from a saturated water solution
of ionic potassium iodide and betaine. A small grain selected from
the polycrystalline precipitate obtained was used as a seed for the
growth of a larger single crystal.
Discussion
The structure was solved by direct methods. Hydrogen atoms
participating in C-Η bonds were placed at calculated positions
and refined as riding using the SHELXL-97 defaults [1]. The
hydrogen atoms of the water molecules were located as a result
of a Fourier difference synthesis and refined as riding.
Table 1. Data collection and handling.
Crystal:
Wavelength:
μ:
Diffractometer, scan mode:
2Θ„ Ι 3 Χ:
WlWjmeasured,
colorless, transparent prism,
size 0.07x0.1 χ 0.2 mm
Mo Ka radiation ( 0 . 7 0 9 3 0 Â )
20.75 cm"1
Enraf-Nonius CAD4, ω/2θ
69.76°
N(hkl)unique:
Criterion for /0bs, N(hkl):
5680, 2720
/obs > 2 a(Iobs), 2 5 5 4
N(param)K fined:
104
Programs:
SHELXL-97 [1], XCAD4 [9], SDP [10],
ORTEPII [11]
Unauthenticated
Download Date | 6/19/17 2:57 AM
84
Betaine potassium iodide dihydrate
Table 2. Atomic coordinates and displacement parameters (in À 2 ).
Table 2. Continued.
Atom
Site
χ
y
ζ
Uis0
Atom
Site
X
H(4A)
H(4B)
H(1 A)
H(IB)
H(1C)
H(2A)
H(2B)
li
li
2i
li
21
2i
li
1.2130
1.2693
0.9665
0.7285
0.7453
0.9756
1.2153
0.8449
0.6800
0.7316
0.9492
0.7316
1.2237
1.0086
0.2997
0.2165
0.1018
0.1033
0.1825
0.1052
0.0995
0.054
0.054
0.062
0.062
0.062
0.069
0.069
H(2C)
H(3A)
H(3B)
H(3C)
H(31)
H(32)
li
li
li
li
li
li
1.1658
0.8244
0.6588
0.6423
0.797(7)
0.660(6)
y
1.1762
1.1714
0.9995
1.2173
-0.147(4)
-0.041(8)
ζ
t/iso
0.1822
0.3099
0.3090
0.2300
0.567(2)
0.495(3)
0.069
0.074
0.074
0.074
0.123
0.123
Table 3. Atomic coordinates and displacement parameters (in Â2).
Atom
Site
X
y
ζ
UH
U22
ί/33
1
Κ
0(1)
Ν
C(4)
C(5)
C(l)
C(2)
C(3)
0(3)
0(2)
\e
\h
li
li
li
li
li
li
li
li
li
1/2
1/2
0.8284(3)
0.9517(2)
1.1386(2)
1.0503(3)
0.8378(3)
1.0895(3)
0.7514(3)
0.7477(5)
1.2294(3)
1/2
1/2
0.5803(3)
0.9456(2)
0.7616(2)
0.5715(3)
0.8291(3)
1.1027(3)
1.0969(3)
0.0040(3)
0.4164(3)
0
1/2
0.3481(1)
0.20571(8)
0.2624(1)
0.3320(1)
0.1427(1)
0.1425(1)
0.2694(1)
0.5345(1)
0.3656(1)
0.03520(9)
0.0424(2)
0.0499(7)
0.0298(5)
0.0320(6)
0.0466(7)
0.0391(7)
0.0445(7)
0.0504(8)
0.122(2)
0.0619(8)
0.03927(9)
0.0552(3)
0.0637(8)
0.0316(5)
0.0392(6)
0.0397(6)
0.0472(7)
0.0423(7)
0.0411(7)
0.0479(8)
0.0505(7)
0.03897(9)
0.0364(2)
0.0548(7)
0.0310(5)
0.0361(6)
0.0296(6)
0.0385(7)
0.0487(8)
0.0499(8)
0.066(1)
0.0645(8)
Acknowledgments. We thank gratefully Dr. J. Albers for his collaboration in
the study of betaine compounds. We are indebted to the Cultural Service of
the German Federal Republic Embassy, the Deutscher Akademischer Austauschdienst (DAAD) and the German Agency for Technical Cooperation
(GTZ) for the offer of a CAD-4 automatic diffractometer which enabled the
experimental work to be carried out. This work was supported by Fundaçào
para Ciência e Tecnologia and by PRAXIS/2/2. l/FIS/26/94. J. Agostinho
Moreira thanks the Project PRAXIS XXI for his grant (DB/3192/94).
References
1. Sheldrick, G. M.: SHELXL-97, a program for refining crystal structures.
University of Göttingen, Germany 1997.
2. Renata Chaves, M.; Almeida, Α.: Competitive interactions in betaine
compounds. Physica Scripta T35 (1991) 179-183.
3. Albers, J.: Betaine compounds-a new family with ferroelectric and incommensurate phases. Ferroelectrics 78 (1988) 3-10.
U12
-0.00180(5)
-0.0163(2)
-0.0252(6)
-0.0074(4)
-0.0119(5)
-0.0170(6)
-0.0107(6)
-0.0157(6)
-0.0041(6)
-0.0112(9)
-0.0155(6)
U13
-0.00183(5)
-0.0028(2)
0.0054(5)
-0.0009(4)
-0.0057(5)
-0.0029(5)
-0.0091(5)
-0.0044(6)
0.0087(7)
-0.015(1)
-0.0169(6)
ί/23
-0.00254(5)
0.0043(2)
0.0096(6)
-0.0023(4)
0.0043(5)
0.0004(5)
-0.0077(6)
0.0116(6)
-0.0158(6)
0.0110(7)
0.0201(6)
4. Schaack, G.: Experimental results on phase transitions in betaine compounds. Ferroelectrics 104 (1990) 147-158.
5. Santos, M. L.; Almeida, Α.; Chaves, M. R.; Klöpperpieper, Α.; Albers, J.;
Agostinho Moreira, J.; Gervais, F.: Study of the lattice dynamics and phase
transitions in betaine phosphate by comparison with betaine phosphite via
infrared reflectivity. J. Phys. Condens. Matt. 9 (1997) 8119-8134.
6. Almeida, Α.; Agostinho Moreira, J.; Chaves, M. R.; Klöpperpieper, Α.;
Pinto, F.: Dielectric relaxation behaviour of protonated and deuterated
betaine arsenate. J. Phys. Condens. Matt. 10 (1998) 3035-3044.
7. Almeida, Α.; Chaves, M. R.; Agostinho Moreira J.; Pinto F.; Klöpperpieper, Α.: Betaine potassium iodide dihydrate: a new compound of betaine.
Accepted for publication in J. Phys. Condens. Matt.
8. Spek, A. L.: PLATON. Molecular Geometry Program. University of
Utrecht, Utrecht, The Netherlands 1995.
9. Enraf Nonius. CAD4 Software, Version 5.0. Enraf Nonius, Delft, The
Netherlands, 1989.
10. Frenz, Β. Α.: Enraf Nonius SDP-plus Structure Determination Package.
Version 3.0. Enraf-Nonius, Delft, The Netherlands, 1985.
11. Johnson, C. K.: ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, US A, US A 1976.
Unauthenticated
Download Date | 6/19/17 2:57 AM